

FCC Part 15.247

TEST REPORT

For

Cisco Systems, Inc.

125 West Tasman Drive, San Jose, CA 95134, USA

FCC ID: LDKPVDEO2618

Donort Type	Product Type:				
Report Type:	Cisco Catalyst 9120AX Series Wi-				
Original Report	Fi 6 Access Points				
Report Producer : <u>Eva Ka</u>	0				
Report Number : <u>RXZ22</u>	0627003RF02				
Report Date :	8				
Reviewed By: <u>Andy S</u>	hih Andy. Shih				
Prepared By: Bay Area Con	pliance Laboratories Corp.				
(New Taipei L	aboratory)				
70, Lane 169, S	Sec. 2, Datong Road, Xizhi Dist.,				
New Taipei Ci	ty 22183, Taiwan, R.O.C.				
Tel: +886 (2) 2647 6898					
Fax: +886 (2) 2647 6895					
www.bacl.com.tw					

Revision History

Revision	No. Report Number		Issue Date	Description	Author/ Revised by
0.0	RXZ220627003	RXZ220627003RF02	2022-7-8	Original Report	Eva Kao

TABLE OF CONTENTS

1	Ger	neral Information
	1.1 1.2 1.3	Product Description for Equipment under Test (EUT)
	1.4	Statement
	1.5 1.6	Measurement Uncertainty
	1.0 1.7	Environmental Conditions
2		tem Test Configuration
	2.1	Equipment Modifications
	2.2 2.3	Test Mode 6 Support Equipment List and Details 6
	2.3	External Cable List and Details
	2.5	Block Diagram of Test Setup
3	Sur	nmary of Test Results
	T	
4	Tes	t Equipment List and Details
5	FC	C §15.247(i), § 1.1307(b)(3)(i) – RF Exposure
	5.1	Applicable Standard
	5.2	RF Exposure Evaluation Result
6	FC	C §15.209, §15.205 , §15.247(d) – Spurious Emissions
	6.1	Applicable Standard
	6.2	EUT Setup
	6.3	EMI Test Receiver & Spectrum Analyzer Setup
	6.4 6.5	Test Procedure 14 Corrected Factor & Margin Calculation 14
	0.5 6.6	Test Results
7		C §15.247(a)(2) – Maximum Output Power
	7.1	Applicable Standard
	7.1	Test Procedure
	7.3	Test Results

1 General Information

Manufacturer	Cisco Systems, Inc.			
Manufacturer	125 West Tasman Drive, San Jose, CA 95134, USA			
Brand(Trade) Name	CISCO			
Product (Equipment)	Cisco Catalyst 9120AX Series Wi-Fi 6 Access Points			
Main Model Name	С9120АХР-В			
Frequency Range	2412~2462 MHz			
Modulation Technique	DSSS , OFDM			
Power Operation	55V/do from DoE nort			
(Voltage Range)	55Vdc from PoE port			
Received Date	2022/6/27			
Date of Test	2022/6/30 ~ 2022/7/4			

1.1 Product Description for Equipment under Test (EUT)

*All measurement and test data in this report was gathered from production sample serial number: RXZ220627003-01 (Assigned by BACL, New Taipei Laboratory).

1.2 Objective

This report is prepared on behalf of *Cisco Systems, Inc.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules.

Wi-Fi and Chillwave leverage original test data (FCC ID: LDKROFSN2177) in accordance with FCC KDB 484596 D01. Wi-Fi and Chillwave will be verified by spot checking output power and radiated spurious emissions.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

1.4 Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

Parameter		Uncertainty
RF output power, conducted	ed	±0.93 (dB)
	30 MHz~1GHz	±5.22(dB)
Emissions, radiated	1 GHz~18 GHz	±6.12(dB)
	18 GHz~40 GHz	±4.99(dB)
Temperature		+/- 1.27 °C
Humidity		+/- 3 %

1.5 Measurement Uncertainty

1.6 Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
Radiation Spurious Emissions	2022/6/30 ~ 2022/7/4	22	47	1010	Aaron Pan
Maximum Output Power	2022/7/4	23	51	1010	Jim Chen

1.7 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

2 System Test Configuration

2.1 Equipment Modifications

No modification was made to the EUT.

2.2 Test Mode

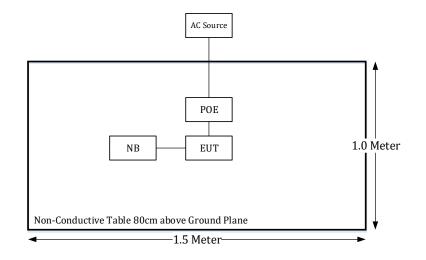
Mode 1: WIFI 2.4GHz XOR + WIFI 5GHz Regular + WIFI 2.4GHz Aux + BLE Mode 2: WIFI 2.4G XOR + WIFI 5GHz Regular + WIFI 5GHz Aux + BLE Mode 3: WIFI 5G XOR + WIFI 5GHz Regular + WIFI 2.4GHz Aux + BLE Mode 4: WIFI 5G XOR + WIFI 5GHz Regular + WIFI 5GHz Aux + BLE

Radiated spurious emissions for Transmitting simultaneously test: Mode 1-4.

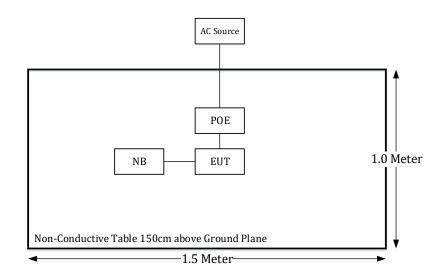
2.3 Support Equipment List and Details

Description	Manufacturer	Model Number	S/N
POE Adapter	CISCO	SB-PWR-INJ2	C18426663000003170
NB	DELL	E6410	8N7PXN1

2.4 External Cable List and Details


Cable Description	Length (m)	From	То
RJ-45 Cable	1	EUT	POE Adapter
RJ-45 to USB Serial Cable	2	EUT	NB

2.5 Block Diagram of Test Setup


See test photographs attached in setup photos for the actual connections between EUT and support equipment.

Radiation:

Below 1GHz:

Above 1GHz:

3 Summary of Test Results

FCC Rules	Description of Test	Results
§15.247(i), §1.1307(b)(3)(i)	RF Exposure	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247(b)(3)	Maximum Peak Output Power	Compliance

*Note: The output power for each radio and each frequency band already verified.

The test report presented the worst modes and channels.

4 Test Equipment List and Details

Description Manufacturer Model		Serial Number	Calibration Date	Calibratio n Due Date	
		Radiation 3M Roo	m (966-A)		
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/15542_01	2022/02/14	2023/02/13
Horn Antenna	EMCO	3115	9809-55583	2021/8/26	2022/8/25
Horn Antenna	ETS-Lindgren	3116	62638	2021/8/11	2022/8/10
Preamplifier	Sonoma	310N	130602	2022/6/8	2023/6/7
Preamplifier	A.H. system Inc.	PAM-0118P	466	2021/11/4	2022/11/3
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2021/12/27	2022/12/26
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2021/12/27	2022/12/26
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2021/11/9	2022/11/8
Micro flex Cable	UTIFLEX	UFB197C-1- 2362-70U-70U	225757-001	2022/1/24	2023/1/23
Coaxial Cable	COMMATE	PEWC	8Dr	2021/12/24	2022/12/23
Coaxial Cable	UTIFLEX	UFB311A-Q- 1440-300300	220490-006	2022/1/24	2023/1/23
Coaxial Cable	JUNFLON	J12J102248-00- B-5	AUG-07-15-044	2021/12/24	2022/12/23
Cable	EMC	EMC105-SM- SM-10000	201003	2022/1/24	2023/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2022/1/24	2023/1/23
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2022/1/18	2023/1/17
Software	Audix	e3	18621a bacl	N.C.R	N.C.R
	•	Conducted R	oom		
Cable	UTIFLEX	UFA210A	9435	2021/10/5	2022/10/4
Power Sensor	KEYSIGHT	U2021XA	MY54080018	2021/1/28	2022/1/27
Attenuator	MINI-CIRCUITS	BW-S10W5+	1419	2021/1/28	2022/1/27

***Statement of Traceability:** BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirement

5 FCC §15.247(i), § 1.1307(b)(3)(i) – RF Exposure

5.1 Applicable Standard

According to subpart 15.247(i) and subpart \$1.1307(b)(3)(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (*i.e.*, any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph
(b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph
(b)(3)(ii)(A);

(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold *Pth* (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). *Pth* is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20} cm (d/20 cm)^{x} & d \le 20 cm \\ ERP_{20} cm & 20 cm < d \le 40 cm \end{cases}$$

Where
$$x = -\log_{10} \left(\frac{60}{ERP_{20} cm \sqrt{f}}\right) \text{ and } f \text{ is in GHz};$$

and
$$ERP_{20} cm (mW) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$

5.2 **RF Exposure Evaluation Result**

The EUT can be used in the following modes, selecting the worst mode for evaluation.

Mode 1: 2.4G XOR + 5G Regular + 2.4G Aux + BLE Mode 2: 2.4G XOR + 5G Regular + 5G Aux + BLE Mode 3: 5G XOR + 5G Regular + 2.4G Aux + BLE Mode 4: 5G XOR + 5G Regular + 5G Aux + BLE

Worst case is Mode 1 :

Project info

Band	Freq (MHz)	Tune-up Power (dBm)	Ant Gain (dBi)	Distances (mm)	Duty (%)	Tune-up Power (mW)	ERP (dBm)	ERP (mW)
BLE	2480	5	13	300	100%	3.16	15.85	38.46
do0 2.4GHz XOR	2462	22	13	300	100%	158.49	32.85	1927.52
d01 5GHz Regualr	5850	23	13	300	100%	199.53	33.85	2426.61
do4 2.4G Aux	2462	16	13	300	100%	39.81	26.85	484.17

Option A

The available maximum time-averaged power is no more than 1 mW

Band	Freq	Result
Banu	(MHz)	Option A
BLE	2480	not exempt
do0 2.4GHz XOR	2462	not exempt
d01 5GHz Regualr	5850	not exempt
do4 2.4G Aux	2462	not exempt

Option B

The available maximum time-averaged power or effective radiated power (ERP), whichever is

greater.

This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters

and at frequencies from 0.3 GHz to 6 GHz (inclusive).

Band	Freq (MHz)	Pth (mW)	х	ERP 20cm (mW)	Ratio	Result Option B
BLE	2480	3060.00	1.905	3060	0.01	exempt
do0 2.4GHz XOR	2462	3060.00	1.903	3060	0.63	exempt
d01 5GHz Regualr	5850	3060.00	2.091	3060	0.79	exempt
do4 2.4G Aux	2462	3060.00	1.903	3060	0.16	exempt

Simultaneous Analysis :

Band	Freq	PSD	PSD	PSD Limit	Simultaneous	Ratio
	(MHz)	Require	(mW/cm ²)	(mW/cm 2)	TX	
BLE	2480	exempt	0.006	1.000	0	0.006
do0 2.4GHz XOR	2462	exempt	0.280	1.000	0	0.280
d01 5GHz Regualr	5850	exempt	0.352	1.000	0	0.352
do4 2.4G Aux	2462	exempt	0.070	1.000	0	0.070
	Simultan			0.708		

Result: The EUT meets exemption requirement- RF exposure evaluation greater than 30cm distance.

6 FCC §15.209, §15.205, §15.247(d) – Spurious Emissions

6.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

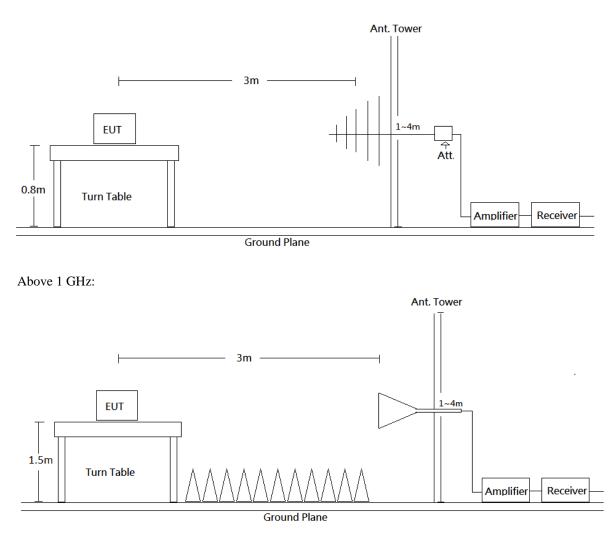
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4.5 - 5.15
0.495 - 0.505	16.69475 - 16.69525	960 - 1240	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	$3\ 3458 - 3\ 358$	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 - 13.41	399.9 - 410		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under


Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ220627003RF02

paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in \$15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in \$15.209(a) (see \$15.205(c).

6.2 EUT Setup

Below 1 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209 and FCC 15.247 Limits.

6.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	/	QP
	1 MHz	3 MHz	/	РК
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

Note: T is minimum transmission duration

6.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

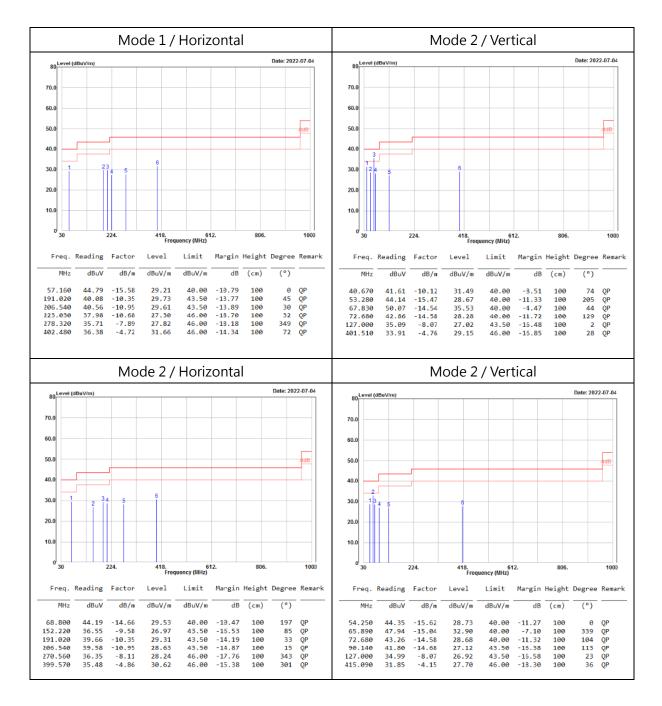
All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

6.5 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

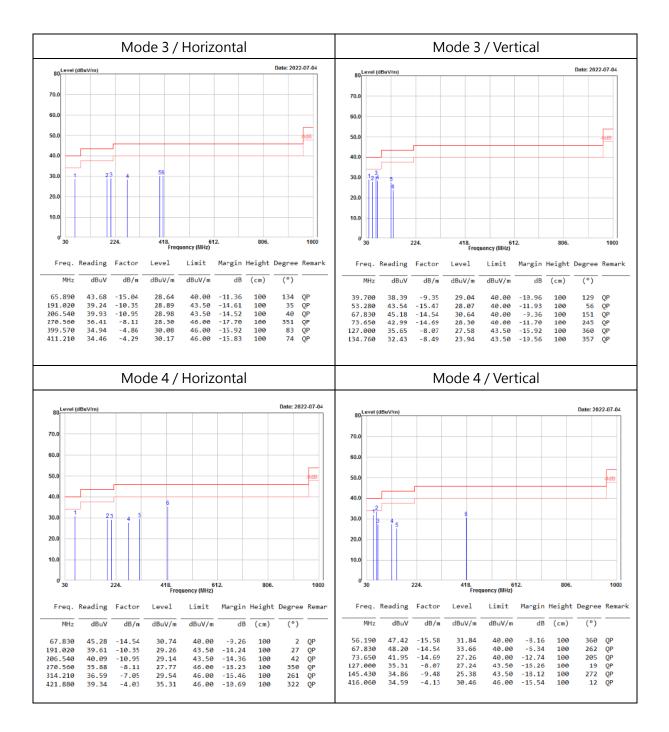
The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:


Margin = Result - Limit

6.6 Test Results

Test Mode: Transmitting

Transmitting simultaneously test:


30MHz-1GHz:

Level (Result) = Reading + Factor.

Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Level (Result) = Reading + Factor.

Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Above 1GHz

Mode 1:

Horizontal											
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)				
4804.000	38.15	-2.47	35.68	54.00	-18.32	169	167	Average			
4804.000	43.38	-2.47	40.91	74.00	-33.09	169	167	Peak			
4874.000	35.33	-2.25	33.08	54.00	-20.92	199	71	Average			
4874.000	44.39	-2.25	42.14	74.00	-31.86	199	71	Peak			
7206.000	35.63	3.03	38.66	54.00	-15.34	203	263	Average			
7206.000	44.40	3.03	47.43	74.00	-25.57	203	263	Peak			
7311.000	34.77	3.34	38.11	54.00	-15.89	143	315	Average			
7311.000	41.76	3.34	45.10	74.00	-28.90	143	315	Peak			
11490.000	35.58	8.62	44.20	54.00	-9.80	154	192	Average			
11490.000	40.80	8.62	49.42	74.00	-24.58	154	192	Peak			
17235.000	31.51	13.26	44.77	54.00	-9.23	171	185	Average			
17235.000	41.42	13.26	54.68	74.00	-19.32	171	185	Peak			
19216.000	41.54	-0.57	40.97	54.00	-13.03	150	257	Average			
19216.000	51.58	-0.57	51.01	74.00	-22.99	150	257	Peak			
19496.000	41.60	0.25	41.85	54.00	-12.15	150	323	Average			
19496.000	51.66	0.25	51.91	74.00	-22.09	150	323	Peak			
22980.000	38.98	2.57	41.55	54.00	-12.45	150	357	Average			
22980.000	49.03	2.57	51.60	74.00	-22.40	150	357	Peak			

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

	Vertical											
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark				
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)					
4804.000	37.21	-2.47	34.74	54.00	-19.26	161	102	Average				
4804.000	43.27	-2.47	40.80	74.00	-33.20	161	102	Peak				
4874.000	34.10	-2.25	31.85	54.00	-22.15	177	84	Average				
4874.000	44.17	-2.25	41.92	74.00	-32.08	177	84	Peak				
7206.000	35.44	3.03	38.47	54.00	-15.53	185	318	Average				
7206.000	40.83	3.03	43.86	74.00	-30.14	185	318	Peak				
7311.000	34.54	3.34	37.88	54.00	-15.12	152	273	Average				
7311.000	41.40	3.34	44.74	74.00	-29.26	152	273	Peak				
11490.000	34.91	8.62	43.53	54.00	-10.47	204	0	Average				
11490.000	40.68	8.62	49.30	74.00	-24.70	204	0	Peak				
17235.000	31.42	13.26	44.68	54.00	-9.32	169	201	Average				
17235.000	41.21	13.26	54.47	74.00	-19.53	150	201	Peak				
19216.000	40.30	-0.57	39.73	54.00	-14.27	150	243	Average				
19216.000	50.18	-0.57	49.61	74.00	-24.39	150	243	Peak				
19496.000	41.37	0.25	41.62	54.00	-12.38	150	104	Average				
19496.000	51.39	0.25	51.64	74.00	-22.36	150	104	Peak				
22980.000	38.32	2.57	40.89	54.00	-13.11	150	80	Average				
22980.000	48.82	2.57	51.39	74.00	-22.61	150	80	Peak				

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Mode 2:

			Hor	izontal				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4804.000	37.18	-2.47	34.71	54.00	-19.29	149	18	Average
4804.000	44.19	-2.47	41.72	74.00	-32.28	149	18	Peak
4874.000	34.79	-2.25	32.54	54.00	-21.46	169	292	Average
4874.000	43.44	-2.25	41.19	74.00	-32.81	169	292	Peak
7206.000	32.42	3.03	35.45	54.00	-18.55	201	173	Average
7206.000	41.54	3.03	44.57	74.00	-29.43	201	173	Peak
7311.000	31.50	3.34	34.84	54.00	-19.16	170	142	Average
7311.000	41.36	3.34	44.70	74.00	-29.30	170	142	Peak
10440.000	32.92	7.97	40.89	54.00	-13.11	152	228	Average
10440.000	43.26	7.97	51.23	74.00	-22.77	152	228	Peak
11490.000	33.01	8.62	41.63	54.00	-12.37	203	292	Average
11490.000	41.11	8.62	49.73	74.00	-24.27	203	292	Peak
15660.000	39.66	11.11	50.77	54.00	-3.23	150	228	Average
15660.000	43.38	11.11	54.49	74.00	-19.51	150	228	Peak
17235.000	31.57	13.26	44.83	54.00	-9.17	149	228	Average
17235.000	41.23	13.26	54.49	74.00	-19.51	149	228	Peak
19216.000	42.32	-0.57	41.75	54.00	-12.25	150	321	Average
19216.000	52.13	-0.57	51.56	74.00	-22.44	150	321	Peak
19496.000	41.61	0.25	41.86	54.00	-12.14	150	264	Average
19496.000	51.63	0.25	51.88	74.00	-22.12	150	264	Peak
20880.000	40.19	1.85	42.04	54.00	-11.96	150	32	Average
20880.000	50.54	1.85	52.39	74.00	-21.61	150	32	Peak
22980.000	39.76	2.57	42.33	54.00	-11.67	150	32	Average
22980.000	49.82	2.57	52.39	74.00	-21.61	150	32	Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

Vertical											
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark			
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)				
4804.000	36.30	-2.47	33.83	54.00	-20.17	149	0	Average			
4804.000	43.17	-2.47	40.70	74.00	-33.30	149	0	Peak			
4874.000	34.58	-2.25	32.33	54.00	-21.67	201	153	Average			
4874.000	43.38	-2.25	41.13	74.00	-32.87	201	153	Peak			
7206.000	32.30	3.03	35.33	54.00	-18.67	171	107	Average			
7206.000	41.22	3.03	44.25	74.00	-29.75	171	107	Peak			
7311.000	30.92	3.34	34.26	54.00	-19.74	188	7	Average			
7311.000	40.70	3.34	44.04	74.00	-29.96	188	7	Peak			
10440.000	32.86	7.97	40.83	54.00	-13.17	144	0	Average			
10440.000	42.13	7.97	50.10	74.00	-23.90	144	0	Peak			
11490.000	32.88	8.62	41.50	54.00	-12.50	167	72	Average			
11490.000	40.90	8.62	49.52	74.00	-24.48	167	72	Peak			
15660.000	29.72	11.11	40.83	54.00	-13.17	147	0	Average			
15660.000	38.51	11.11	49.62	74.00	-24.38	147	0	Peak			
17235.000	30.87	13.26	44.13	54.00	-9.87	155	360	Average			
17235.000	41.02	13.26	54.28	74.00	-19.72	155	360	Peak			
19216.000	42.12	-0.57	41.55	54.00	-12.45	150	18	Average			
19216.000	52.09	-0.57	51.52	74.00	-22.48	150	18	Peak			
19496.000	41.29	0.25	41.54	54.00	-12.46	150	95	Average			
19496.000	51.18	0.25	51.43	74.00	-22.57	150	95	Peak			
20380.000	40.04	1.85	41.89	54.00	-12.11	150	18	Average			
20880.000	50.25	1.85	52.10	74.00	-21.90	150	18	Peak			
22980.000	39.44	2.57	42.01	54.00	-11.99	150	161	Average			
22980.000	49.40	2.57	51.97	74.00	-22.03	150	161	Peak			

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Mode 3:

			Hor	izontal				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4804.000	38.15	-2.47	35.68	54.00	-18.32	169	167	Average
4804.000	43.38	-2.47	40.91	74.00	-33.09	169	167	Peak
4874.000	35.33	-2.25	33.08	54.00	-20.92	199	71	Average
4874.000	44.39	-2.25	42.14	74.00	-31.86	199	71	Peak
7206.000	35.62	3.03	38.65	54.00	-15.35	203	263	Average
7206.000	41.37	3.03	44.40	74.00	-29.60	203	263	Peak
7311.000	34.78	3.34	38.12	54.00	-15.88	143	315	Average
7311.000	41.77	3.34	45.11	74.00	-28.89	143	315	Peak
10460.000	36.14	8.06	44.20	54.00	-9.80	154	192	Average
10460.000	41.36	8.06	49.42	74.00	-24.58	154	192	Peak
11490.000	32.15	8.62	40.77	54.00	-13.23	178	185	Average
11490.000	40.39	8.62	49.01	74.00	-24.99	178	185	Peak
15690.000	33.47	11.30	44.77	54.00	-9.23	171	185	Average
15690.000	43.38	11.30	54.68	74.00	-19.32	171	185	Peak
17235.000	31.51	13.26	44.77	54.00	-9.23	200	185	Average
17235.000	41.00	13.26	54.26	74.00	-19.74	200	185	Peak
19216.000	42.67	-0.57	42.10	54.00	-11.90	150	76	Average
19216.000	52.25	-0.57	51.68	74.00	-22.32	150	76	Peak
19496.000	41.67	0.25	41.92	54.00	-12.08	150		Average
19496.000	51.46	0.25	51.71	74.00	-22.29	150		Peak
20920.000	39.40	1.81	41.21	54.00	-12.79	150	360	Average
20920.000	49.55	1.81	51.36	74.00	-22.64	150	360	Peak
22980.000	39.60	2.57	42.17	54.00	-11.83	150	360	Average
22980.000	49.63	2.57	52.20	74.00	-21.80	150		Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

	Vertical											
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark				
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)					
4804.000	33.17	-2.47	30.70	54.00	-23.30	169	137	Average				
4804.000	43.99	-2.47	41.52	74.00	-32.48	169	137	Peak				
4874.000	33.26	-2.25	31.01	54.00	-22.99	151	201	Average				
4874.000	43.23	-2.25	40.98	74.00	-33.02	151	201	Peak				
7206.000	31.59	3.03	34.62	54.00	-19.38	144	161	Average				
7206.000	41.21	3.03	44.24	74.00	-29.76	144	161	Peak				
7311.000	31.80	3.34	35.14	54.00	-18.86	209	327	Average				
7311.000	41.04	3.34	44.38	74.00	-29.62	209	327	Peak				
10460.000	30.68	8.06	38.74	54.00	-15.26	175	271	Average				
10460.000	40.77	8.06	48.83	74.00	-25.17	175	271	Peak				
11490.000	30.80	8.62	39.42	54.00	-14.58	160	271	Average				
11490.000	40.59	8.62	49.21	74.00	-24.79	160	271	Peak				
15690.000	33.20	11.30	44.50	54.00	-9.50	183	283	Average				
15690.000	43.18	11.30	54.48	74.00	-19.52	183	283	Peak				
17235.000	30.95	13.26	44.21	54.00	-9.79	167	149	Average				
17235.000	41.11	13.26	54.37	74.00	-19.63	167	149	Peak				
19216.000	42.42	-0.57	41.85	54.00	-12.15	150	189	Average				
19216.000	51.88	-0.57	51.31	74.00	-22.69	150	189	Peak				
19496.000	41.38	0.25	41.63	54.00	-12.37	150	11	Average				
19496.000	51.40	0.25	51.65	74.00	-22.35	150	11	Peak				
20920.000	38.32	1.81	40.13	54.00	-13.87	150	317	Average				
20920.000	49.23	1.81	51.04	74.00	-22.96	150	317	Peak				
22980.000	39.42	2.57	41.99	54.00	-12.01	150	253	Average				
22980.000	48.63	2.57	51.20	74.00	-22.80	150	253	Peak				

Level (Result) = Reading + Factor. Margin = Level – Limit. Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Mode 4:

			Hor	izontal				
4804.000	32.88	-2.47	30.41	54.00	-23.59	149	65	Average
4804.000	42.93	-2.47	40.46	74.00	-33.54	149	65	Peak
7206.000	31.28	3.03	34.31	54.00	-19.69	181	219	Average
7206.000	41.20	3.03	44.23	74.00	-29.77	181	219	Peak
10440.000	32.49	7.97	40.46	54.00	-13.54	200	65	Average
10440.000	42.13	7.97	50.10	74.00	-23.90	200	65	Peak
10460.000	30.51	8.06	38.57	54.00	-15.43	199	359	Average
10460.000	40.55	8.06	48.61	74.00	-25.39	199	359	Peak
11490.000	29.80	8.62	38.42	54.00	-15.58	175	133	Average
11490.000	40.18	8.62	48.80	74.00	-25.20	175	133	Peak
15660.000	29.31	11.11	40.42	54.00	-13.58	150	65	Average
15660.000	32.35	11.11	43.46	74.00	-30.54	150	65	Peak
15690.000	31.67	11.30	42.97	54.00	-11.03	158	327	Average
15690.000	41.89	11.30	53.19	74.00	-20.81	158	327	Peak
17235.000	30.77	13.26	44.03	54.00	-9.97	166	296	Average
17235.000	41.04	13.26	54.30	74.00	-19.70	166	296	Peak
19216.000	43.11	-0.57	42.54	54.00	-11.46	150	194	Average
19216.000	53.30	-0.57	52.73	74.00	-21.27	150	194	Peak
20380.000	40.69	1.85	42.54	54.00	-11.46	150	194	Average
20880.000	50.22	1.85	52.07	74.00	-21.93	150	194	Peak
20920.000	39.29	1.81	41.10	54.00	-12.90	150	109	Average
20920.000	51.66	1.81	53.47	74.00	-20.53	150	109	Peak
22980.000	38.82	2.57	41.39	54.00	-12.61	150	84	Average
22980.000	49.56	2.57	52.13	74.00	-21.87	150	84	Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Vertical								
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
4804.000	32.03	-2.47	29.56	54.00	-24.44	201	288	Average
4804.000	42.65	-2.47	40.18	74.00	-33.82	201	288	Peak
7206.000	31.21	3.03	34.24	54.00	-19.76	168	151	Average
7206.000	40.09	3.03	43.12	74.00	-30.88	168	151	Peak
10440.000	32.22	7.97	40.19	54.00	-13.81	177	346	Average
10440.000	41.38	7.97	49.35	74.00	-24.65	177	346	Peak
10460.000	30.44	8.06	38,50	54.00	-15.50	152	334	Average
10460.000	40.15	8.06	48.21	74.00	-25.79	152	334	Peak
11490.000	29.68	8.62	38.30	54.00	-15.70	144	205	Average
11490.000	39.80	8.62	48.42	74.00	-25.58	144	205	Peak
15660.000	29.07	11.11	40.18	54.00	-13.82	180	346	Average
15660.000	31.24	11.11	42.35	74.00	-31.65	180	346	Peak
15690.000	31.51	11.30	42.81	54.00	-11.19	191	24	Average
15690.000	41.27	11.30	52.57	74.00	-21.43	191	24	Peak
17235.000	30.79	13.26	44.05	54.00	-9.95	211	346	Average
17235.000	40.56	13.26	53.82	74.00	-20.18	211	346	Peak
19216.000	42.83	-0.57	42.26	54.00	-11.74	150	196	Average
19216.000	52.74	-0.57	52.17	74.00	-21.83	150	196	Peak
20880.000	39.51	1.85	41.36	54.00	-12.64	150	51	Average
20880.000	48.64	1.85	50.49	74.00	-23.51	150	51	Peak
20920.000	39.18	1.81	40.99	54.00	-13.01	150	1	Average
20920.000	50.31	1.81	52.12	74.00	-21.88	150	1	Peak
22980.000	38.76	2.57	41.33	54.00	-12.67	150	51	Average
22980.000	47.92	2.57	50.49	74.00	-23.51	150	51	Peak

Level (Result) = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

7 FCC §15.247(a)(2) – Maximum Output Power

7.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

7.2 Test Procedure

1. Place the EUT on a bench and set it in transmitting mode.

2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

7.3 Test Results

Conducted output power for worst case :

Worst o	Output power		
Worst	dBm		
XOR WIFI-2.4GHz	B Mode, 2437MHz	21.60	
XOR WIFI-5GHz	AX40 Mode, 5230MHz	19.91	
Regular WIFI-5GHz	AX20 Mode, 5745 MHz	22.82	
AUX WIFI-2.4GHz	G Mode, 2437MHz	15.99	
AUX WIFI-5GHz	A Mode, 5220MHz	14.80	

***** END OF REPORT *****