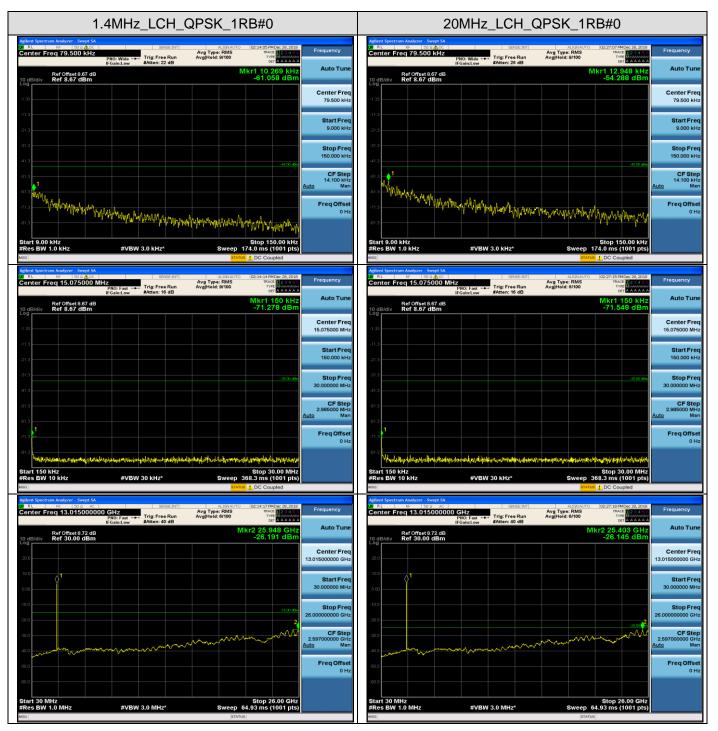
Report No.: HK1811161631E

FCC TEST REPORT


Test report On Behalf of SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED For Rugged Tablet Model No.: T101, S101, K101, S70V2, T60

FCC ID: 2AI62T101

Prepared for :	SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED			
	FLAT/RM A 20/F KIU FU COMMERCIAL BLDG 300 LOCKHART ROAD WAN CHAI HK			
Prepared By :	Shenzhen HUAK Testing Technology Co., Ltd.			
	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an			
	District, Shenzhen City, China			
Date of Test:	Nov. 13, 2018 ~ Jan. 14, 2019			
Date of Report:	Jan. 15, 2019			
Report Number:	HK1811161631E			

TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION

LTE BAND 7

Applicant's name:	SOTEN TECHNOLOGY (HONGKONG) CO., LIMITED
Address:	FLAT/RM A 20/F KIU FU COMMERCIAL BLDG 300 LOCKHART ROAD WAN CHAI HK
Manufacture's Name:	Shenzhen SOTEN Technology Co., Ltd.
Address:	10th Floor,2nd Building,BaiWang Research and development building, No. 5308 Shahe west road,Xili,Nanshan district,ShenZhen, China
Factory Name:	Shenzhen SOTEN Technology Co., Ltd.
Address:	10th Floor,2nd Building,BaiWang Research and development building, No. 5308 Shahe west road,Xili,Nanshan district,ShenZhen, China
Product description	Rugged Tablet
Brand name	HUGEROCK
Mode name	T101, S101, K101, S70V2, T60
Test model name	T101
Difference description	All the same except for the model name.
Standards:	FCC Part 24: PERSONAL COMMUNICATIONS SERVICES FCC Part 27: MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES
This work that is a second to be a second to	and in which an in most far way as a second of a summary and have as the

TEST RESULT CERTIFICATION

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests	Nov. 13, 2018 ~ Jan. 14, 2019
Date of Issue	Jan. 15, 2019
Test Result	Pass

:

:

Testing Engineer

Gary Qian)

Technical Manager

Edon Hu

(Eden Hu)

Authorized Signatory :

(Jason Zhou)

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Jan. 15, 2019	Valid	Initial Release	

Revision History

TABLE OF CONTENTS

1.TEST STANDARDS	7
2. SUMMARY	
2.1 PRODUCT DESCRIPTION	
2.2 RELATED SUBMITTAL(S) / GRANT (S)	9
2.3 TEST METHODOLOGY	9
2.4 TEST FACILITY	10
2.5 SPECIAL ACCESSORIES	11
2.6 EQUIPMENT MODIFICATIONS	11
3. SYSTEM TEST CONFIGURATION	12
3.1 EUT CONFIGURATION	12
3.2 EUT EXERCISE	12
3.3 GENERAL TECHNICAL REQUIREMENTS	12
3.4 CONFIGURATION OF EUT SYSTEM	
4. SUMMARY OF TEST RESULTS	
5. DESCRIPTION OF TEST MODES	15
6. OUTPUT POWER	17
6.1 CONDUCTED OUTPUT POWER	17
6.2 RADIATED OUTPUT POWER	
6.3. PEAK-TO-AVERAGE RATIO	
7. SPURIOUS EMISSION	51
7.1 CONDUCTED SPURIOUS EMISSION	51
7.2 RADIATED SPURIOUS EMISSION	53
8. FREQUENCY STABILITY	58
8.1 MEASUREMENT METHOD	58
8.2 PROVISIONS APPLICABLE	59
8.3 MEASUREMENT RESULT (WORST)	60
9. OCCUPIED BANDWIDTH	62
9.1 MEASUREMENT METHOD	62
9.2 PROVISIONS APPLICABLE	62
9.3 MEASUREMENT RESULT	62
10. EMISSION BANDWIDTH	67
10.1 MEASUREMENT METHOD	67
10.2 PROVISIONS APPLICABLE	67
10.3 MEASUREMENT RESULT	67
11. BAND EDGE	
11.1 MEASUREMENT METHOD	72

11.2 PROVISIONS APPLICABLE	72
11.3 MEASUREMENT RESULT	72
APPENDIX A TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION	73
APPENDIX B TEST PLOTS FOR OCCUPIED BANDWIDTH (99%)	79
APPENDIX CTEST PLOTS FOR BAND EDGES	89
APPENDIX D PHOTOGRAPHS OF TEST SETUP	99

1.TEST STANDARDS

The tests were performed according to following standards:

FCC Part 24 : PUBLIC MOBILE SERVICES

FCC Part 27 : MISCELLANEOUS WIRELESSCOMMUNICATIONS SERVICES

<u>TIA/EIA 603 D June 2010</u>:Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

KDB971168 D01:v02r02MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

<u>ANSI C63.4:2014</u>: Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2. SUMMARY

2.1 PRODUCT DESCRIPTION

A major technical description of EUT is described as following:

Product Designation:	Rugged Tablet			
Model Name	T101			
Hardware Version	T101-MainBoar	d-P3		
Software Version	T101-20181026)-Q		
Radio System Type:	LTE			
Frequency Bands:	FDD Band 2	⊠FDD Band 7 (U.S. Bands) ⊠FDD Band 7 (Non-U.S. Bands)		
	LTE Band 2	Transmission (TX): 1850 to 1909.9 MHz		
Frequency Range		Receiving (RX): 1930 to 1989.9 MHz		
	LTE Band 7	Transmission (TX): 2500 to 2569.9 MHz		
		Receiving (RX): 2620 to 2689.9 MHz		
Supported Channel	LTE Band 2	⊠ 1.4 MHz ⊠ 3 MHz ⊠ 5 MHz ⊠ 10 MHz ⊠ 15 MHz ⊠ 20 MHz		
Bandwidth	LTE Band 7	🖂 5 MHz 🛛 10 MHz 🖾 15 MHz 🖾 20 MHz		
Antenna:	PCB Antenna			
Type of Modulation	QPSK/16QAM			
Antenna gain:	0.85dBi(LTE band 2), 0.88dBi (LTE band 7)			
Diversity Antenna gain:	0.74dBi(LTE ba	nd 2), 0.79dBi (LTE band 7)		
Power Supply:	DC 3.7V by bat	tery		
Single Card:	GSM/WCDMA/LTE Card Slot			
Power Class	3			
Extreme Vol. Limits:	DC3.1V to 4.3 V (Normal: 3.7 V)			
Temperature range -10℃ to +50℃				
Note1 : The High Voltage DC4.3V and Low Voltage DC3.1V were declared by manufacturer, The EUT couldn't be operating normally with higher or lower voltage				

2.2 RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: 2AI62T101**, filing to comply with the Part 24 and Pant 27 requirements

2.3 TEST METHODOLOGY

The radiated emission testing was performed according to the procedures of ANSI/TIA-603-E-2016, and FCC KDB 971168 D01 Power Means License Digital Systems V03R01.

2.4 TEST FACILITY

Site Shenzhen HUAK Testing Technology Co., Ltd.		
Location	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China	
Designation Number	CN1229	
Test Firm Registration Number : 616276		

ALL TEST EQUIPMENT LIST

Toot Equipmont	Manufacturar	Model No.	Serial No.	Calibration	Calibration
Test Equipment	Manufacturer	woder no.	Senar No.	Date	Due Date
LISN	ENV216	R&S	HKE-059	2018/12/27	2019/12/26
LISN	R&S	ENV216	HKE-002	2018/12/27	2019/12/26
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	2018/12/27	2019/12/26
Receiver	R&S	ESCI 7	HKE-010	2018/12/27	2019/12/26
Spectrum analyzer	Agilent	N9020A	HKE-048	2018/12/27	2019/12/26
RF automatic control unit	Tonscend	JS0806-2	HKE-060	2018/12/27	2019/12/26
Horn antenna	Schwarzbeck	9120D	HKE-013	2018/12/27	2019/12/26
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	2018/12/27	2019/12/26
Preamplifier	EMCI	EMC051845SE	HKE-015	2018/12/27	2019/12/26
Preamplifier	Agilent	83051A	HKE-016	2018/12/27	2019/12/26
Temperature and humidity meter	Boyang	HTC-1	HKE-075	2018/12/27	2019/12/26
High pass filter unit	Tonscend	JS0806-F	HKE-055	2018/12/27	2019/12/26
RF cable	Times	1-40G	HKE-034	2018/12/27	2019/12/26
Power meter	Agilent	E4419B	HKE-085	2018/12/27	2019/12/26
Power Sensor	Agilent	E9300A	HKE-086	2018/12/27	2019/12/26
Wireless					
Communication	R&S	CMU200	HKE-026	2018/12/27	2019/12/26
Test Set					

2.5 SPECIAL ACCESSORIES

The battery was supplied by the applicant were used as accessories and being tested with EUT intended for FCC grant together.

2.6 EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

3. SYSTEM TEST CONFIGURATION

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The Transmitter was operated in the maximum output power mode through Communication Tester. The TX frequency was fixed which was for the purpose of the measurements.

Item Number	Item Description		FCC Rules	
4	Outruit Dawar	Conducted output power	2.1046/24.232(c)	
1	Output Power	Radiated output power	/27.50(d)(4)/ 27.50(h)(2)	
2	Peak-to-Average	Deals to Average Datio	04.000(4)	
2	Ratio	Peak-to-Average Ratio	24.232(d)	
	Spurious Emission	Conducted	0 4054/00 047(-)/04 000(-)	
3		spurious emission	2.1051/22.917(a)/24.238(a)	
		Radiated spurious emission	27.53(h)/ 27.53(g)	
4	Frequency Stability		2.1055/22.355/24.235/27.54	
5	Occupied Bandwidth		2.1049 (h)(i)	
6	Pond Edgo		2.1051/22.917(a)/24.238(a)	
	Band Edge		27.53(h)/ 27.53(g)	

3.3 GENERAL TECHNICAL REQUIREMENTS

Note: Testing was performed by configuring EUT to maximum output power status, the declared output power class for different.

3.4 CONFIGURATION OF EUT SYSTEM

Fig. 2-1 Configuration of EUT System

сит	A 222227
EUT	Accessory

Table 2-1 Equipment Used in EUT System

Item	Equipment	Model No.	ID or Specification	Remark
1	Rugged Tablet	T101	2AI62T101	EUT
2	Adapter	8395-UW01-1070	DC 5.3V 2.0A	Accessory
3	Battery	47206128	DC3.7V/ 14600mAh	Accessory
4	USB	N/A	N/A	Accessory

***Note: All the accessories have been used during the test. The following "EUT" in setup diagram means EUT system.

4. SUMMARY OF TEST RESULTS

Item Number	Item De	scription	FCC Rules	Result
1	Output Power	Conducted Output Power Radiated Output Power	2.1046/22.913(a)(2)/24.232(c)/ 27.50(d)(4)/ 27.50(h)(2)	Pass
2	Peak-to-Average Ratio	Peak-to-Average Ratio	24.232(d)	Pass
3	Spurious Emission	Conducted Spurious Emission Radiated Spurious Emission	2.1051/24.238(a) 27.53(h)/ 27.53(g)	Pass
4	Frequency Stability		2.1055/24.235/27.54	Pass
5	Occupied Bandwidt	h	2.1049 (h)(i)	Pass
6	Band Edge		2.1051/24.238(a) 27.53(h) /27.53(g)	Pass

5. DESCRIPTION OF TEST MODES

During the testing, the EUT was controlled via Rhode & Schwarz Digital Radio Communication Tester (CMW 500) to ensure max power transmission and proper modulation. Three channels (The top channel, the middle channel and the bottom channel) were chosen for testing on both LTE frequency band. The worst condition was recorded in the test report if no other modes test data.

Test Mode	Test Modes Description
LTE	LTE system, QPSK modulation
LTE	LTE system, 16QAM modulation

Teat Made	TV / DV		RF Channel	
Test Mode	TX / RX	Low (B)	Middle (M)	High (T)
		Channel 18607	Channel 18900	Channel 19193
	TX (1.4M)	1850.7 MHz	1880 MHz	1909.3 MHz
		Channel 18615	Channel 18900	Channel 19185
	TX (3M)	1851.5 MHz	1880 MHz	1908.5 MHz
		Channel 18625	Channel 18900	Channel 19175
	TX (5M)	1852.5 MHz	1880 MHz	1907.5 MHz
		Channel 18650	Channel 18900	Channel 19150
	TX (10M)	1855.0 MHz	1880 MHz	1905.0 MHz
		Channel 18675	Channel 18900	Channel 19125
	TX (15M)	1857.5 MHz	1880 MHz	1902.5 MHz
	TX (20M)	Channel 18700	Channel 18900	Channel 19100
LTE Band 2		1860.0 MHz	1880 MHz	1900.0 MHz
LIE Dallu Z		Channel 607	Channel 900	Channel 1193
	RX (1.4M)	1930.7 MHz	1960 MHz	1989.3 MHz
	RX (3M)	Channel 615	Channel 900	Channel 1185
		1931.5 MHz	1960 MHz	1988.5 MHz
		Channel 625	Channel 900	Channel 1175
	RX (5M)	1932.5 MHz	1960 MHz	1987.5 MHz
		Channel 650	Channel 900	Channel 1150
	RX (10M)	1935 MHz	1960 MHz	1985 MHz
		Channel 675	Channel 900	Channel 1125
	RX (15M)	1937.5 MHz	1960 MHz	1982.5 MHz
	RX (20M)	Channel 700	Channel 900	Channel 1100
	κλ (201VI)	1940.0 MHz	1960 MHz	1980 MHz

TURNEL			RF Channel	
Test Mode	TX / RX	Low (B)	Middle (M)	High (T)
		Channel 20775	Channel 21100	Channel 21425
	TX (5M)	2502.5 MHz	2535 MHz	2567.5 MHz
		Channel 20800	Channel 21100	Channel 21400
	TX (10M)	2505.0 MHz	2535 MHz	2565 MHz
		Channel 20825	Channel 21100	Channel 21275
	TX (15M)	2507.5 MHz	2535 MHz	2562.5 MHz
	TX (20M)	Channel 20850	Channel 21100	Channel 21350
LTE Band 7		2510.0 MHz	2535 MHz	2560 MHz
LIE Danu /		Channel 2775	Channel 3100	Channel 3425
	RX (5M)	2622.5 MHz	2655 MHz	2687.5 MHz
		Channel 2800	Channel 3100	Channel 3400
	RX (10M)	2625.0 MHz	2655 MHz	2685 MHz
		Channel 2825	Channel 3100	Channel 3375
	RX (15M)	2627.5 MHz	2655 MHz	2682.5 MHz
		Channel 2850	Channel 3100	Channel 3350
	RX (20M)	2630.0 MHz	2655 MHz	2680.0 MHz

6. OUTPUT POWER

6.1 CONDUCTED OUTPUT POWER

6.1.1 MEASUREMENT METHOD

The EUT is coupled to the SS with attenuator through power splitter; the RF load attached to EUT antenna terminal is 50ohm, the path loss as the factor is calibrated to correct the reading. A system simulator was used to establish communication with the EUT, Its parameters were set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported. The measurements were performed on all modes at 3 typical channels (the Top Channel, the Middle Channel and the Bottom Channel) for each band.

6.1.2 Measurement Result

	Conducted Output Power Limits							
Mode	Mode Average Power Tolerance(dB)							
LTE	LTE 23 dBm (0.2W) ± 2.7							

				LTE Band 2			
BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	21.32
				1	49	0	21.29
				1	99	0	21.39
			QPSK	50	0	1	20.24
				50	25	1	20.19
				50	49	1	20.29
	10700	1960.0		100	0	1	20.23
	18700	1860.0		1	0	1	20.56
				1	49	1	20.62
				1	99	1	20.57
			16QAM	50	0	2	19.24
				50	25	2	19.26
				50	49	2	19.28
				100	0	2	19.31
		1880.0		1	0	0	21.41
			QPSK	1	49	0	21.24
				1	99	0	21.08
				50	0	1	20.12
				50	25	1	20.08
				50	49	1	20.10
	18900			100	0	1	20.16
20MHz				1	0	1	20.73
				1	49	1	20.64
				1	99	1	20.47
			16QAM	50	0	2	19.20
			-	50	25	2	19.13
				50	49	2	19.14
				100	0	2	19.18
				1	0	0	20.93
				1	49	0	20.76
				1	99	0	21.04
			QPSK	50	0	1	20.08
				50	25	1	20.01
				50	49	1	20.05
	40400	4000.0		100	0	1	20.01
	19100	1900.0		1	0	1	20.29
				1	49	1	20.31
				1	99	1	20.34
			16QAM	50	0	2	19.05
				50	25	2	19.10
				50	49	2	19.07
				100	0	2	19.05

Page 19 of 99

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	21.20
				1	37	0	21.17
				1	74	0	21.18
			QPSK	36	0	1	20.14
			QFON	36	16	1	20.20
				36	35	1	20.22
	40075	1057 5		75	0	1	20.23
	18675	1857.5		1	0	1	20.52
				1	37	1	20.43
				1	74	1	20.47
			16QAM	36	0	2	19.19
				36	16	2	19.22
				36	35	2 2	19.23
				75	0	2	19.26
				1	0	0	21.22
			QPSK 1880.0 16QAM	1	37	0	21.12
				1	74	0	20.96
				36	0	1	20.10
		3900 1880.0		36	16	1	20.04
				36	35	1	20.08
	40000			75	0	1	20.16
15MHz	18900			1	0	1	20.50
				1	37	1	20.41
				1	74	1	20.29
				36	0	2	19.08
				36	16	2	19.03
				36	35	2	19.10
				75	0	2	19.18
				1	0	0	20.92
				1	37	0	20.96
				1	74	0	21.06
			QPSK	36	0	1	20.15
				36	16	1	20.17
				36	35	1	20.19
	10105	1000 5		75	0	1	20.13
	19125	1902.5		1	0	1	20.23
				1	37	1	20.32
				1	74	1	20.35
			16QAM	36	0	2	19.12
				36	16	2	19.08
				36	35	2	19.15
				75	0	2	19.08

Page 20 of 99

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	21.16
				1	24	0	21.17
				1	49	0	21.14
			QPSK	25	0	1	20.18
				25	12	1	20.21
				25	25	1	20.23
	40050	4055.0		50	0	1	20.24
	18650	1855.0		1	0	1	20.51
				1	24	1	20.46
				1	49	1	20.47
			16QAM	25	0	2	19.17
				25	12	2	19.20
				25	25	2	19.27
				50	0	2	19.29
				1	0	0	21.21
				1	24	0	21.14
				1	49	0	20.99
			QPSK	25	0	1	20.01
				25	12	1	20.05
		1880.0		25	25	1	20.06
10MHz	10000			50	0	1	20.07
TOMEZ	18900			1	0	1	20.59
				1	24	1	20.38
				1	49	1	20.41
			16QAM	25	0	2	19.14
				25	12	2	19.11
				25	25	2	19.12
				50	0	2	19.14
				1	0	0	20.96
				1	24	0	21.05
				1	49	0	21.04
			QPSK	25	0	1	20.06
				25	12	1	20.09
				25	25	1	20.05
	10150	1005.0		50	0	1	19.99
	19150	1905.0		1	0	1	20.15
				1	24	1	20.17
				1	49	1	20.30
			16QAM	25	0	2	19.04
				25	12	2	19.02
				25	25	2	19.03
				50	0	2	19.02

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	21.21
				1	12	0	21.15
				1	24	0	21.20
			QPSK	12	0	1	20.20
				12	6	1	20.19
				12	11	1	20.23
	40005	4050 5		25	0	1	20.22
	18625	1852.5		1	0	1	20.50
				1	12	1	20.49
				1	24	1	20.51
			16QAM	12	0	2	19.24
				12	6	2	19.26
				12	11	2	19.34
				25	0	2	19.26
				1	0	0	21.16
			QPSK	1	12	0	21.08
				1	24	0	21.03
				12	0	1	20.14
				12	6	1	20.10
				12	11	1	20.09
				25	0	1	20.05
5MHz	18900	1880.0	16QAM	1	0	1	20.41
				1	12	1	20.37
				1	24	1	20.30
				12	0	2	19.19
				12	6	2	19.12
				12	11	2	19.22
				25	0	2	19.09
				1	0	0	21.11
				1	12	0	21.09
				1	24	0	21.05
			QPSK	12	0	1	20.17
				12	6	1	20.04
				12	11	1	20.07
	10 ·	405		25	0	1	20.02
19175	19175	1907.5		1	0	1	20.22
				1	12	1	20.19
				1	24	1	20.23
			16QAM	12	0	2	19.09
				12	6	2	19.17
				12	11	2	19.12
				25	0	2	19.07

Page 22 of 99

Report No.: HK1811161631E

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	M P R	Average power (dBm)
				1	0	0	21.05
				1	7	0	21.09
				1	. 14	0	21.11
			QPSK	8	0	1	20.00
				8	4	1	20.06
				8	7	1	20.16
				15	0	1	20.17
	18615	1851.5		1	0	1	20.38
				1	7	1	20.34
				1	14	1	20.42
			16QAM	8	0	2	19.18
				8	4	2	19.20
				8	7	2	19.28
				15	0	2	19.17
				1	0	0	21.04
				1	7	0	21.06
				1	14	0	20.97
			QPSK	8	0	1	20.03
				8	4	1	20.09
		0 1880.0		8	7	1	20.05
				15	0	1	20.05
3MHz	18900		16QAM	1	0	1	20.40
				1	7	1	20.37
				1	14	1	20.36
				8	0	2	19.06
				8	4	2	19.03
				8	7	2	19.07
				15	0	2	19.06
				1	0	0	21.00
				1	7	0	21.02
				1	14	0	20.98
			QPSK	8	0	1	20.04
				8	4	1	20.04
				8	7	1	20.03
	40405	4000 5		15	0	1	20.03
	19185	1908.5		1	0	1	20.21
				1	7	1	20.18
				1	14	1	20.24
			16QAM	8	0	2	19.04
				8	4	2	19.07
				8	7	2	19.02
				15	0	2	19.07

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	21.07
				1	2	0	21.03
				1	5	0	21.08
			QPSK	3	0	0	21.13
				3	1	0	21.17
				3	2	0	21.18
	40007	4050 7		6	0	1	20.12
	18607	1850.7		1	0	1	20.36
				1	2	1	20.37
				1	5	1	20.41
			16QAM	3	0	1	20.22
				3	1	1	20.26
				3	2	1	20.30
				6	0	2	19.17
				1	0	0	21.02
				1	2	0	20.03
			QPSK	1	5	0	21.02
				3	0	0	21.15
				3	1	0	21.07
		0 1880.0		3	2	0	21.06
	10000			6	0	1	20.03
1.4MHz	18900		16QAM	1	0	1	20.37
				1	2	1	20.15
				1	5	1	20.37
				3	0	1	20.14
				3	1	1	20.09
				3	2	1	20.07
				6	0	2	19.03
				1	0	0	21.00
				1	2	0	21.04
				1	5	0	21.02
			QPSK	3	0	0	21.08
				3	1	0	21.11
				3	2	0	21.08
	40400	4000.0		6	0	1	20.02
	19193	1909.3		1	0	1	20.24
				1	2	1	20.28
				1	5	1	20.26
			16QAM	3	0	1	20.15
				3	1	1	20.18
				3	2	1	20.14
				6	0	2	19.18

	•			LTE Band 7			
BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	22.41
				1	49	0	22.45
				1	99	0	22.59
			QPSK	50	0	1	21.91
				50	25	1	21.82
				50	49	1	21.95
	20250	2510		100	0	1	21.53
	20850	2510		1	0	1	21.24
				1	49	1	21.64
				1	99	1	21.78
			16QAM	50	0	2	20.67
				50	25	2	20.82
				50	49	2	20.88
				100	0	2	20.79
				1	0	0	22.40
			QPSK 2535 16QAM	1	49	0	22.41
				1	99	0	22.47
				50	0	1	21.87
		2535		50	25	1	22.04
				50	49	1	21.94
00141	04400			100	0	1	21.38
20MHz	21100			1	0	1	21.88
				1	49	1	21.73
				1	99	1	21.85
				50	0	2	20.77
			-	50	25	2	20.58
				50	49	2	20.48
				100	0	2	20.15
				1	0	0	22.19
				1	49	0	22.61
				1	99	0	22.64
			QPSK	50	0	1	21.87
				50	25	1	22.05
				50	49	1	22.12
	04050	0500		100	0	1	22.03
	21350	2560		1	0	1	20.85
				1	49	1	20.82
				1	99	1	20.81
			16QAM	50	0	2	20.71
				50	25	2	20.64
				50	49	2	20.85
				100	0	2	20.61

LTE Band 7

Page 25 of 99

Report No.: HK1811161631E

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	22.28
				1	37	0	22.43
				1	74	0	22.59
			QPSK	36	0	1	21.34
				36	16	1	22.03
				36	35	1	22.12
	20825	2507.5		75	0	1	21.86
	20020	2007.0		1	0	1	21.49
				1	37	1	21.23
				1	74	1	21.86
			16QAM	36	0	2	21.05
				36	16	2	21.13
				36	35	2	21.14
				75	0		20.84
		2535	QPSK	1	0 37	0	22.27
				1	74	0	22.18 22.19
				36	0	1	22.19
				36	16	1	21.41
				36	35	1	21.34
	21100			75	0	1	21.45
15MHz				1	0	1	21.29
				1	37	1	21.57
				1	74	1	21.63
			16QAM	36	0	2	20.41
			1000/101	36	16	2	20.53
				36	35	2	20.23
				75	0	2	20.20
				1	0	0	22.39
				1	37	0	22.32
				1	74	0	22.43
			QPSK	36	0	1	21.85
				36	16	1	21.69
				36	35	1	21.87
	04075	2562 F		75	0	1	22.16
	21375	2562.5		1	0	1	22.09
				1	37	1	21.22
				1	74	1	21.30
			16QAM	36	0	2	20.94
				36	16	2	20.81
				36	35	2	20.70
				75	0	2	20.69

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	22.15
				1	24	0	22.34
				1	49	0	22.52
			QPSK	25	0	1	21.41
				25	12	1	21.37
				25	25	1	21.48
	20800	2505		50	0	1	21.37
	20000	2303		1	0	1	21.40
				1	24	1	21.67
				1	49	1	21.78
			16QAM	25	0	2	20.43
				25	12	2	20.28
				25	25	2	20.45
				50	0	2	20.34
				1	0	0	22.21
		2535	QPSK 16QAM	1	24	0	22.16
				1	49	0	22.18
				25	0	1	21.36
				25	12	1	21.21
				25	25	1	21.17
40141	21100			50	0	1	21.17
10MHz				1	0	1	21.50
				1	24	1	21.52
				1	49	1	21.50
				25	0	2	20.34
				25	12	2	20.39
				25	25	2	20.14
				50	0	2	20.15
				1	0	0	22.51
				1	24	0	22.39
				1	49	0	22.32
			QPSK	25	0	1	21.37
			. –	25	12	1	21.41
				25	25	1	21.43
		0505		50	0	1	21.47
	21400	2565		1	0	1	21.75
				1	24	1	21.67
				1	49	1	21.59
			16QAM	25	0	2	20.27
				25	12	2	20.33
				25	25	2	20.41
				50	0	2	20.47

Page 27 of 99

Report No.: HK1811161631E

BW (MHz)	Ch	Freq. (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
				1	0	0	22.24
				1	12	0	22.20
			QPSK	1	24	0	22.32
				12	0	1	21.18
				12	6	1	21.29
				12	13	1	21.33
	20775	2502.5		25	0	1	21.23
	20115	2302.3		1	0	1	21.38
				1	12	1	21.46
				1	24	1	21.55
			16QAM	12	0	2	20.24
				12	6	2	20.26
				12	13	2	20.33
				25	0	2	20.20
				1	0	0	22.27
				1	12	0	22.18
		2535	QPSK	1	24	0	22.19
				12	0	1	21.25
				12	6	1	21.31
				12	13	1	21.20
	21100			25	0	1	21.17
5MHz				1	0	1	21.43
				1	12	1	21.39
				1	24	1	21.34
			16QAM	12	0	2	20.31
				12	6	2	20.29
				12	13	2	20.24
				25	0	2	20.13
				1	0	0	22.55
				1	12	0	22.41
				1	24	0	22.34
			QPSK	12	0	1	21.38
				12	6	1	21.34
				12	13	1	21.40
	04.10-	0.505 -		25	0	1	21.40
	21425	2567.5		1	0	1	21.71
				1	12	1	21.62
				1	24	1	21.51
			16QAM	12	0	2	20.32
				12	6	2	20.36
				12	13	2	20.38
				25	0	2	20.41

According to 3GPP 36.521 sub-clause 6.2.3.3, the maximum output power is allowed to be reduced by following the table.

Modulation	Cha	Channel bandwidth / Transmission bandwidth configuration [RB]										
	1.4											
	MHz											
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1					
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1					
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2					

Table 6.2.3.3-1: Maximum Power Reduction (MPR) for Power Class 3

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (For PRACH, PUCCH and SRS transmission, the allowed MPR is according to that specified for PUSCH QPSK modulation for the corresponding transmission bandwidth.).

When PRACH, PUCCH are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

For each subframe, the MPR is evaluated per slot and given by the maximum value taken over the transmission(s) within the slot, the maximum MPR over the two slots is then applied for the entire subframe.

For the UE maximum output power modified by MPR, the power limits specified in subclause 6.2.5.3 apply. The normative reference for this requirement is TS 36.101 clause 6.2.3.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

6.2 RADIATED OUTPUT POWER

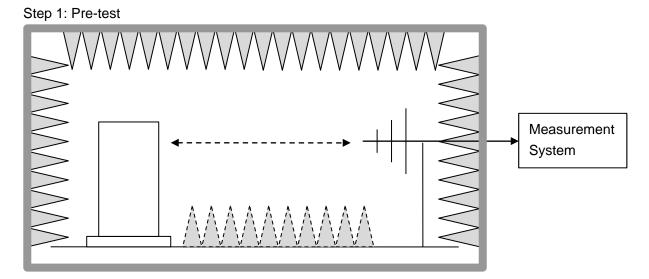
6.2.1 MEASUREMENT METHOD

The measurements procedures specified in ANSI/TIA-603-E-2016 were applied.

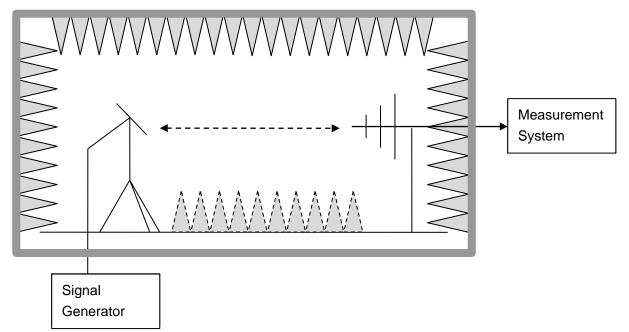
- 1In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference centre of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2The substitution method is used. Substitution values at each frequency are measured before and saved to the test software. A "reference path loss" is established as ARpl=Pin + 2.15 Pr. The ARpl is the attenuation of "reference path loss", and including the gain of receive antenna, the cable loss and the air loss. The measurement results are obtained as described below: Power=PMea+ARpl
- 3The EUT is substituted for the dipole at the reference centre of the chamber and a scan is performed to obtain the radiation pattern.

4From the radiation pattern, the co-ordinates where the maximum antenna gain occurs are identified. 5The EUT is then put into continuously transmitting mode at its maximum power level.

- 6Power mode measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in Rule 27.50(d)(4). The "reference path loss" from Step1 is added to this result.
- 7This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.15 dBi) and known input power (Pin).


8ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi..

Test Setup


NOTE: Effective radiated power (ERP) refers to the radiation power output of the EUT, assuming all

emissions are radiated from half-wave dipole antennas.

Step 2: Substitution method to verify the maximum ERP

6.2.2 PROVISIONS APPLICABLE

This is the test for the maximum radiated power from the EUT. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p.

Mode	FCC Part Section(s)	Nominal Peak Power
LTE Band 2	24.232(c)	<=33dBm (2W)
LTE Band 7	27.50(i)(2)	<=33dBm (2W)

6.2.3 MEASUREMENT RESULT

EIRP for LTE Band 2

Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)		
1850.7	1.4	QPSK	1/0	12.81	V	7.95	0.79	19.97	33		
1880.0	1.4	QPSK	1/0	12.36	V	7.95	0.79	19.52	33		
1909.3	1.4	QPSK	1/0	12.8	V	7.95	0.79	19.96	33		
1850.7	1.4	QPSK	1/0	12.33	Н	7.95	0.79	19.49	33		
1880.0	1.4	QPSK	1/0	12.53	Н	7.95	0.79	19.69	33		
1909.3	1.4	QPSK	1/0	12.8	Н	7.95	0.79	19.96	33		
1850.7	1.4	16-QAM	1/5	12.08	V	7.95	0.79	19.24	33		
1880.0	1.4	16-QAM	1/0	12.84	V	7.95	0.79	20	33		
1909.3	1.4	16-QAM	1/0	10.63	V	7.95	0.79	17.79	33		
1850.7	1.4	16-QAM	1/5	12.35	Н	7.95	0.79	19.51	33		
1880.0	1.4	16-QAM	1/0	11.32	Н	7.95	0.79	18.48	33		
1909.3	1.4	16-QAM	1/0	11.14	Н	7.95	0.79	18.3	33		
1851.5	3	QPSK	1/0	11.08	V	7.95	0.79	18.24	33		
1880.0	3	QPSK	1/0	12.93	V	7.95	0.79	20.09	33		
1908.5	3	QPSK	1/0	12.83	V	7.95	0.79	19.99	33		
1851.5	3	QPSK	1/0	12.39	Н	7.95	0.79	19.55	33		
1880.0	3	QPSK	1/0	10.85	Н	7.95	0.79	18.01	33		
1908.5	3	QPSK	1/0	10.37	Н	7.95	0.79	17.53	33		
1851.5	3	16-QAM	1/0	11.29	V	7.95	0.79	18.45	33		
1880.0	3	16-QAM	1/0	10.85	V	7.95	0.79	18.01	33		
1908.5	3	16-QAM	1/0	11.18	V	7.95	0.79	18.34	33		
1851.5	3	16-QAM	1/0	11.24	Н	7.95	0.79	18.4	33		
1880.0	3	16-QAM	1/0	12.13	Н	7.95	0.79	19.29	33		
1908.5	3	16-QAM	1/0	12.43	Н	7.95	0.79	19.59	33		
1852.5	5	QPSK	1/0	12.27	V	7.95	0.79	19.43	33		
1880.0	5	QPSK	1/0	12.63	V	7.95	0.79	19.79	33		
1907.5	5	QPSK	1/24	11.93	V	7.95	0.79	19.09	33		
1852.5	5	QPSK	1/0	11.91	Н	7.95	0.79	19.07	33		
1880.0	5	QPSK	1/0	11.95	Н	7.95	0.79	19.11	33		
1907.5	5	QPSK	1/24	11.97	Н	7.95	0.79	19.13	33		
1852.5	5	16-QAM	1/0	12.22	V	7.95	0.79	19.38	33		
1880.0	5	16-QAM	1/0	12.35	V	7.95	0.79	19.51	33		
1907.5	5	16-QAM	1/24	10.79	V	7.95	0.79	17.95	33		

1852.5	5	16-QAM	1/0	11.17	Н	7.95	0.79	18.33	33
1880.0	5	16-QAM	1/0	12.19	н	7.95	0.79	19.35	33
1907.5	5	16-QAM	1/24		н	7.95	0.79		33
1855	10	QPSK	1/24	11.24	V N	7.95	0.79	18.4	33
				11.3	V		ł	18.46	33
1880	10	QPSK	1/49	11.03		7.95	0.79	18.19	
1905	10	QPSK	1/0	11.36	V	7.95	0.79	18.52	33
1855	10	QPSK	1/0	11.28	Н	7.95	0.79	18.44	33
1880	10	QPSK	1/49	12.24	H	7.95	0.79	19.4	33
1905	10	QPSK	1/0	11.88	H	7.95	0.79	19.04	33
1855	10	16-QAM	1/0	12.71	V	7.95	0.79	19.87	33
1880	10	16-QAM	1/49	11.56	V	7.95	0.79	18.72	33
1905	10	16-QAM	1/0	12.4	V	7.95	0.79	19.56	33
1855	10	16-QAM	1/0	11.96	Н	7.95	0.79	19.12	33
1880	10	16-QAM	1/49	12.56	Н	7.95	0.79	19.72	33
1905	10	16-QAM	1/0	12.53	Н	7.95	0.79	19.69	33
1857.5	15	QPSK	1/0	11.86	V	7.95	0.79	16.2	33
1880	15	QPSK	1/74	11.51	V	7.95	0.79	16.85	33
1902.5	15	QPSK	1/0	11.75	V	7.95	0.79	17.91	33
1857.5	15	QPSK	1/0	11.7	Н	7.95	0.79	16.44	33
1880	15	QPSK	1/74	12.13	Н	7.95	0.79	15.91	33
1902.5	15	QPSK	1/0	12.15	Н	7.95	0.79	16.75	33
1857.5	15	16-QAM	1/0	11.77	V	7.95	0.79	17.17	33
1880	15	16-QAM	1/74	11.92	V	7.95	0.79	16.26	33
1902.5	15	16-QAM	1/0	12.12	V	7.95	0.79	16.36	33
1857.5	15	16-QAM	1/0	12.14	Н	7.95	0.79	16.74	33
1880	15	16-QAM	1/74	11.57	Н	7.95	0.79	17.35	33
1902.5	15	16-QAM	1/0	11.62	Н	7.95	0.79	18.16	33
1860	20	QPSK	1/99	11.54	V	7.95	0.79	18.34	33
1880	20	QPSK	1/99	11.74	V	7.95	0.79	17.98	33
1900	20	QPSK	1/0	12.19	V	7.95	0.79	15.93	33
1860	20	QPSK	1/99	11.6	Н	7.95	0.79	17.42	33
1880	20	QPSK	1/99	11.94	Н	7.95	0.79	17.9	33
1900	20	QPSK	1/0	11.67	Н	7.95	0.79	16.85	33
1860	20	16-QAM	1/99	12.11	V	7.95	0.79	17.87	33
1880	20	16-QAM	1/99	12.38	V	7.95	0.79	16.48	33
1900	20	16-QAM	1/0	12.68	V	7.95	0.79	14.72	33
1860	20	16-QAM	1/99	12.32	H	7.95	0.79	15.68	33

Page 34 of 99

1880	20	16-QAM	1/99	13.07	Н	7.95	0.79	16.21	33
1900	20	16-QAM	1/0	12.71	Н	7.95	0.79	16.07	33

Frequency	Channel Bandwidth	Mode.	RB	Substituted level	Antenna Polarization	Antenna Gain correction	Cable Loss	Absolute Level	Limit (dBm)		
2502.5	5	QPSK	1/0	12.23	V	8.23	1.12	19.34	33		
2535	5	QPSK	1/0	12.62	V	8.23	1.12	19.73	33		
2567.5	5	QPSK	1/24	11.27	V	8.23	1.12	18.38	33		
2502.5	5	QPSK	1/0	12.51	Н	8.23	1.12	19.62	33		
2535	5	QPSK	1/0	12.46	Н	8.23	1.12	19.57	33		
2567.5	5	QPSK	1/24	10.89	Н	8.23	1.12	18	33		
2502.5	5	16-QAM	1/0	11.91	V	8.23	1.12	19.02	33		
2535	5	16-QAM	1/0	11.53	V	8.23	1.12	18.64	33		
2567.5	5	16-QAM	1/24	11.68	V	8.23	1.12	18.79	33		
2502.5	5	16-QAM	1/0	10.88	Н	8.23	1.12	17.99	33		
2535	5	16-QAM	1/0	12.9	Н	8.23	1.12	20.01	33		
2567.5	5	16-QAM	1/24	11.33	Н	8.23	1.12	18.44	33		
2505	10	QPSK	1/0	11.38	V	8.23	1.12	18.49	33		
2535	10	QPSK	1/49	12.3	V	8.23	1.12	19.41	33		
2565	10	QPSK	1/0	12.5	V	8.23	1.12	19.61	33		
2505	10	QPSK	1/0	11.95	Н	8.23	1.12	19.06	33		
2535	10	QPSK	1/49	12.36	Н	8.23	1.12	19.47	33		
2565	10	QPSK	1/0	11.7	Н	8.23	1.12	18.81	33		
2505	10	16-QAM	1/0	11.43	V	8.23	1.12	18.54	33		
2535	10	16-QAM	1/49	12.89	V	8.23	1.12	20	33		
2565	10	16-QAM	1/0	12.14	V	8.23	1.12	19.25	33		
2505	10	16-QAM	1/0	12.44	Н	8.23	1.12	19.55	33		
2535	10	16-QAM	1/49	12.08	Н	8.23	1.12	19.19	33		
2565	10	16-QAM	1/0	11.83	Н	8.23	1.12	18.94	33		
2507.5	15	QPSK	1/0	12.47	V	8.23	1.12	19.58	33		
2535	15	QPSK	1/74	12.62	V	8.23	1.12	19.73	33		
2562.5	15	QPSK	1/0	12.27	V	8.23	1.12	19.38	33		
2507.5	15	QPSK	1/0	12.51	Н	8.23	1.12	19.62	33		
2535	15	QPSK	1/74	12.46	Н	8.23	1.12	19.57	33		
2562.5	15	QPSK	1/0	10.89	Н	8.23	1.12	18	33		
2507.5	15	16-QAM	1/0	11.91	V	8.23	1.12	19.02	33		
2535	15	16-QAM	1/74	12.53	V	8.23	1.12	19.64	33		
2562.5	15	16-QAM	1/0	11.68	V	8.23	1.12	18.79	33		
2507.5	15	16-QAM	1/0	10.88	Н	8.23	1.12	17.99	33		
2535	15	16-QAM	1/74	12.9	Н	8.23	1.12	20.01	33		
2562.5	15	16-QAM	1/0	11.33	Н	8.23	1.12	18.44	33		

EIRP for LTE Band 7

2510	20	QPSK	1/99	11.38	V	8.23	1.12	18.49	33
2535	20	QPSK	1/99	12.3	V	8.23	1.12	19.41	33
2560	20	QPSK	1/0	12.5	V	8.23	1.12	19.61	33
2510	20	QPSK	1/99	11.95	Н	8.23	1.12	19.06	33
2535	20	QPSK	1/99	12.36	Н	8.23	1.12	19.47	33
2560	20	QPSK	1/0	11.7	Н	8.23	1.12	18.81	33
2510	20	16-QAM	1/99	11.43	V	8.23	1.12	18.54	33
2535	20	16-QAM	1/99	12.89	V	8.23	1.12	20	33
2560	20	16-QAM	1/0	11.14	V	8.23	1.12	18.25	33
2510	20	16-QAM	1/99	12.44	Н	8.23	1.12	19.55	33
2535	20	16-QAM	1/99	12.08	Н	8.23	1.12	19.19	33
2560	20	16-QAM	1/0	11.83	Н	8.23	1.12	18.94	33

Note: Above is the worst mode data.

6.3. PEAK-TO-AVERAGE RATIO

6.3.1 MEASUREMENT METHOD

The peak-to-average power ratio (PAPR) of the transmitter output power must not exceed 13 dB. The PAPR measurements should be made using either an instrument with complementary cumulative distribution function (CCDF) capabilities to determine that PAPR will not exceed 13 dB for more than 0.1 percent of the time or other Commission approved procedure. The measurement must be performed using a signal corresponding to the highest PAPR expected during periods of continuous transmission.

According to KDB 971168 D01v03 - Section 5.7:

a)Refer to instrument's analyzer instruction manual for details on how to use the power statistics /CCDF function;

b) Set resolution/measurement bandwidth \geq signal's occupied bandwidth;

- c) Set the number of counts to a value that stabilizes the measured CCDF curve;
- d) Set the measurement interval to 1 ms
- e) Record the maximum PAPR level associated with a probability of 0.1%

6.3.2 PROVISIONS APPLICABLE

This is the test for the Peak-to-Average Ratio from the EUT.

Power Complementary Cumulative Distribution Function (CCDF) curves provide a means for characterizing the power peaks of a digitally modulated signal on a statistical basis. A CCDF curve depicts the probability of the peak signal amplitude exceeding the average power level. Most contemporary measurement instrumentation include the capability to produce CCDF curves for an input signal provided that the instrument's resolution bandwidth can be set wide enough to accommodate the entire input signal bandwidth. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

6.3.3MEASUREMENT RESULT

	LTE Band 2	
Channel	Bandwidth:	1.4 MHz

			Channel I	Bandwidth: 1.4 MHz		
Madulation	Ohannal	RB Conf	iguration	Peak-to-Average Ratio	Limit) (a nali at
Modulation	Channel	Size	Offset	(dB)	(dB)	Verdict
		1	0	1.79	<13	PASS
		1	3	1.80	<13	PASS
		1	5	1.82	<13	PASS
	LCH	3	0	1.74	<13	PASS
		3	2	1.81	<13	PASS
		3	3	1.82	<13	PASS
		6	0	2.45	<13	PASS
		1	0	1.61	<13	PASS
		1	3	1.61	<13	PASS
		1	5	1.62	<13	PASS
QPSK	MCH	3	0	1.63	<13	PASS
		3	2	1.64	<13	PASS
		3	3	1.65	<13	PASS
		6	0	2.25	<13	PASS
		1	0	1.77	<13	PASS
		1	3	1.80	<13	PASS
		1	5	1.82	<13	PASS
	HCH	3	0	1.73	<13	PASS
		3	2	1.76	<13	PASS
		3	3	1.77	<13	PASS
		6	0	2.43	<13	PASS
		1	0	2.48	<13	PASS
		1	3	2.44	<13	PASS
		1	5	2.4	<13	PASS
	LCH	3	0	2.41	<13	PASS
		3	2	2.43	<13	PASS
		3	3	2.44	<13	PASS
16QAM		6	0	3.15	<13	PASS
		1	0	2.23	<13	PASS
		1	3	2.24	<13	PASS
	МСЦ	1	5	2.25	<13	PASS
	MCH	3	0	2.27	<13	PASS
		3	2	2.29	<13	PASS
		3	3	2.3	<13	PASS

		6	0	2.96	<13	PASS
		1	0	2.32	<13	PASS
	1	3	2.35	<13	PASS	
		1	5	2.37	<13	PASS
	HCH	3	0	2.33	<13	PASS
		3	2	2.36	<13	PASS
		3	3	2.37	<13	PASS
		6	0	3.11	<13	PASS

Channel Bandwidth: 3 MHz

			Channel	Bandwidth: 3 MHz		
Modulation	Channel	RB Con Size	figuration Offset	Peak-to-Average Ratio [dB]	Limit [dB]	Verdict
		1	0	1.81	<13	PASS
		1	7	1.84	<13	PASS
		1	14	1.9	<13	PASS
	LCH	8	0	1.96	<13	PASS
		8	4	2.23	<13	PASS
		8	7	2.58	<13	PASS
		15	0	2.78	<13	PASS
		1	0	1.63	<13	PASS
		1	7	1.6	<13	PASS
		1	14	1.58	<13	PASS
QPSK	MCH	8	0	1.97	<13	PASS
		8	4	2.05	<13	PASS
		8	7	2.33	<13	PASS
		15	0	2.57	<13	PASS
		1	0	1.68	<13	PASS
		1	7	1.73	<13	PASS
		1	14	1.78	<13	PASS
	HCH	8	0	2.22	<13	PASS
		8	4	2.35	<13	PASS
		8	7	2.5	<13	PASS
		15	0	2.66	<13	PASS
		1	0	2.4	<13	PASS
16QAM	LCH	1	7	2.42	<13	PASS
		1	14	2.45	<13	PASS

		8	0	3.01	<13	PASS
		8	4	3.15	<13	PASS
		8	7	3.26	<13	PASS
		15	0	3.49	<13	PASS
		1	0	2.23	<13	PASS
		1	7	2.25	<13	PASS
		1	14	2.26	<13	PASS
	MCH	8	0	2.84	<13	PASS
		8	4	2.88	<13	PASS
		8	7	2.92	<13	PASS
		15	0	3.24	<13	PASS
		1	0	2.25	<13	PASS
		1	7	2.32	<13	PASS
		1	14	2.35	<13	PASS
	HCH	8	0	3.09	<13	PASS
		8	4	3.12	<13	PASS
		8	7	3.18	<13	PASS
		15	0	3.35	<13	PASS

Channel Bandwidth: 5 MHz

Channel Bandwidth: 5 MHz									
Modulation	Channel	RB Conf Size	iguration Offset	Peak-to-Average Ratio [dB]	Limit [dB]	Verdict			
		1	0	1.82	<13	PASS			
		1	12	1.92	<13	PASS			
		1	24	1.98	<13	PASS			
	LCH	12	0	2.54	<13	PASS			
		12	6	2.63	<13	PASS			
		12	13	2.71	<13	PASS			
QPSK		25	0	3.17	<13	PASS			
QFSK		1	0	1.7	<13	PASS			
		1	12	1.69	<13	PASS			
		1	24	1.67	<13	PASS			
	MCH	12	0	2.32	<13	PASS			
		12	6	2.35	<13	PASS			
		12	13	2.38	<13	PASS			
		25	0	2.95	<13	PASS			

		1	0	1.55	<13	PASS
		1	12	1.62	<13	PASS
		1	24	1.73	<13	PASS
	HCH	12	0	2.03	<13	PASS
		12	6	2.47	<13	PASS
		12	13	2.59	<13	PASS
		25	0	3.01	<13	PASS
		1	0	2.38	<13	PASS
		1	12	2.48	<13	PASS
		1	24	2.58	<13	PASS
	LCH	12	0	3.21	<13	PASS
		12	6	3.34	<13	PASS
		12	13	3.44	<13	PASS
		25	0	3.77	<13	PASS
		1	0	2.12	<13	PASS
		1	12	2.19	<13	PASS
		1	24	2.24	<13	PASS
16QAM	MCH	12	0	2.72	<13	PASS
		12	6	2.93	<13	PASS
		12	13	3.08	<13	PASS
		25	0	3.52	<13	PASS
		1	0	1.99	<13	PASS
		1	12	2.14	<13	PASS
		1	24	2.26	<13	PASS
	HCH	12	0	3.06	<13	PASS
		12	6	3.17	<13	PASS
		12	13	3.24	<13	PASS
		25	0	3.56	<13	PASS

			Channel E	Bandwidth: 10 MHz		
Modulation	Channel	RB Configuration		Peak-to-Average Ratio	Limit	Verdict
wouldition	Channel	Size	Offset	[dB]	[dB]	verdict
		1	0	1.75	<13	PASS
		1	24	1.77	<13	PASS
		1	49	1.81	<13	PASS
	LCH	25	0	2.84	<13	PASS
		25	12	2.97	<13	PASS
		25	25	3.02	<13	PASS
		50	0	3.22	<13	PASS
		1	0	1.62	<13	PASS
		1	24	1.59	<13	PASS
		1	49	1.53	<13	PASS
QPSK	MCH	25	0	2.23	<13	PASS
		25	12	2.51	<13	PASS
		25	25	2.69	<13	PASS
		50	0	2.91	<13	PASS
-		1	0	1.31	<13	PASS
		1	24	1.68	<13	PASS
		1	49	1.88	<13	PASS
	НСН	25	0	2.52	<13	PASS
		25	12	2.68	<13	PASS
		25	25	2.7	<13	PASS
		50	0	2.93	<13	PASS
		1	0	2.44	<13	PASS
		1	24	2.4	<13	PASS
		1	49	2.44	<13	PASS
	LCH	25	0	3.22	<13	PASS
		25	12	3.49	<13	PASS
160 ^ M	-	25	25	3.66	<13	PASS
16QAM		50	0	3.83	<13	PASS
		1	0	2.17	<13	PASS
		1	24	2.14	<13	PASS
	MCH	1	49	2.17	<13	PASS
		25	0	3.03	<13	PASS
	F	25	12	3.17	<13	PASS

Channel Bandwidth: 10 MHz

		25	25	3.28	<13	PASS
		50	0	3.54	<13	PASS
		1	0	1.95	<13	PASS
		1	24	2.28	<13	PASS
		1	49	2.58	<13	PASS
	НСН	25	0	3.05	<13	PASS
		25	12	3.24	<13	PASS
		25	25	3.35	<13	PASS
		50	0	3.5	<13	PASS

Channel Bandwidth: 15 MHz

			Channel E	Bandwidth: 15 MHz		
Modulation	Channel	RB Con Size	figuration Offset	Peak-to-Average Ratio [dB]	Limit [dB]	Verdict
		1	0	1.78	<13	PASS
		1	37	1.64	<13	PASS
		1	74	1.59	<13	PASS
	LCH	37	0	2.94	<13	PASS
	2011	37	18	2.99	<13	PASS
		37	38	3.03	<13	PASS
		75	0	3.85	<13	PASS
		1	0	1.67	<13	PASS
	МСН	1	37	1.61	<13	PASS
		1	74	1.51	<13	PASS
QPSK		37	0	2.36	<13	PASS
		37	18	2.71	<13	PASS
		37	38	2.8	<13	PASS
		75	0	3.63	<13	PASS
		1	0	1.32	<13	PASS
		1	37	1.52	<13	PASS
		1	74	1.69	<13	PASS
	HCH	37	0	2.15	<13	PASS
		37	18	2.47	<13	PASS
		37	38	2.76	<13	PASS
		75	0	3.44	<13	PASS
		1	0	2.4	<13	PASS
16QAM	LCH	1	37	2.31	<13	PASS
	LUN	1	74	2.23	<13	PASS
		37	0	3.06	<13	PASS

	37	18	3.63	<13	PASS
	37	38	3.79	<13	PASS
	75	0	4.42	<13	PASS
	1	0	2.19	<13	PASS
	1	37	2.11	<13	PASS
	1	74	2.06	<13	PASS
MCH	37	0	3.09	<13	PASS
	37	18	3.27	<13	PASS
	37	38	3.44	<13	PASS
	75	0	4.22	<13	PASS
	1	0	1.81	<13	PASS
	1	37	2.03	<13	PASS
	1	74	2.31	<13	PASS
НСН	37	0	3.12	<13	PASS
	37	18	3.34	<13	PASS
	37	38	3.42	<13	PASS
	75	0	4.04	<13	PASS
		37 75 1 1 1 1 1 1 1 37 37 37 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	37 38 75 0 1 0 1 37 1 74 MCH 37 0 37 18 37 38 75 0 37 18 37 38 75 0 1 37 1 74 HCH 37 0 37 18 37 37 18 37 37 18 37 37 38 37	37 38 3.79 75 0 4.42 1 0 2.19 1 37 2.11 1 74 2.06 37 18 3.27 37 38 3.44 75 0 4.22 37 38 3.44 75 0 4.22 1 0 1.81 1 37 2.03 1 74 2.31 1 37 3.12 37 18 3.34 37 18 3.34 37 18 3.42	37 38 3.79 <13 75 0 4.42 <13

Channel Bandwidth: 20 MHz

Channel Bandwidth: 20 MHz							
Modulation	Channel	RB Conf	iguration	Peak-to-Average Ratio	Limit	Verdict	
wooulation	Channel	Size	Offset	[dB]	[dB]	verdict	
		1	0	1.82	<13	PASS	
		1	49	1.74	<13	PASS	
		1	99	1.65	<13	PASS	
	LCH	50	0	3.02	<13	PASS	
		50	25	3.16	<13	PASS	
		50	50	3.23	<13	PASS	
		100	0	4.08	<13	PASS	
	МСН	1	0	1.64	<13	PASS	
QPSK		1	49	1.57	<13	PASS	
QFSK		1	99	1.39	<13	PASS	
		50	0	3.03	<13	PASS	
		50	25	3.08	<13	PASS	
		50	50	3.11	<13	PASS	
		100	0	3.9	<13	PASS	
		1	0	1.32	<13	PASS	
	НСН	1	49	1.66	<13	PASS	
	псп	1	99	1.75	<13	PASS	
		50	0	2.87	<13	PASS	

		50	25	2.91	<13	PASS
		50	50	2.96	<13	PASS
		100	0	3.74	<13	PASS
		1	0	2.27	<13	PASS
		1	49	2.26	<13	PASS
		1	99	2.25	<13	PASS
	LCH	50	0	3.65	<13	PASS
		50	25	3.72	<13	PASS
		50	50	3.85	<13	PASS
		100	0	4.6	<13	PASS
	МСН	1	0	2.14	<13	PASS
		1	49	2.02	<13	PASS
		1	99	1.94	<13	PASS
16QAM		50	0	3.07	<13	PASS
		50	25	3.42	<13	PASS
		50	50	3.63	<13	PASS
		100	0	4.45	<13	PASS
		1	0	1.9	<13	PASS
		1	49	2.2	<13	PASS
		1	99	2.4	<13	PASS
	НСН	50	0	3.09	<13	PASS
		50	25	3.38	<13	PASS
		50	50	3.56	<13	PASS
		100	0	4.23	<13	PASS

Channel Bandwidth: 5 MHz							
Modulation	Channel	RB Conf	iguration	Peak-to-Average Ratio	Limit	Verdict	
Modulation	Channel	Size	Offset	[dB]	[dB]	verdict	
		1	0	1.87	<13	PASS	
		1	12	1.91	<13	PASS	
		1	24	1.96	<13	PASS	
	LCH	12	0	2.45	<13	PASS	
		12	6	2.63	<13	PASS	
		12	13	2.8	<13	PASS	
		25	0	3.19	<13	PASS	
		1	0	1.08	<13	PASS	
		1	12	1.16	<13	PASS	
		1	24	1.23	<13	PASS	
QPSK	MCH	12	0	1.07	<13	PASS	
		12	6	1.38	<13	PASS	
		12	13	1.65	<13	PASS	
		25	0	2.41	<13	PASS	
		1	0	1.65	<13	PASS	
		1	12	1.77	<13	PASS	
		1	24	1.97	<13	PASS	
	НСН	12	0	2.84	<13	PASS	
		12	6	2.96	<13	PASS	
		12	13	3.1	<13	PASS	
		25	0	3.46	<13	PASS	
		1	0	2.49	<13	PASS	
		1	12	2.47	<13	PASS	
		1	24	2.48	<13	PASS	
	LCH	12	0	3.18	<13	PASS	
		12	6	3.26	<13	PASS	
		12	13	3.46	<13	PASS	
10001		25	0	3.85	<13	PASS	
16QAM		1	0	1.51	<13	PASS	
		1	12	1.62	<13	PASS	
		1	24	1.68	<13	PASS	
	MCH	12	0	2.06	<13	PASS	
		12	6	2.29	<13	PASS	
		12	13	2.38	<13	PASS	
		25	0	2.73	<13	PASS	

LTE BAND 7 **Channel Bandwidth: 5 MHz**

	1	0	2.71	<13	PASS
	1	12	2.78	<13	PASS
	1	24	2.84	<13	PASS
HCH	12	0	3.11	<13	PASS
	12	6	3.27	<13	PASS
	12	13	3.33	<13	PASS
	25	0	3.96	<13	PASS

Channel Bandwidth: 10 MHz

	Channel Bandwidth: 10 MHz							
Modulation	Channel	RB Cont	figuration	Peak-to-Average Ratio	Limit	Verdict		
Modulation	Channel	Size	Offset	[dB]	[dB] [dB]			
		1	0	1.81	<13	PASS		
		1	24	1.95	<13	PASS		
		1	49	2.08	<13	PASS		
	LCH	25	0	3.43	<13	PASS		
		25	12	3.59	<13	PASS		
		25	25	3.66	<13	PASS		
		50	0	3.54	<13	PASS		
		1	0	0.9	<13	PASS		
		1	24	1.33	<13	PASS		
		1	49	1.63	<13	PASS		
QPSK	MCH	25	0	2.04	<13	PASS		
		25	12	2.37	<13	PASS		
		25	25	2.59	<13	PASS		
		50	0	2.69	<13	PASS		
		1	0	1.46	<13	PASS		
		1	24	1.99	<13	PASS		
		1	49	2.05	<13	PASS		
	HCH	25	0	3.02	<13	PASS		
		25	12	3.14	<13	PASS		
		25	25	3.17	<13	PASS		
		50	0	3.32	<13	PASS		
		1	0	3.2	<13	PASS		
		1	24	3.34	<13	PASS		
16QAM	LCH	1	49	3.44	<13	PASS		
	LCH	25	0	3.21	<13	PASS		
		25	12	3.53	<13	PASS		
		25	25	3.68	<13	PASS		

	50	0	3.8	<13	PASS
	1	0	2.03	<13	PASS
	1	24	2.09	<13	PASS
	1	49	2.13	<13	PASS
MCH	25	0	3.01	<13	PASS
	25	12	3.25	<13	PASS
	25	25	3.38	<13	PASS
	50	0	3.03	<13	PASS
	1	0	2.78	<13	PASS
	1	24	2.7	<13	PASS
	1	49	2.62	<13	PASS
HCH	25	0	3.95	<13	PASS
	25	12	4.07	<13	PASS
	25	25	4.11	<13	PASS
	50	0	4.01	<13	PASS

Channel Bandwidth: 15 MHz

Channel Bandwidth: 15 MHz							
Madulation	Channel	RB Conf	iguration	Peak-to-Average Ratio	Limit	Vardiat	
Modulation	Channel	Size	Offset	[dB]	[dB]	Verdict	
		1	0	2.35	<13	PASS	
		1	37	2.27	<13	PASS	
		1	74	2.16	<13	PASS	
	LCH	37	0	3.44	<13	PASS	
		37	18	3.53	<13	PASS	
		37	38	3.57	<13	PASS	
		75	0	4.15	<13	PASS	
	МСН	1	0	1.37	<13	PASS	
		1	37	1.55	<13	PASS	
QPSK		1	74	1.68	<13	PASS	
		37	0	2.46	<13	PASS	
		37	18	2.68	<13	PASS	
		37	38	2.73	<13	PASS	
		75	0	3.36	<13	PASS	
		1	0	2.09	<13	PASS	
		1	37	2.07	<13	PASS	
	HCH	1	74	2.05	<13	PASS	
		37	0	3.07	<13	PASS	
		37	18	3.21	<13	PASS	

		37	38	3.31	<13	PASS
		75	0	3.97	<13	PASS
		1	0	2.68	<13	PASS
		1	37	2.94	<13	PASS
		1	74	3.03	<13	PASS
	LCH	37	0	3.97	<13	PASS
		37	18	4.08	<13	PASS
		37	38	4.13	<13	PASS
		75	0	4.74	<13	PASS
		1	0	2.02	<13	PASS
		1	37	2.22	<13	PASS
		1	74	2.31	<13	PASS
16QAM	MCH	37	0	3.11	<13	PASS
		37	18	3.25	<13	PASS
		37	38	3.37	<13	PASS
		75	0	3.96	<13	PASS
		1	0	2.62	<13	PASS
		1	37	2.58	<13	PASS
		1	74	2.54	<13	PASS
	НСН	37	0	3.89	<13	PASS
		37	18	4.01	<13	PASS
		37	38	4.04	<13	PASS
		75	0	4.52	<13	PASS

Channel Bandwidth: 20 MHz

Channel Bandwidth: 20 MHz							
Modulation	Channel	RB Conf	iguration	Peak-to-Average Ratio	Limit	Verdict	
Modulation	Channel	Size	Offset	[dB]	[dB]	Verdici	
		1	0	2.06	<13	PASS	
		1	49	2.01	<13	PASS	
	LCH	1	99	1.92	<13	PASS	
		50	0	3.24	<13	PASS	
		50	25	3.52	<13	PASS	
QPSK		50	50	3.66	<13	PASS	
		100	0	4.38	<13	PASS	
		1	0	1.47	<13	PASS	
	МСН	1	49	1.66	<13	PASS	
	MCH	1	99	1.8	<13	PASS	
		50	0	2.97	<13	PASS	

					10	
		50	25	3.02	<13	PASS
		50	50	3.05	<13	PASS
		100	0	3.68	<13	PASS
		1	0	2.09	<13	PASS
		1	49	2.07	<13	PASS
		1	99	2.06	<13	PASS
	HCH	50	0	3.47	<13	PASS
		50	25	3.49	<13	PASS
		50	50	3.53	<13	PASS
		100	0	4.22	<13	PASS
		1	0	2.83	<13	PASS
		1	49	2.73	<13	PASS
		1	99	2.56	<13	PASS
	LCH	50	0	4.17	<13	PASS
		50	25	4.25	<13	PASS
		50	50	4.29	<13	PASS
		100	0	4.97	<13	PASS
		1	0	2.04	<13	PASS
		1	49	2.19	<13	PASS
		1	99	2.35	<13	PASS
16QAM	MCH	50	0	3.32	<13	PASS
		50	25	3.47	<13	PASS
		50	50	3.64	<13	PASS
		100	0	4.22	<13	PASS
		1	0	2.65	<13	PASS
		1	49	2.64	<13	PASS
		1	99	2.62	<13	PASS
	НСН	50	0	4.02	<13	PASS
		50	25	4.11	<13	PASS
		50	50	4.18	<13	PASS
		100	0	4.75	<13	PASS

7. SPURIOUS EMISSION

7.1 CONDUCTED SPURIOUS EMISSION

7.1.1 MEASUREMENT METHOD

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.

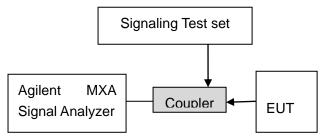
For Band 7:

(i) 40 + 10 log10 p from the channel edges to 5 MHz away

(ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and

(iii) 55 + 10 log10 p at X MHz and beyond from the channel edges

Test Procedure Used KDB 971168 D01v03 – Section 6.0


Test Settings

1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)

- 2. Detector = RMS
- 3. Trace mode = max hold
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Instrument & Measurement Setup

shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels

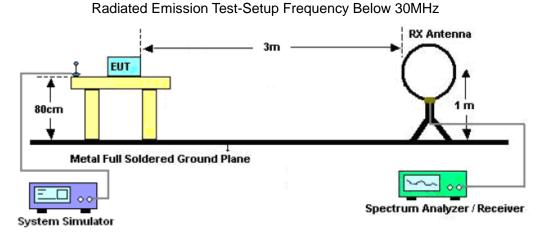
+30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

Test Note

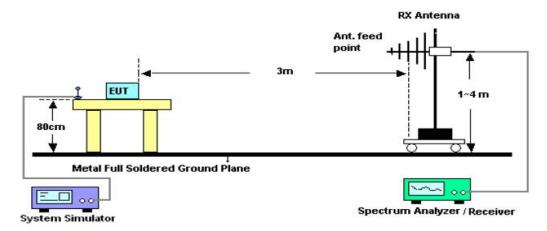
Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

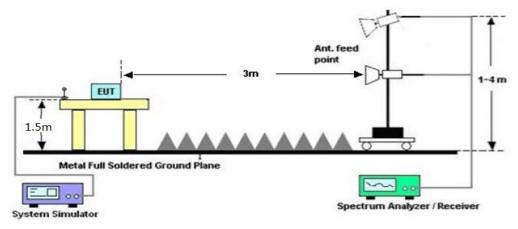
7.1.2 MEASUREMENT RESULT

PLEASE REFER TO: APPENDIX A TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION **Note:** 1. No emission found in standby or receive mode, no recording in this report.


7.2 RADIATED SPURIOUS EMISSION

7.2.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


7.2.2. TEST SETUP

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

7.2.3 PROVISIONS APPLICABLE

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Note: Only record the worst condition of each test mode:

7.2.4 MEASUREMENT RESULT

		LTE Band 2 Low channel		
Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
3720	V	-52.00	-13	-39.00
886.45	V	-61.16	-13	-48.16
352.14	V	-60.59	-13	-47.59
3720	Н	-51.63	-13	-38.63
748.56	Н	-61.05	-13	-48.05
453.11	Н	-61.56	-13	-48.56

Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
3760	V	-51.88	-13	-38.88
689.45	V	-62.25	-13	-49.25
435.11	V	-61.69	-13	-48.69
3760	Н	-52.69	-13	-39.69
714.51	Н	-62.00	-13	-49.00
512.33	Н	-61.33	-13	-48.33

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
3800	V	-53.07	-13	-40.07
744.36	V	-62.28	-13	-49.28
365.89	V	-61.76	-13	-48.76
3800	Н	-52.74	-13	-39.74
697.66	Н	-60.93	-13	-47.93
398.45	Н	-61.26	-13	-48.26

		Low channel		
Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
3440	V	-52.04	-25	-39.04
785.42	V	-61.38	-25	-48.38
658.36	V	-61.99	-25	-48.99
3440	Н	-52.87	-25	-39.87
694.12	Н	-60.89	-25	-47.89
458.63	Н	-62.03	-25	-49.03

LTE Band 7

Middle channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
3465	V	-52.13	-25	-39.13
682.16	V	-61.41	-25	-48.41
398.66	V	-61.91	-25	-48.91
3465	Н	-52.91	-25	-39.91
596.32	Н	-60.94	-25	-47.94
400.25	Н	-61.93	-25	-48.93

High channel

Frequency (MHz)	Polarity (H/V)	Emission Level (dBm)	Limit (dBm)	Margin (dB)
3490	V	-52.11	-25	-39.11
498.69	V	-59.42	-25	-46.42
258.47	V	-61.96	-25	-48.96
3490	Н	-52.95	-25	-39.95
450.55	Н	-60.99	-25	-47.99
226.45	Н	-61.98	-25	-48.98

Note: 1. Margin = Emission Level -Limit

2. (30MHz-26GHz) Below 30MHZ no Spurious found and above is the worst mode data

8. FREQUENCY STABILITY

8.1 MEASUREMENT METHOD

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

1Measure the carrier frequency at room temperature.

2Subject the EUT to overnight soak at -10°C. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on channel 20175 for LTE band 4 measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

3Repeat the above measurements at 10° increments from -10° to $+50^{\circ}$. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

4Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1 1/2 hours unpowered, to allow any self-heating to stabilize, before continuing.

5Subject the EUT to overnight soak at +50 $^{\circ}$ C.

6With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.

7Repeat the above measurements at 10° C increments from +50°C to -10°C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.

8At all temperature levels hold the temperature to +/- 0.5° C during the measurement procedure.

8.2 PROVISIONS APPLICABLE

8.2.1 For Hand carried battery powered equipment

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

a.) Temperature: The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

b.) Primary Supply Voltage: The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 22, the frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency. For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

8.2.2 For equipment powered by primary supply voltage

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

8.3 MEASUREMENT RESULT (WORST)

	Middle Channel, fo = 1880 MHz					
Temperature (°ℂ)	Power Supplied (VDC)	Frequency Error (Hz)	Frequency Error (ppm)			
-10		-2.49	0.00			
0		1.75	0.00			
10	3.7	3.13	0.00			
20		-1.33	0.00			
30		0.50	0.00			
40]	0.54	0.00			
50		1.70	0.00			
25	4.3	2.10	0.00			
25	3.1	-2.60	0.00			

LTE Band 2

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very samll. As such it is determined that channels at the band edge would remain in-band when the maximum measured frequency deviation noted duing the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperture and voltage range as tested. The EUT doesn't work below -10 $^{\circ}$ C

Middle Channel, fo = 2535.0MHz						
Temperature (℃)	Power Supplied (VDC)	Frequency Error (Hz)	Frequency Error (ppm)			
-10		5.51	0.00			
0		5.51	0.00			
10		5.01	0.00			
20	3.7	4.21	0.00			
30		3.09	0.00			
40		2.10	0.00			
50		2.63	0.00			
25	4.3	2.85	0.00			
25	3.1	4.85	0.00			

Note: Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very samll. As such it is determined that channels at the band edge would remain in-band when

the maximum measured frequency deviation noted duing the frequency stability tests is applied. Therefore the device is detemined to remain operating in band over the temperture and voltage range as tested. The EUT doesn't work below -10 $^{\circ}$ C

9. OCCUPIED BANDWIDTH

9.1 MEASUREMENT METHOD

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

9.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power

9.3 MEASUREMENT RESULT

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

LTE Band 2

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 1.4 MHz						
Modulation	Channel	RB Confi	guration	Occupied Rendwidth(MHz)		
Modulation Channel	Channel	Size	Offset	Occupied Bandwidth(MHz)	Verdict	
	LCH	6	0	1.1128	PASS	
QPSK	MCH	6	0	1.1148	PASS	
	HCH	6	0	1.1022	PASS	
	LCH	6	0	1.0987	PASS	
16QAM	MCH	6	0	1.1100	PASS	
	HCH	6	0	1.0936	PASS	

Channel Bandwidth: 3 MHz

Channel Bandwidth: 3 MHz							
Modulation	Channel	RB Confi	guration	Occupied Rendwidth(MHz)	Vordiot		
Modulation Channel	Channel	Size	Offset	Occupied Bandwidth(MHz)	Verdict		
	LCH	15	0	2.7039	PASS		
QPSK	MCH	15	0	2.7129	PASS		
	HCH	15	0	2.7033	PASS		
	LCH	15	0	2.7022	PASS		
16QAM	MCH	15	0	2.7066	PASS		
	HCH	15	0	2.6994	PASS		

Channel Bandwidth: 5 MHz

Channel Bandwidth: 5 MHz						
Modulation	Channel	RB Confi	guration	Occupied Rendwidth(MHz)	Vordict	
Modulation Channel	Channel	Size	Offset	Occupied Bandwidth(MHz)	Verdict	
	LCH	25	0	4.5108	PASS	
QPSK	MCH	25	0	4.5158	PASS	
	HCH	25	0	4.5120	PASS	
	LCH	25	0	4.5121	PASS	
16QAM	MCH	25	0	4.5196	PASS	
	HCH	25	0	4.5072	PASS	

Channel Bandwidth: 10 MHz

Channel Bandwidth: 10 MHz						
Modulation	Channel	RB Confi	guration	Occupied Pendwidth (MHz)) (a mali a t	
Modulation Channel	Channel	Size	Offset	Occupied Bandwidth (MHz)	Verdict	
	LCH	50	0	8.9866	PASS	
QPSK	MCH	50	0	9.0023	PASS	
	HCH	50	0	9.0165	PASS	
	LCH	50	0	8.9953	PASS	
16QAM	MCH	50	0	9.0029	PASS	
	HCH	50	0	9.0048	PASS	

Channel Bandwidth: 15 MHz

Channel Bandwidth: 15 MHz						
	Channel	RB Confi	guration	Occupied Dendwidth (MUT)	Verdict	
Modulation	Channel	Size	Offset	Occupied Bandwidth (MHz)		
	LCH	75	0	13.517	PASS	
QPSK	MCH	75	0	13.554	PASS	
	HCH	75	0	13.623	PASS	
	LCH	75	0	13.494	PASS	
16QAM	MCH	75	0	13.539	PASS	
	HCH	75	0	13.575	PASS	

Channel Bandwidth: 20 MHz

Channel Bandwidth: 20 MHz								
Modulation	Channel	RB Confi	guration	Occupied Pendwidth (MHz)				
Modulation	Channel	Size	Offset	Occupied Bandwidth (MHz)	Verdict			
	LCH	100	0	17.958	PASS			
QPSK	MCH	100	0	17.998	PASS			
	HCH	100	0	17.985	PASS			
	LCH	100	0	17.962	PASS			
16QAM	MCH	100	0	17.983	PASS			
	HCH	100	0	17.970	PASS			

LTE Band 7

Channel Bandwidth: 5MHz

Channel Bandwidth: 5 MHz								
Modulation	Channel	RB Confi	guration	Occupied Rendwidth(MHz)				
Modulation	Channel	Size	Offset	Occupied Bandwidth(MHz)	Verdict			
	LCH	25	0	4.4967	PASS			
QPSK	MCH	25	0	4.5282	PASS			
	HCH	25	0	4.5133	PASS			
	LCH	25	0	4.5026	PASS			
16QAM	MCH	25	0	4.5346	PASS			
	HCH	25	0	4.5040	PASS			

Channel Bandwidth: 10 MHz

	Channel Bandwidth: 10 MHz								
Modulation	Channel	Channel RB Configur		Occupied Bandwidth (MHz)	Verdict				
		Size	Offset						
	LCH	50	0	9.0161	PASS				
QPSK	MCH	50	0	9.3270	PASS				
	HCH	50	0	9.0268	PASS				
	LCH	50	0	9.0006	PASS				
16QAM	MCH	50	0	9.2387	PASS				
	HCH	50	0	9.0046	PASS				

Channel Bandwidth: 15 MHz

Channel Bandwidth: 15 MHz								
Modulation	Channel	RB Confi	guration	Occupied Pendwidth (MHz)				
Modulation	Channel	Size	Offset	Occupied Bandwidth (MHz)	Verdict			
	LCH	75	0	13.559	PASS			
QPSK	MCH	75	0	14.986	PASS			
	HCH	75	0	13.540	PASS			
	LCH	75	0	13.515	PASS			
16QAM	MCH	75	0	14.232	PASS			
	HCH	75	0	13.488	PASS			

Channel Bandwidth: 20 MHz

Channel Bandwidth: 20 MHz								
Modulation	Channel	RB Configuration		Occupied Pendwidth (MHz)				
Modulation	Channel	Size	Offset	Occupied Bandwidth (MHz)	Verdict			
	LCH	100	0	17.995	PASS			
QPSK	MCH	100	0	18.047	PASS			
	HCH	100	0	17.968	PASS			
	LCH	100	0	17.995	PASS			
16QAM	MCH	100	0	17.982	PASS			
	HCH	100	0	17.934	PASS			

Note: Please refers to Appendix B for compliance test plots for Occupied Bandwidth (99%)

10. EMISSION BANDWIDTH

10.1 MEASUREMENT METHOD

The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

10.2 PROVISIONS APPLICABLE

The emission bandwidth is defined as two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26dB below the transmitter power.

10.3 MEASUREMENT RESULT

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

LTE Band 2

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 1.4 MHz									
Modulation	Channel	RB Confi	guration	26dB Bandwidth	Verdict				
Modulation	Chaine	Size	Offset	(MHz)	Verdict				
	LCH	6	0	2.279	PASS				
QPSK	MCH	6	0	2.164	PASS				
	HCH	6	0	2.166	PASS				
	LCH	6	0	2.009	PASS				
16QAM	MCH	6	0	2.087	PASS				
	HCH	6	0	2.129	PASS				

Channel Bandwidth: 3 MHz

Channel Bandwidth: 3 MHz								
Modulation	Channel	RB Confi	guration	26dP Pondwidth (MHz)				
Modulation	Channel	Size	Offset	26dB Bandwidth (MHz)	Verdict			
	LCH	15	0	4.604	PASS			
QPSK	MCH	15	0	5.240	PASS			
	HCH	15	0	4.201	PASS			
	LCH	15	0	4.915	PASS			
16QAM	MCH	15	0	7.013	PASS			
	HCH	15	0	8.242	PASS			

Channel Bandwidth: 5 MHz

Channel Bandwidth: 5 MHz								
Modulation	Channel	RB Confi	guration	26dB Bandwidth (MHz)) (a nali a t			
wooulation	Charmer	Size	Offset		Verdict			
	LCH	25	0	7.556	PASS			
QPSK	MCH	25	0	9.201	PASS			
	HCH	25	0	8.344	PASS			
	LCH	25	0	6.787	PASS			
16QAM	MCH	25	0	7.013	PASS			
	HCH	25	0	8.242	PASS			

Channel Bandwidth: 10 MHz

Channel Bandwidth: 10 MHz								
Modulation	Channel	RB Confi	guration	26dP Pondwidth (MHz)				
wooulation	Channel	Size	Offset	26dB Bandwidth (MHz)	Verdict			
	LCH	50	0	15.85	PASS			
QPSK	MCH	50	0	16.09	PASS			
	HCH	50	0	16.60	PASS			
	LCH	50	0	14.85	PASS			
16QAM	MCH	50	0	15.99	PASS			
	HCH	50	0	16.16	PASS			

Channel Bandwidth: 15 MHz

Channel Bandwidth: 15 MHz								
Modulation	Channel	RB Confi	guration	26dP Pondwidth (MHz)				
Modulation	Channel	Size	Offset	26dB Bandwidth (MHz)	Verdict			
	LCH	75	0	28.55	PASS			
QPSK	MCH	75	0	28.70	PASS			
	HCH	75	0	25.70	PASS			
	LCH	75	0	25.47	PASS			
16QAM	MCH	75	0	28.62	PASS			
	HCH	75	0	26.42	PASS			

Channel Bandwidth: 20 MHz

Channel Bandwidth: 20 MHz								
Modulation	Channel	RB Confi	guration	26dP Pondwidth (MHz)				
Modulation	Channel	Size	Offset	26dB Bandwidth (MHz)	Verdict			
	LCH	100	0	28.51	PASS			
QPSK	MCH	100	0	31.08	PASS			
	HCH	100	0	31.85	PASS			
	LCH	100	0	28.75	PASS			
16QAM	MCH	100	0	33.95	PASS			
	HCH	100	0	34.35	PASS			

LTE Band 7

Channel Bandwidth: 5 MHz

Channel Bandwidth: 5MHz								
Modulation	Channel	RB Confi	guration	26dP Pondwidth (MHz)				
Modulation	Channel	Size	Offset	26dB Bandwidth (MHz)	Verdict			
	LCH	25	0	6.157	PASS			
QPSK	MCH	25	0	8.767	PASS			
	HCH	25	0	9.012	PASS			
	LCH	25	0	5.525	PASS			
16QAM	MCH	25	0	8.064	PASS			
	HCH	25	0	7.304	PASS			

Channel Bandwidth: 10 MHz

Channel Bandwidth: 10MHz					
Modulation	Channel	RB Configuration		26dD Dondwidth (MUT)	Vardiat
		Size	Offset	26dB Bandwidth (MHz)	Verdict
	LCH	50	0	18.44	PASS
QPSK	MCH	50	0	19.86	PASS
	HCH	50	0	18.85	PASS
16QAM	LCH	50	0	18.07	PASS
	MCH	50	0	19.18	PASS
	HCH	50	0	18.46	PASS

Channel Bandwidth: 15 MHz

Channel Bandwidth: 15MHz					
Modulation	Channel	RB Configuration		OcdD Dondwidth (MUT)	Verdict
		Size	Offset	26dB Bandwidth (MHz)	Verdict
	LCH	75	0	29.29	PASS
QPSK	MCH	75	0	29.03	PASS
	HCH	75	0	28.59	PASS
16QAM	LCH	75	0	28.60	PASS
	MCH	75	0	29.34	PASS
	HCH	75	0	25.32	PASS

Channel Bandwidth: 20 MHz

Channel Bandwidth: 20MHz					
Modulation	Channel	RB Configuration		26dD Dondwidth (MUT)	Vardiat
		Size	Offset	26dB Bandwidth (MHz)	Verdict
	LCH	100	0	36.49	PASS
QPSK	MCH	100	0	37.92	PASS
	HCH	100	0	35.92	PASS
16QAM	LCH	100	0	36.12	PASS
	MCH	100	0	31.29	PASS
	HCH	100	0	28.93	PASS

Note: Please refers to Appendix B for compliance test plots for emission bandwidth (-26dBc).

11. BAND EDGE

11.1 MEASUREMENT METHOD

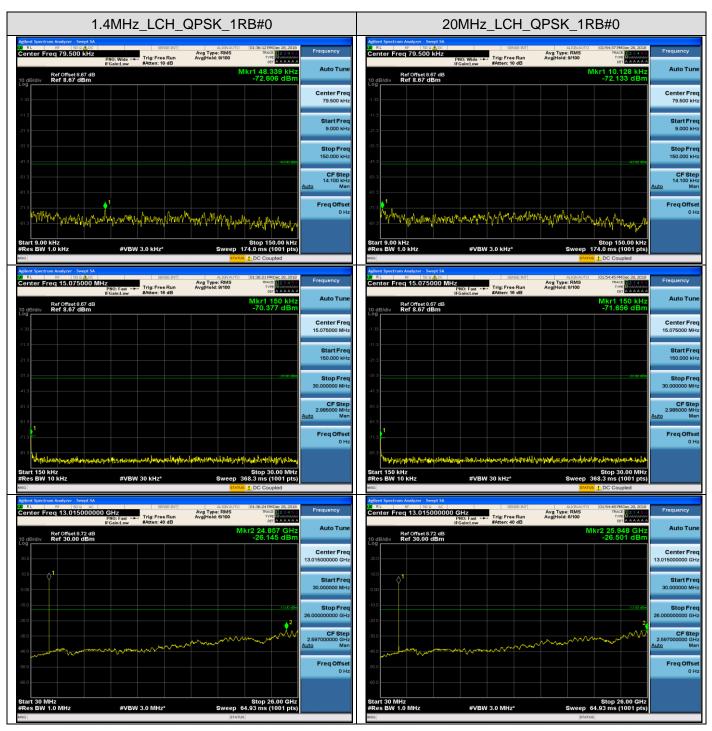
The test set up and general procedure is similar to conducted peak output power test. Only different for setting the measurement configuration of the measuring instrument of Spectrum Analyzer.

11.2 PROVISIONS APPLICABLE

As Specified in FCC rules of §2.1051 §24.238(a) §27.53(g) §27.53(h) §27.53(m) KDB 971168 D01v03 – Section 6.0

11.3 MEASUREMENT RESULT

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequency. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section. The minimum permissible attenuation level of any spurious emission is 43 + log10(P[Watts]), where P is the transmitter power in Watts.


For Band 7:

- (i) 40 + 10 log10 p from the channel edges to 5 MHz away
- (ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
- (iii) 55 + 10 log10 p at X MHz and beyond from the channel edges

Please refers to Appendix C for compliance test plots for band edge

APPENDIX A TEST PLOTS FOR CONDUCTED SPURIOUS EMISSION

LTE BAND 2

1.4MHz_MCH_QPSK_1RB#0	20MHz_MCH_QPSK_1RB#0
Added Spectrum Andrew Several SA A the several Several SA Conter Freq 79.500 kHz PIGuinzow Ref Offset 857 dB 133 133 133 133 133 133 133 13	Adjust Synchronic Synchronic Control Control<
Start 9.00 kHz #Res BW 1.0 kHz	Start 9.00 kHz #Res BW 1.0 kHz Stop 190.00 kHz #Res BW 1.0 kHz Stop 190.00 kHz #Res BW 1.0 kHz Stop 190.00 kHz #Res BW 1.0 kHz Stop 190.00 kHz #Res BW 1.0 kHz Stop 190.00 kHz #Res BW 1.0 kHz Stop 190.00 kHz #Res BW 1.0 kHz Stop 190.00 kHz #Res BW 1.0 kHz Center Freq 15.07 5000 MHz #Center Freq 15.07 5000 MHz If gras Run #FederLarbox Aug Trip Free Run Arg Trip Freq Using too Trip Example (or
Start 150 kHz Res DW 10 kHz Res DW 10 kHz Res Offset 872 dB Center Freq 13.01500000 GHz Center Freq Center Freq 13.01500000 GHz Center Freq Start 30 MHz Res Offset 872 dB Stop Freq Center Freq Stop 20.0000 GHz Stop Stop Stop Stop Stop Stop Stop Stop	Start 150 kHz #VBW 30 kHz* Sweep 368.3 ms (100 pps)

1.4MHz_HCH_QPSK_1RB#0	20MHz_HCH_QPSK_1RB#0
1.4MHz_HCH_QPSK_1RB#0	Addited Spectrum Analyzer Swigd SA Center Freq 79:000 kHz Switch Size Switch Size Switch Size Frequency Center Freq 79:000 kHz PR0: Wide
Start 9.00 kHz Stop 19.00 kHz Stop 19.00 kHz Stop 19.00 kHz Stop 19.00 kHz Stop 19.00 kHz Stop 19.00 kHz Stop 19.00 kHz Stop 19.00 kHz Stop 19.00 kHz Conter Freq 15.07500 MHz Stop 19.00 kHz Mice 1.00 kHz Prequency Mice 1.00 kHz Stop 19.00 kHz Center Freq 15.07500 MHz Auto Tune Mice 1.00 kHz Mice 1.00 kHz Mice 1.00 kHz Auto Tune Offset 8.67 dB Mice 1.10 kHz Offset 8.67 dB Mice 1.10 kHz -71.689 dBm Center Freq -71.689 dBm Center Freq -71.689 dBm Center Freq -71.689 dBm Center Freq -71.689 dBm -71.689 dBm	Start 9.00 kHz #VBW 3.0 kHz' Stop 150.00 kHz Stop 150.00 kHz #Rces BW 1.0 kHz #VBW 3.0 kHz' Sweep 174.0 ms (1001 ps) Mol sweep 174.0 ms (1001 ps) Mol and Spectrum Anthrows C. Coupled Sweep 174.0 ms (1001 ps) Addres Spectrum Anthrows C. Coupled Sweep 174.0 ms (1001 ps) Center Freq 15.075000 MHz State: 16 dB Ref Stof dB m
Start 150 kHz #Res BW 10 kHz	Start 150 kHz FRes BW 10 kHz FVBW 30 kHz* Sweep 368.3 ms (1001 pts) Start 150 kHz Frequency Sweep 368.3 ms (1001 pts) Sweep 368.3 ms (1001 pts) Frequency Frequency Auto Tune Frequency Auto Tune Frequency Start 150 kHz Frequency Auto Tune Frequency Auto Tune Start Freq 30 000000 HHz Start 30 MHz FreqUency Stop 26.00 CHz Stop 26.0