

CFR 47 Part 18 Industrial Scientific and Medical Equipment Subpart C Technical Standards, Part 18.305, Field Strength Limits and Part 18.307, Conducted limits Class 2 Permissive Change Report

for the

Sharp Manufacturing Company of America

Microwave Oven Drawer with IOT Model: SMD2489ESC

FCC ID: APYDMR0173

Total Number of Pages Contained Within this report: 32

3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

Testing Tomorrow's Technology

I certify that I am authorized to sign for the manufacturer and that all of the statements in this report and in the exhibits attached hereto are true and correct to the best of my knowledge and belief:

US Tech (Agent responsible for test):

By: Mame: Alan Ghasiani

Title: President - Consulting Engineer

Date: November 28, 2022

This report shall not be reproduced except in full. This report may be copied in part only with the prior written approval of US Tech. The results contained in this report are subject to the adequacy and representative character of the sample provided. US Tech NVLAP accreditation does not allow product endorsement by NVLAP or any agency of the U.S. Government.

3505 Francis Circle Alpharetta, GA 30004 PH: 770-740-0717 Fax: 770-740-1508 www.ustech-lab.com

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

Table Of Contents

Γi	<u>tle</u>	<u>Paragraph</u> <u>Pag</u>	<u>e</u>
1.	Ger	neral Information	5
	1.1	Purpose of the Report	5
	1.2	Product Description	5
	1.3	Related Submittal(s)/Grant(s)	5
	1.4	Test Methodology	6
	1.5	Test Facility	
	1.6	Test Equipment	
	1.7	Characterization of Sample Tested	8
	1.8	EUT Exercise Software	
	1.9	Special Accessories	
	1.10		
	1.11		
	1.12		
	1.13		
	1.14		
	1.15		
		issions Data, Power Line and Radiated (47 CFR 18.301, 18.303, 18.305, 18.307	
		Test Site Description, Power Line Emissions	
		Power Line Emissions Test Data	
		Test Site Description, Radiated Emissions	
		Radiated Emissions Test Data	
		.4.1 Part 18 ISM Test Limits and Calculations	
		.4.2 General Field Strength Calculation	
_		.4.3 Radiated Emissions Test Results	
		issions Test Configuration Photographs	
		riation in Operating Frequency	
		Variation in Operating Frequency Over Time	
		Variation in Operating Frequency with Line Voltage	
		crowave Output Power Measurement, MP-5	
		diation Hazard Measurement	उ। २२
		A DESIUS	~ ~ /

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

List of Tables

Table 1. Test Equipment	
Table 2. EUT and Peripherals	8
Table 3. Detail of I/O Cables Attached to EUT	9
Table 4. Power Line Conducted Emissions	12
Table 5. Radiated Emissions Data 30 MHz to 1 GHz	17
Table 6. Radiated Emissions Data 1 GHz to 25 GHz	18
<u>List of Figures</u>	
Figure 1. Block Diagram of Test Configuration	9
Figure 2. Radiated Emissions Disturbance Measurement Facility Diagram	14
Figure 3. Radiated Emissions Below 30-1000 MHz Horizontal	19
Figure 4. Radiated Emissions Below 30-1000 MHz Vertical	
Figure 5. Radiated Emissions Above 1 GHz Horizontal	20
Figure 6.Radiated Emissions Above 1 GHz Horizontal	20
Figure 7. Photograph of Conducted Emissions Test Configuration	21
Figure 8. Photograph of Radiated Emissions Test Configuration, Close-Up	
Figure 9. Photograph of Radiated Emissions Test Configuration, 30 - 200 MHz	23
Figure 10. Photograph of Radiated Emissions Test Configuration, 200 - 1000 MHz	24
Figure 11. Photograph of Radiated Emissions Test Configuration, above 1000 MHz	

Model:

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

1. General Information

1.1 Purpose of the Report

The purpose of the test report is to file a permissive change request for the Sharp Corporation Model: SMD2480xxx Microwave Oven Drawer with FCC ID: APYDMR0173 for the following reason:

- An alternate magnetron is being certified for use with the product. The alternate magnetron is manufactured by LG and has part number 2M246.

Based on this modification, AC power line conducted emissions and unwanted spurious emissions testing per Part 18.305 and 18.307 were conducted along with Frequency Variation and Microwave Output Power measurements per FCC measurement procedure MP-5. The test were conducted to show that the product continues to meet the applicable requirements.

1.2 Product Description

The Equipment under Test (EUT) is the Sharp Manufacturing Company of America SMD2489ESC Microwave Oven Drawer with IOT. The EUT is rated to be 950 Watts. The input power is rated at 120 VAC, 60Hz.

The EUT was tested at 100% microwave power setting.

The model number SMD2489ESC is tested as the representative model covering the SMD2489 line of microwave products. The SMD2489ESC is the IOT version of the product and incorporates an approved Wi-Fi radio module in its design. The FCC ID for the Wi-Fi module is FCC ID: RX3-B01.

1.3 Related Submittal(s)/Grant(s)

The original Grant for this EUT was issued on January 16, 2009, under FCC ID: APYDMR0173, and a Class 2 Permissive Change to add an alternate model magnetron was granted on February 16, 2018. A Class 1 permissive change report was generated on August 21, 2019 for the addition of a pre-approved Wi-Fi module. A second Class 1 permissive change report was generated in June 20, 2022, for a changed switching power supply module.

Model:

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

1.4 Test Methodology

The EUT was configured as shown in the block diagram and photographs herein. The sample was tested per FCC measurement Procedure MP-5, "Methods of Measurement of Radio Noise Emissions from Industrial, Scientific and Medical Equipment" (1986) as well as per CFR 47 part 18. Conducted and radiated emissions data were taken with the Test Receiver or Spectrum Analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. At frequencies above 1 GHz, the resolution bandwidth was increased to 1 MHz. The video bandwidth was three times more than resolution bandwidth on the spectrum analyzer. All measurements are peak unless stated otherwise. Interconnecting cables were manipulated as necessary to maximize emissions.

1.5 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA. This site has been fully described and registered with the FCC under site designation number US5301. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under IC site number 9900A-1.

US Tech currently is Accredited by the NIST NVLAP organization, Lab Code: 200162-0 and FCC Part 18 is in our Scope of Accreditation.

1.6 Test Equipment

The following table details the test equipment used in the evaluation of this product.

Table 1. Test Equipment

Table 1. Test Equipme	,11 t			
INSTRUMENT	NUMBER		CALIBRATION DUE DATE	
SPECTRUM ANALYZER (radiated emissions)	E4407B	AGILENT	US41442935	9/21/2024 2yr.
SPECTRUM ANALYZER (power line emissions)	DSA815	RIGOL	DSA8A18030 0138	1/06/2024 2yr.
SPECTRUM ANALYZER (MP-5 measurements)	8593E	HEWLETT PACKARD	3205A00124	2/28/2024
BICONICAL ANTENNA	3110B	EMCO	9306-1708	8/17/2023 2yr.
HORN ANTENNA	SAS-571	A. H. SYSTEMS	605	4/28/2024 2yr.
LOG PERIODIC ANTENNA	3146	EMCO	9110-3236	12/13/2023 2yr.
PREAMP	8447D	HEWLETT- PACKARD	1937A02980	6/9/2023
PREAMP	8449B	HEWLETT PACKARD	3008A00914	2/11/2023
LISN	9247-50- TS-50-N	SOLAR ELECTRONICS	955824	2/8/2023
LISN	9247-50- TS-50-N	SOLAR ELECTRONICS	955825	2/8/2023

Note: The calibration interval of the above test instruments is 12 months unless stated otherwise and all calibrations are traceable to NIST/USA.

Model:

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

1.7 Characterization of Sample Tested

The sample used for testing was received on November 02, 2022 in good condition.

1.8 EUT Exercise Software

No software was exercised while the EUT was being tested. The EUT was programmed to perform at 100% power level. The test was performed using 1000 ml of tap water in a 150 mm diameter cylindrical glass vessel placed in the center of the oven.

1.9 Special Accessories

There were not special accessories required for this product testing.

1.10 Test Rationale

The EUT, cable and wiring arrangement, and mode of operation that produced the emissions with the highest levels relative to the applicable limits was selected for final measurements.

The interconnect cable(s) and/or power cord(s) were moved into various positions of the most likely configurations to maximize the emissions. In this case the placement of the cables had negligible effects. The test configuration photographs represent the final configuration used for testing.

1.11 Tested System Details

Table 2. EUT and Peripherals

PERIPHERAL/ MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID	CABLES P/D
Microwave Oven Drawer with IOT (EUT)/ Sharp Manufacturing Company of America	SMD2489ESC	Engineering Sample	APYDMR0173 Contains: RX3-B01	Р

U= unshielded S= shielded P= Power D= Data

Model:

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America

APYDMR0173 SMD2489ESC

Table 3. Detail of I/O Cables Attached to EUT

DESCRIPTION OF CABLE	DETAILS OF CABLE			CABLE LENGTH
	Manufacturer and Part Number			
	CND			
Power Cable	Shield Type	Shield Termination	Type of Backshell	1.5 m
	NA	NA	NA	

Shield Type
N/A = None
F = Foil
B = Braided
2B = Double Braided
CND = Could Not Determine
C = Conduit

 $\frac{\textbf{Shield Termination}}{N/A = None}$

360 = 360° P = Pigtail/Drain Wire CND = Could Not Determine Type of Backshell

N/A = Not Applicable
PS = Plastic Shielded
PU = Plastic Unshielded
MS = Metal Shielded
MU = Metal Unshielded

1.12 Configuration of Tested System

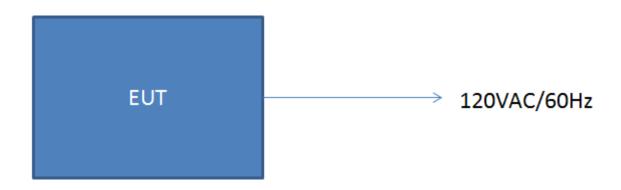


Figure 1. Block Diagram of Test Configuration

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

1.13 Equipment Modifications

No modifications were made to the EUT in order for it to meet the requirements.

1.14 Test Results

Line conducted emissions testing was conducted and compared to 18.307(b) limits. The worst case line conducted emission was 8.53 dB below the limit at 2.5800 MHz on the Neutral line. All other conducted emissions were at least 9.79 dB below the limit.

Radiated emissions testing was conducted and compared to 18.305 (a) and (b) limits. The worst case radiated emission in the frequency range 30 MHz to 25 GHz was 2.7 dB below the limit at 12296 MHz; all other radiated emissions were at least 6.8 dB below the limit.

1.15 Measurement Uncertainty

<u>Conducted Emissions:</u> Measurement Uncertainty (within a 95% confidence level) for this test was ±2.8 dB.
The data listed in this test report may exceed the test limit because it does not have enough margin (more than 2.8 dB) to meet the measurement uncertainty interval. The EUT conditionally passes this test.
 The data listed in this test report has enough margin, more than 2.8, dB to meet the measurement uncertainty interval. The EUT unconditionally passes this test.
Radiated Emissions:
Measurement Distance of 10 m:
The measurement uncertainty (with a 95% confidence level) for this test using a Biconical Antenna is ±5.21 dB.
The measurement uncertainty (with a 95% confidence level) for this test using a Log Periodic Antenna is ± 4.99 dB.
Measurement Distance of 3 m:
The measurement uncertainty (with a 95% confidence level) for this test using a double ridge horn antenna is ±5.08 dB.
The data listed in this test report may exceed the test limit because it does not have enough margins to meet the measurement uncertainty interval. The EUT conditionally passes this test.
 The data listed in this test report has enough margins to meet the measurement uncertainty interval. The EUT unconditionally passes this test.

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

2. Emissions Data, Power Line and Radiated (47 CFR 18.301, 18.303, 18.305, 18.307)

2.1 Test Site Description, Power Line Emissions

The mains terminal interference measurement facility is a shielded room (Lectro Magnetics, Inc., Type LDC6-0812-8-2793) 4.0 m deep x 2.5 m wide x 2.5 m high. Power for the shielded room is filtered (Lectroline, EMX-1020-2, rated 125/250 V, 20 A, 50/60 Hz).

The artificial mains networks are Solar Electronics models 8028. A nonconductive table 1.5 m deep x 1.0 m wide x 0.8 m high is used for tabletop equipment. All grounded conducting surfaces including the case or cases of one or more artificial mains networks is at least 0.8 m from any surface of the EUT. The EUT is a wall mounted unit; therefore the unit was place on a nonconductive table 50cm away from all vertical coupling surfaces.

The load used for this measurement was 1000 ml of water located in the center of the oven.

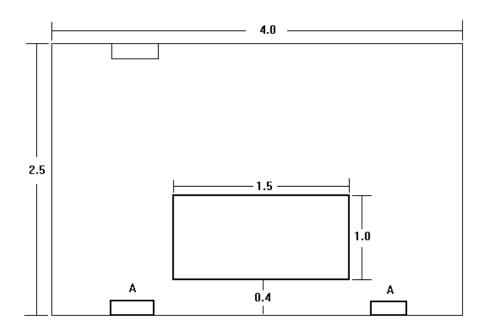


Figure 2. Power Line Emissions Disturbance Measurement Facility Diagram

US Tech Test Report:

Report Number:

Issue Date:

Customer:

FCC Part 18 Subpart C

22-0302

November 28, 2022

Sharp Manufacturing Company of America
FCC ID:

APYDMR0173

Model:

SMD2489ESC

2.2 Power Line Emissions Test Data

The EUT was operated in normal operating condition with the Wi-Fi radio exercising and 1000 mL water in the center of the microwave. The EUT was powered with 120VAC, 60 Hz mains supply.

Table 4. Power Line Conducted Emissions

	Conducted Emissions 120 VAC								
Frequency (MHz)	Test Data (dBuV)	IL+CA-AMP (dB)	Results (dBuV)	Average Limits (dBuV)	Margin (dB)	Detector Used			
	NEUTRAL								
0.3100	38.36	2.92	41.28	60.1*	18.77	QP			
0.3100	22.87	2.92	25.79	50.1	24.27	AVG			
0.3600	45.99	2.92	48.91	58.7*	9.79	PK			
0.3600	21.93	2.92	24.85	48.7	23.80	AVG			
0.4600	41.81	2.92	44.73	56.6*	11.90	PK			
0.4600	20.42	2.92	23.34	46.6	23.28	AVG			
0.9800	42.90	0.79	43.69	56.0*	12.30	PK			
0.9800	21.08	0.79	21.87	46.0	24.13	AVG			
1.3200	42.77	0.52	43.29	56.0*	12.71	PK			
1.3200	19.10	0.52	19.62	46.0	26.38	AVG			
7.2600	31.69	0.42	32.11	50.0	17.89	PK			
11.0300	30.44	0.67	31.11	50.0	18.89	PK			
29.8700	28.57	2.14	30.71	50.0	19.29	PK			
			PHASE						
0.1800	44.48	0.27	44.75	64.4*	19.65	QP			
0.1800	25.10	0.27	25.37	54.4	29.03	AVG			
0.4300	43.50	2.92	46.42	57.3*	10.90	PK			
0.4300	18.59	2.92	21.51	47.3	25.83	AVG			
0.5200	33.26	2.92	36.18	46.0	9.82	PK			
2.5800	37.25	0.22	37.47	46.0	8.53	PK			
6.1900	30.81	0.29	31.10	50.0	18.90	PK			
13.4000	26.35	0.89	27.24	50.0	22.76	PK			
29.4000	25.27	2.03	27.30	50.0	22.70	PK			

^{(*)=} Quasi-Peak limit used.

Sample Calculation at 0.3100 MHz:

Magnitude of Measured Frequency
+Correction Factors38.36 dBuV
2.92 dBCorrected Result41.28 dBuV

Test Date: November 03, 2022

Tested by

Signature: Name: Ian Charboneau

Model:

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

2.3 Test Site Description, Radiated Emissions

The radiated emissions disturbance measurement facility consists of a 8.5m meters long by 5.5 meter wide and 5.6 meter high shielded semi anechoic EMC Chamber. The chamber is lined with ferrite core and RF absorbers. The quiet zone is 2.0 meters.

The test facility layout is shown in the figure below. A remotely controlled 2.0 m diameter flush-mounted turntable is provided for rotating (through at least 360 degrees) the EUT. A nonconductive table, 1.5 m long by 1.0 m wide by 0.8 m high is used in conjunction with the turntable for tabletop equipment. Electrical service for the EUT is provided through openings at the center of the turntable.

Provision for receiving antenna power and data wires is provided by junction boxes place at the parameter of the chamber. The receive antenna mast is remotely controlled and can be varied in height from 1 m to 4 m.

Power and data cables for the radiated disturbance measurement facility are run through PVC tubing under the raised floor or are laid directly upon the ground plane.

Radiated emissions were evaluated based on 47 CFR 18.309 and MP-5 (1986). During testing the EUT was tested up to the 10th harmonic or the highest detectable emission.

The load used for frequency measurement was 1000 ml of water in the beaker located in the center of the oven. For radiation on second and third harmonic two loads, one of 700 ml and one of 300 ml of water was used. Each load was tested both with the beaker located in the center of the oven and with it in the right front corner.

Note: During spurious emissions testing both the microwave oven and Wi-Fi radio were on and transmitting as normally intended. The results above show no increase in spurious emissions due to intermodulation effects or other effects as a result of having both radios operating simultaneously. The results do not warrant additional testing beyond the above test.

US Tech Test Report:
Report Number:
Issue Date:
Customer:
FCC ID:
APYDMR0173
Model:
FCC Part 18 Subpart C
22-0302
Subpart C
22-0302
November 28, 2022
Sharp Manufacturing Company of America
APYDMR0173
SMD2489ESC

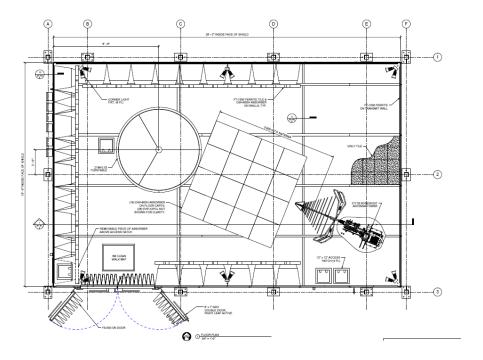


Figure 3. Radiated Emissions Disturbance Measurement Facility Diagram

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

2.4 Radiated Emissions Test Data

2.4.1 Part 18 ISM Test Limits and Calculations

Per 47 CFR 18.301 the ISM equipment may be operated on any frequency above 9 kHz except as indicated in 47 CFR 18.303. The field strength limit per 47 CFR 18.305 for ISM equipment operating on a frequency specified in 47 CFR 18.301 is permitted unlimited radiated energy in the band specified for that frequency. The field strength levels of emissions which lie outside the bands specified in 47 CFR 18.301 must not exceed the limits detailed in CFR 18.305, unless otherwise indicated.

Per the table in 18.301, the frequency 2450 MHz ±50MHz is allowed unlimited radiated energy. The EUT fundamental frequency is stated to be 2450 MHz.

The field strength levels of emissions which lie outside the bands specified in 18.301, unless otherwise indicated, shall not exceed the following:

Any type of equipment unless otherwise specified that operate above 500 watts: 25 uV/m X SQRT (power/500) at the distance of 300m.

Therefore, the limit converted to dBuV/m is: 20 log [(25) * $\sqrt{(EUT \text{ power/}500)}$]= dBuV/m + 20 log(300/test distance used) = XX.X dBuV/m

The measured EUT power P, is 950 Watts as rated and tested by the manufacturer. This value was used in the calculation of the limit for this test.

Limit at 10 meters is 20 log [(25) * $\sqrt{(950/500)}$]= 30.74 + 20 log(300/10) = 60.28 dBuV/m.

Limit at 3 meters is 20 log [(25) * $\sqrt{(950/500)}$]= 30.74 + 20 log(300/3) = 70.74 dBuV/m.

Model:

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

2.4.2 General Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + CF - AG

where FS = Field Strength

RA = Receiver Amplitude (dBuV)

CF = Correction Factor (Antenna Factor & Cable Loss) (dB/m)

AG = Amplifier Gain

Assuming a receiver reading of 100 dBuV and a correction factor of 11.8 dB/m, the following calculation would apply:

FS (dBuV/m) = 100 dBuV + 11.8 dB/m = 111.8 dBuV/m

US Tech Test Report:

Report Number:

Issue Date:

Customer:

FCC Part 18 Subpart C
22-0302

November 28, 2022

Sharp Manufacturing Company of America
FCC ID:

APYDMR0173

Model:

SMD2489ESC

2.4.3 Radiated Emissions Test Results

Table 5. Radiated Emissions Data 30 MHz to 1 GHz

Frequency	Test Data	AF+CA-AMP	Results	Average Limits	Application Test	Margin	Detector Used
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	Distance/ Polarization	(dB)	
Measurements were made over the frequency range of 30 MHz – 1000 MHz All other emissions were more than 20 dB from the limit.							

Note 1: During spurious emissions testing both the microwave oven and Wi-Fi radios were on and transmitting as normally intended. The results above show no increase in spurious emissions due to intermodulation effects or other effects as a result of having both radios operating simultaneously. The results do not warrant additional testing beyond the above test for collocated radios.

Test Date: November 17, 2022

Tested by Tan Challen

Signature: Name: Ian Charboneau

US Tech Test Report:

Report Number:

Issue Date:

Customer:

FCC Part 18 Subpart C

22-0302

November 28, 2022

Sharp Manufacturing Company of America
FCC ID:

APYDMR0173

Model:

SMD2489ESC

Table 6. Radiated Emissions Data 1 GHz to 25 GHz

Frequency	Test Data	AF+CA-AMP	Results	Average Limits	Application Test	Margin	Detector Used
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	Distance/ Polarization	(dB)	0360
2175.83	66.64	-7.44	59.21	70.7	3.0m./HORZ	11.5	PK
2399.48	85.97	-6.69	79.28	90.7*	3.0m./HORZ	11.4	PK
2399.48	52.50	-6.70	45.80	70.7	3.0m./HORZ	24.9	AVG
2801.44	63.81	-5.56	58.26	70.7	3.0m./HORZ	12.4	PK
4914.56	58.57	-0.09	58.48	70.7	3.0m./HORZ	12.2	PK
8221.50	53.44	5.20	58.64	70.7	1.0m./HORZ	12.1	PK
12329.50	47.98	11.33	59.30	70.7	1.0m./HORZ	11.4	PK
14798.50	45.14	14.30	59.44	70.7	1.0m./HORZ	11.3	PK
17154.00	41.86	17.52	59.38	70.7	1.0m./HORZ	11.3	PK
2213.98	64.25	-7.19	57.07	70.7	3.0m./VERT	13.6	PK
2397.73	80.17	-6.56	73.60	90.7*	3.0m./VERT	17.1	PK
2397.73	50.50	-6.60	43.90	70.7	3.0m./VERT	26.8	AVG
2801.44	65.56	-5.50	60.06	70.7	3.0m./VERT	10.6	PK
4265.75	64.32	-2.17	62.14	70.7	3.0m./VERT	8.6	PK
4883.06	61.19	-0.19	61.00	70.7	3.0m./VERT	9.7	PK
6799.05	52.49	4.76	57.25	70.7	3.0m./VERT	13.5	PK
7390.00	55.12	5.52	60.63	70.7	3.0m./VERT	10.1	PK
8387.50	58.88	5.02	63.90	70.7	1.0m./VERT	6.8	PK
9076.50	54.24	5.48	59.72	70.7	1.0m./VERT	11.0	PK
11597.50	52.51	9.60	62.11	70.7	1.0m./VERT	8.6	PK
12296.00	57.38	10.61	67.99	70.7	1.0m./VERT	2.7	PK

Measurements were made over the frequency range of 1 GHz to 25 GHz.

All other emissions were more than 20 dB from the limit.

Note 1: For measurements made at test distance of 1 meter an extrapolation factor of -9.5 dB was applied to correct the data for a 3 meter test distance. That the correction factor is include in the third column of the table above.

Note 2: During spurious emissions testing both the microwave oven and Wi-Fi radios were on and transmitting as normally intended. The results above show no increase in spurious emissions due to intermodulation effects or other effects as a result of having both radios operating simultaneously. The results do not warrant additional testing beyond the above test for collocated radios.

Test Date: November 17, 2022

Tested by Signature:

Signature: Name: Ian Charboneau

^{(*)=} Peak Limit applied.

Model:

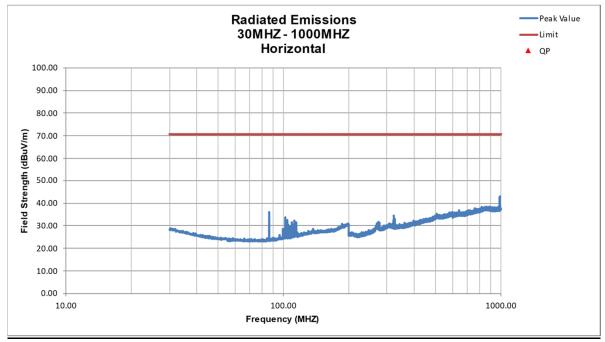


Figure 4. Radiated Emissions Below 30-1000 MHz Horizontal

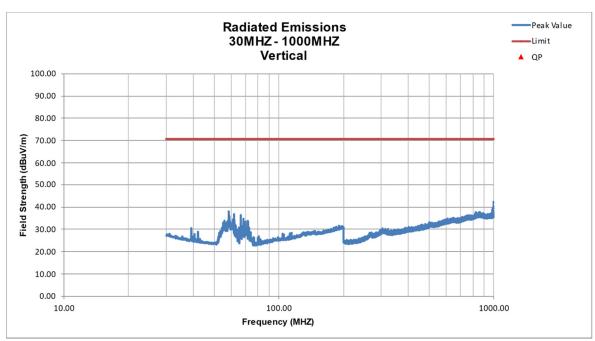


Figure 5. Radiated Emissions Below 30-1000 MHz Vertical

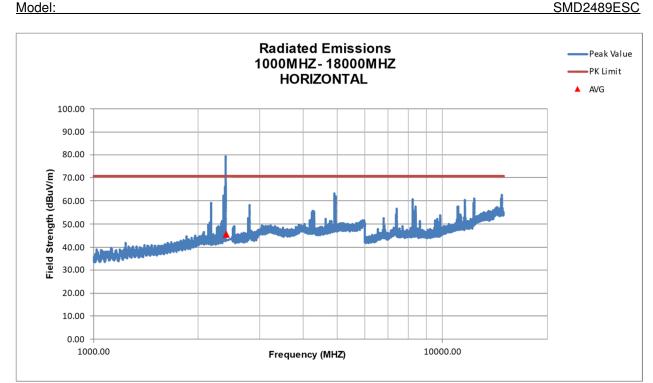


Figure 6.Radiated Emissions Above 1 GHz Horizontal

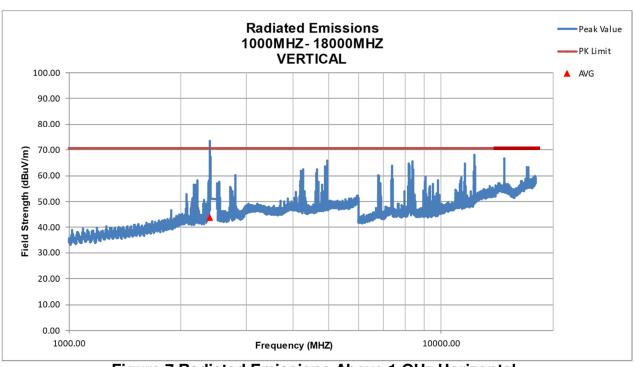


Figure 7.Radiated Emissions Above 1 GHz Horizontal

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

3. Emissions Test Configuration Photographs

Figure 8. Photograph of Conducted Emissions Test Configuration

Figure 9. Photograph of Radiated Emissions Test Configuration, Close-Up

Figure 10. Photograph of Radiated Emissions Test Configuration, 30 - 200 MHz

Figure 11. Photograph of Radiated Emissions Test Configuration, 200 - 1000 MHz

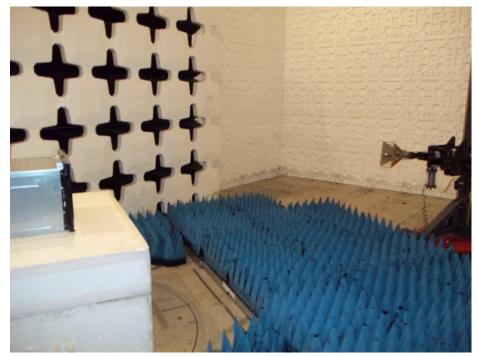


Figure 12. Photograph of Radiated Emissions Test Configuration, above 1000 MHz

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

4. Variation in Operating Frequency

Frequency variation testing was performed per MP-5 section 4.5. The EUT was set up inside the EMC Chamber, and a double ridge horn antenna and spectrum analyzer were used to measure the fundamental frequency of the EUT. The test results are presented below.

4.1 Variation in Operating Frequency Over Time

The operating frequency was measured using a spectrum analyzer. Starting with the EUT at room temperature, a 950 mL water load was placed in the center of the oven and the oven was operated at maximum output power. The fundamental operating frequency was monitored over the length of time taken for the water level to reduce to 20 percent of the original level. In this case it took 18 mins for the water level to reach 20% or 760 ml.

During the test the fundamental frequency of the EUT must remain within the ISM frequency band of 2450 MHz ±50 MHz, 2400 MHz to 2500 MHz. The results of this test are presented below.

Table 7. Measured Frequency Variation

Low Frequency (MHz)	High Frequency (MHz)
2402.00	2470.00

Test Date: November 7, 2022

Tested by

Signature: In Chlabanau Name: Ian Charboneau

Model:

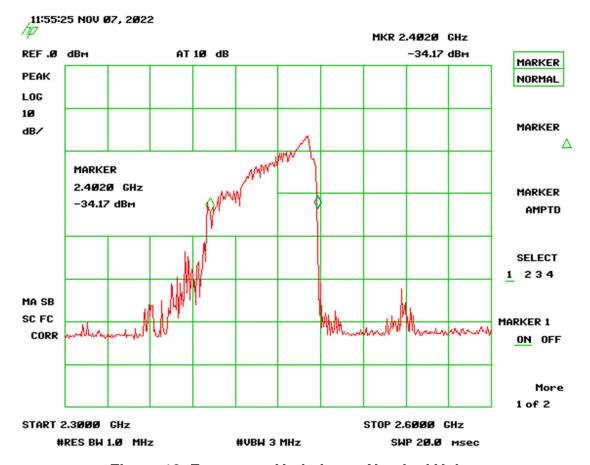


Figure 13. Frequency Variation at Nominal Voltage

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

Name: Ian Charboneau

4.2 Variation in Operating Frequency with Line Voltage

The EUT was operated/warmed up for at least 10 minutes of use with a 950 mL water load at room temperature at the beginning of the test. Then the operating frequency was monitored as the input voltage was varied between 80 and 125 percent of the nominal rating. At each varied voltage level, the EUT was allowed to operate for at least 5 minutes.

During the test, the fundamental frequency of the EUT must remain within the ISM frequency band of 2450 MHz ± 50 MHz, or 2400 - 2500 MHz. The results of this test are presented below.

Line voltage varied from 96 VAC to 150 VAC.

Table 8. Measured Supply Voltage Variation

%	Supply Voltage (V) at 60 Hz	Measured Fre	equency (MHz)
		Low Frequency	High Frequency
80%	96	2402.00	2474.80
125%	150	2400.00	2482.30

Test Date: November 7, 2022

Tested by

Signature: In (McMange

Model:

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173

SMD2489ESC

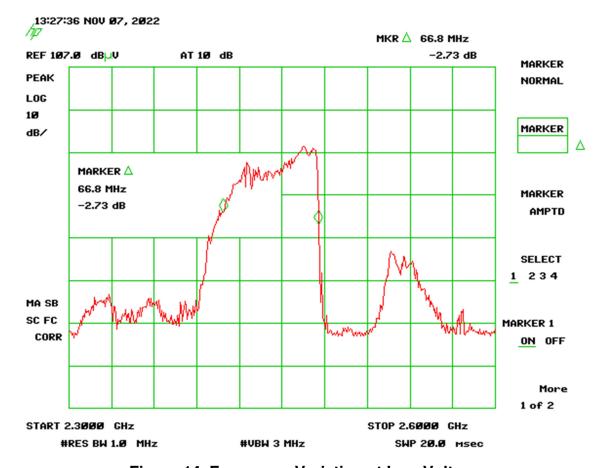


Figure 14. Frequency Variation at Low Voltage

Model:

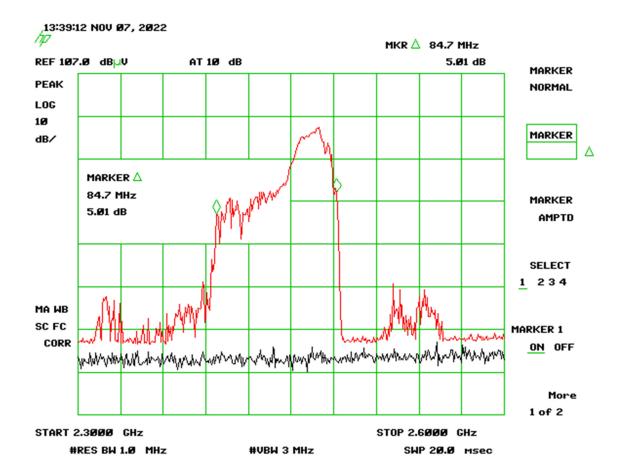


Figure 15. Frequency Variation at High Voltage

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

5. Microwave Output Power Measurement, MP-5

The Caloric Method was used to determine maximum output power. The initial temperature of a 1000 ml water load was measured for ovens rated at 1000 watts or less power output. For ovens more than 1000 watts output rating, additional beakers by fraction thereof are used if necessary.

The water load was placed in the center of the oven. The oven was operated at maximum output power for 120 seconds, then the temperature of the water was re-measured.

Three trials were performed and then the results calculated using the following formula: Output Power= ((4.2 Joules/Cal)*(Volumn in ml)*(Temp Rise))/ (Time in seconds)

Table 9. Output Power Results

Start Temperature (°C)	Final Temperature (°C)	Temperature Rise	Elapsed Time (seconds)	Water Volume (ml)	RF Power (Watts)
24.4	44.5	19.9	120	1000	696.5
23.4	43.6	20.2	120	1000	707.0
23.4	44.7	21.3	120	1000	745.0

Average from the three trials: 716.16 Watts

Test Date: November 7, 2022

Tested by

Name: <u>Ian Charbonneau</u>

FCC Part 18 Subpart C 22-0302 November 28, 2022 Sharp Manufacturing Company of America APYDMR0173 SMD2489ESC

6. Radiation Hazard Measurement

Radiation leakage was measured in the as-received condition with the oven door closed using a microwave leakage meter. A 1000 mL water load was placed in the center of the oven and the oven was operated at maximum output power.

There was no microwave leakage exceeding a power level of 0.1mW/cm2 observed at any point 5 cm or more from the external surface of the oven.

A maximum of 1.0 mW/cm2 is allowed in accordance with the applicable Federal Standards. Hence, microwave leakage in the as-received condition with the oven door closed was below the maximum allowed.

Figure 16. Radiation Leakage Setup

Limit: 1.0 mW/cm²

Signal Strength (V/m) = 3.2 V/m

Power Flux Density (PFD) = $V/m^2/377 = W/m^2$

 $= 8.14^{2}/377 = 0.0271 \text{ W/m}^{2}$

 $= (0.027 \text{ W/m}^2) (1\text{m}^2/\text{W}) (0.1 \text{ mW/cm}^2)$

 $= 0.0027 \text{mW/cm}^2$

which is << less than $S = 1.0 \text{ mW/cm}^2$

Test Date: August 19, 2022

Tested By

Signature:

Name: Ian Charboneau

US Tech Test Report:
Report Number:
Issue Date:
Customer:
FCC ID:
APYDMR0173
Model:
FCC Part 18 Subpart C
22-0302
November 28, 2022
Sharp Manufacturing Company of America
APYDMR0173
SMD2489ESC

7. Test Results

The EUT passed the Technical Requirements of CFR 47 Part 18 Industrial Scientific and MP-5, Subpart C Technical Standards, Part 18.305, Field Strength Limits and Part 18.307, Conducted limits and meets the criteria for a Class 2 Permissive Change.

END TEST REPORT