EMC TEST REPORT **Applicant** Huawei Technologies Co., Ltd. FCC ID QISAMN-LX3 **Product** Smart Phone **Brand** HUAWEI Model AMN-LX3 **Report No.** R1903H0043-E1 Issue Date April 2, 2019 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC Code CFR47 Part15B (2018)/ ANSI C63.4 (2014). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Performed by: Wei Liu/ Manager Wei Liu Approved by: Guangchang Fan/ Director Guangchang Fan # TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **Table of Contents** | 1 | Tes | st Laboratory | 4 | |---|-----|---|------------| | 1 | .1 | Notes of the Test Report | | | 1 | .2 | Test facility | 4 | | 1 | .3 | Testing Location | | | 2 | Ge | neral Description of Equipment under Test | 6 | | 2 | .1 | Client Information | 6 | | 2 | .2 | General information | 6 | | 2 | .3 | Applied Standards | 9 | | 2 | .4 | Test Mode | | | 3 | Tes | st Case Results | 11 | | 3 | .1 | Radiated Emission | 1 1 | | 3 | .2 | Conducted Emission | 17 | | 4 | Ma | in Test Instrument | 20 | # Summary of measurement results | Number | Test Case | Clause in FCC Rules | Conclusion | | | | | | |--------|--|---------------------------------|------------|--|--|--|--|--| | 1 | Radiated Emission | FCC Part15.109, ANSI C63.4-2014 | PASS | | | | | | | 2 | Conducted Emission | FCC Part15.107, ANSI C63.4-2014 | PASS | | | | | | | | Test Date: March 17, 2019 ~ March 21, 2019 | | | | | | | | ## Test Laboratory #### **Notes of the Test Report** This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. ### 1.2 Test facility #### CNAS (accreditation number: L2264) TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS). #### FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. #### IC (recognition number is 8510A) TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement. #### VCCI (recognition number is C-4595, T-2154, R-4113, G-10766) TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement. ### A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. ## 1.3 Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 2 General Description of Equipment under Test ## 2.1 Client Information | Applicant | Huawei Technologies Co., Ltd. | |----------------------|--| | Applicant address | Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District Shenzhen 518129 P.R.China | | Manufacturer | Huawei Technologies Co., Ltd. | | Manufacturer address | Administration Building, Headquarters of Huawei Technologies Co., Ltd., Bantian, Longgang District Shenzhen 518129 P.R.China | ### 2.2 General information | EUT Description | | | | | | | | |-----------------|--|-------------|-------------|--|--|--|--| | Device Type: | Portable Device | | | | | | | | Model: | AMN-LX3 | | | | | | | | IMEI: | IMEI 1: 866698040023628
IMEI 2: 866698040028825 | | | | | | | | HW Version: | HL1AMNM | | | | | | | | SW Version: | 5.0.1.37(C900E20R1P | (2) | | | | | | | Antenna Type: | Internal Antenna | | | | | | | | | Band | Tx (MHz) | Rx (MHz) | | | | | | | GSM 850 | 824 ~ 849 | 869 ~ 894 | | | | | | | GSM 1900 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | WCDMA Band II | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | WCDMA Band IV | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | | WCDMA Band V | 824 ~ 849 | 869 ~ 894 | | | | | | Frequency: | LTE Band 2 | 1850 ~ 1910 | 1930 ~ 1990 | | | | | | | LTE Band 4 | 1710 ~ 1755 | 2110 ~ 2155 | | | | | | | LTE Band 5 | 824 ~ 849 | 869 ~ 894 | | | | | | | LTE Band 7 | 2500 ~ 2570 | 2620 ~ 2690 | | | | | | | Bluetooth: | 2402 ~ 2480 | 2402 ~ 2480 | | | | | | | WIFI 2.4G: | 2412 ~ 2462 | 2412 ~ 2462 | | | | | | | GSM: GMSK | | | | | | | | | GPRS: GMSK | | | | | | | | Modulation: | EGPRS: GMSK/8PSK | | | | | | | | | WCDMA RMC: QPSK | | | | | | | | | HSDPA: QPSK | | | | | | | TA Technology (Shanghai) Co., Ltd. TA-MB-06-001E Page 6 of 20 FCC EMC Test Report Report No: R1903H0043-E1 | | FCC EMC Test | Report No: R1903H0043-E1 | | | | | |------------|--------------------------|--|--|--|--|--| | | | HSUPA: QPSK | | | | | | | | DC-HSDPA:64QAM | | | | | | | | LTE: QPSK / 16QAM | | | | | | | | Bluetooth: GFSK, л/4-DQPSK, 8-DPSK | | | | | | | | Bluetooth v5.0 LE: GFSK | | | | | | | | WLAN 802.11b: DSSS | | | | | | | | WLAN 802.11g/n: OFDM | | | | | | | | EUT Accessory | | | | | | | | Manufacturer: HuaweiTechnologies Co., Ltd. | | | | | | Adapter 1 | | (SHENZHEN HUNTKEY ELECTRIC CO., LTD.) | | | | | | | | Model: HW-050100U01 | | | | | | | | Manufacturer: HuaweiTechnologies Co., Ltd. | | | | | | Adapter 2 | | (HUIZHOU BYD ELECTRONIC CO., LTD.) | | | | | | | | Model: HW-050100U01 | | | | | | | | Manufacturer: HuaweiTechnologies Co., Ltd. | | | | | | Adapter 3 | | (Dongguan Phitek Electronics Co., Ltd.) | | | | | | | | Model: HW-050100U01 | | | | | | | | Manufacturer: HuaweiTechnologies Co., Ltd. | | | | | | Battery 1 | | (Sunwoda Electronic Co.,LTD) | | | | | | | | Model: HB405979ECW | | | | | | | | Manufacturer: HuaweiTechnologies Co., Ltd. | | | | | | Battery 2 | | (SCUD (Fujian) Electronics Co., LTD.) | | | | | | | | Model: HB405979ECW | | | | | | | | Manufacturer: HuaweiTechnologies Co., Ltd. | | | | | | Battery 3 | | (Desay Battery Electronic Co.,LTD) | | | | | | | | Model: HB405979ECW | | | | | | | 4 | Manufacturer: Jiangxi Lianchuang Hongsheng Electronic Co. ,LTD | | | | | | Earphone 1 | | Model: MEND1532B528A02 | | | | | | - | 0 | Manufacturer: Boluo County Quancheng Electronic Co.,ltd. | | | | | | Earphone | 2 | Model: 1293-3283-3.5MM-322 | | | | | | 1100 0 11 | 4 | Manufacturer: HONGLIN TECHNOLOGY CO.,LTD. | | | | | | USB Cable | 2 1 | Model: 130-26654 | | | | | | | | Manufacturer: Dongguan Ming Ji Electronics Co.,Ltd. | | | | | | USB Cable | e 2 | Model: 203-0786-0 | | | | | | | • | Manufacturer: Luxshare Precision industry Co., Ltd. | | | | | | USB Cable | e 3 | Model: L99U2013-CS-H | | | | | | | | Manufacturer: NingBo Broad Telecommunication Co., Ltd. | | | | | | USB Cable | e 4 | Model: WA0007 | | | | | | | Auxiliary test equipment | | | | | | | PC | | PC Manufacturer: Microsoft corporation | | | | | | | | Model: Microsoft corporation (SN: 032324771953) | | | | | | Note: 1.Th | e informatio | n of the EUT is declared by the manufacturer. | | | | | | 2. There a | re more thar | n one Adapter, Battery, Earphone and USB Cable, each one should be applied | | | | | | | | | | | | | FCC EMC Test Report Report No: R1903H0043-E1 throughout the compliance test respectively, however, only the worst case (Adapter 2, Battery2, Earphone 1 and USB Cable 2) will be recorded in this report. 2.3 Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Report No: R1903H0043-E1 Test standards FCC Code CFR47 Part15B (2018) ANSI C63.4 (2014) 2.4 Test Mode | Test Mode | Test Mode for RE | | | | | | |-----------|---|--|--|--|--|--| | Mode 1: | USB Copy(EUT with PC) + USB cable + earphone + rear camera On + MP3 +Idle | | | | | | | Mode 2: | USB Copy(EUT with PC) + USB cable + earphone +front camera On + MP3 +Idle | | | | | | | Mode 3: | Adapter +USB cable+ earphone + front camera On +Idle | | | | | | | Mode4: | Adapter +USB cable + earphone + rear camera On +Idle | | | | | | | Mode 5: | Adapter + USB cable+ earphone + Mp3 +Idle | | | | | | | Mode 6: | Adapter + USB cable+ earphone +play video+ldle | | | | | | | Mode 7: | Front camera On +earphone + Idle | | | | | | | Mode 8: | Rear camera On + earphone + Idle | | | | | | | Mode 9: | Earphone+MP3+Idle | | | | | | | Mode 10: | Earphone +Play video+Idle | | | | | | Report No: R1903H0043-E1 During the test, the preliminary test was performed in all modes with all adapters, USB and batteries, mode 1 with Battery 1 and USB cable 2 is selected as the worst condition. The test data of the worst-case condition was recorded in this report. | Test Mode | Test Mode for CE | | | | | | | |--|---|--|--|--|--|--|--| | Mode 1: | USB Copy(EUT with PC) + USB cable + earphone + rear camera On + MP3 +Idle | | | | | | | | Mode 2: | Mode 2: USB Copy(EUT with PC) + USB cable + earphone +front camera On + MP3 +Idle | | | | | | | | Mode 3: Adapter +USB cable+ earphone + front camera On +Idle | | | | | | | | | Mode4: Adapter +USB cable + earphone + rear camera On +Idle | | | | | | | | | Mode 5: Adapter + USB cable+ earphone + Mp3 +Idle | | | | | | | | | Mode 6: | Adapter + USB cable+ earphone +play video+ldle | | | | | | | During the test, the preliminary test was performed in all modes with all adapters, USB and batteries, mode 1 with Battery 1 and USB cable 2 is selected as the worst condition. The test data of the worst-case condition was recorded in this report. · Report No: R1903H0043-E1 #### 3 Test Case Results #### 3.1 Radiated Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 24°C~26°C | 45%~50% | 102.5kPa | | | #### **Methods of Measurement** The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The distance between EUT and receive antenna should be 3 meters. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier. During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated signal level. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. During the test, the EUT is worked at maximum output power. Set the spectrum analyzer in the following: Below 1GHz: RBW=100 kHz / VBW=300 kHz / Sweep=AUTO Above 1GHz: - (a) PEAK: RBW=1MHz / VBW=3MHz/ Sweep=AUTO - (b) AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the worst case was recorded. During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; Test Setup #### **Below 1GHz** ### **Above 1GHz** Note: Area side:2.4mX3.6m Antenna Tower meets ANSI C63.4 requirements for measurements above 1 GHz by keeping the antenna aimed at the EUT during the antenna's ascent/ descent along the antenna mast. Limits | Frequency
(MHz) | Field Strength
(dBμV/m) | Detector | |--|----------------------------|------------| | 30 -88 | 40.0 | Quasi-peak | | 88-216 | 43.5 | Quasi-peak | | 216 – 960 | 46.0 | Quasi-peak | | 960-1000 | 54.0 | Quasi-peak | | 1000-5 th harmonic of the highest | 54 | Average | | frequency or 40GHz, which is lower | 74 | Peak | Report No: R1903H0043-E1 ## **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |----------------|-------------| | 30MHz~200MHz | 4.02 dB | | 200MHz~1000MHz | 3.28 dB | | 1GHz~18GHz | 3.70 dB | | 18GHz~26.5GHz | 5.78 dB | | 26.5GHz~40GHz | 5.82 dB | #### **Test Results** Sweep the whole frequency band through the range from 30MHz to the 5th harmonic of the carrier, the Emissions in the frequency band 18GHz- 40GHz is more than 20dB below the limit are not reported. The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. Radiated Emission from 30MHz to 1GHz | Frequency (MHz) | Quasi-Peak
(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |-----------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 31.399605 | 29.6 | 100.0 | V | 292.0 | -3.1 | 10.4 | 40.0 | | 53.727345 | 16.8 | 100.0 | Н | 48.0 | -6.9 | 23.2 | 40.0 | | 145.216152 | 25.2 | 225.0 | Н | 16.0 | -14.4 | 18.3 | 43.5 | | 210.897500 | 26.8 | 125.0 | Н | 252.0 | -12.2 | 16.7 | 43.5 | | 383.993000 | 32.0 | 100.0 | Н | 9.0 | -5.9 | 14.0 | 46.0 | | 948.445500 | 27.0 | 125.0 | Н | 41.0 | 1.9 | 19.0 | 46.0 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) 2. Margin = Limit - Quasi-Peak RE 1-18GHz PK+AV Radiated Emission from 1GHz to 18GHz | Frequency
(MHz) | Peak
(dBuV/m) | Height
(cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|----------------|--------------|---------------|------------------------|----------------|-------------------| | 1508.937500 | 35.8 | 100.0 | Н | 17.0 | -8.4 | 38.2 | 74 | | 2482.187500 | 39.2 | 200.0 | Н | 217.0 | -4.5 | 34.8 | 74 | | 4121.625000 | 42.4 | 200.0 | Н | 243.0 | 1.8 | 31.6 | 74 | | 5235.125000 | 43.4 | 100.0 | V | 0.0 | 4.1 | 30.6 | 74 | | 6829.937500 | 47.1 | 100.0 | Н | 319.0 | 7.6 | 26.9 | 74 | | 9084.562500 | 51.5 | 100.0 | V | 350.0 | 13.4 | 22.5 | 74 | | Frequency
(MHz) | Average (dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct
Factor (dB) | Margin
(dB) | Limit
(dBuV/m) | |--------------------|------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 1567.375000 | 27.3 | 200.0 | Н | 183.0 | -8.2 | 26.7 | 54 | | 2620.312500 | 29.4 | 200.0 | Н | 277.0 | -3.9 | 24.6 | 54 | | 4185.375000 | 33.8 | 200.0 | Н | 78.0 | 2.2 | 20.2 | 54 | | 5329.687500 | 34.7 | 200.0 | Н | 321.0 | 4.1 | 19.3 | 54 | | 6862.875000 | 37.8 | 200.0 | Н | 205.0 | 7.7 | 16.2 | 54 | | 9138.750000 | 42.0 | 200.0 | V | 5.0 | 13.2 | 12.0 | 54 | Radiates Emission from 18GHz to 26.5GHz RE 26.5-40GHz PK+AV Radiates Emission from 26.5GHz to 40GHz ### 3.2 Conducted Emission #### Ambient condition | Temperature | Relative humidity | Pressure | | | |-------------|-------------------|----------|--|--| | 24°C ~26°C | 50%~55% | 102.5kPa | | | Report No: R1903H0043-E1 #### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.4-2014. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. During the test, EUT is connected to a laptop via a USB cable in the case of Transfer Data mode. The EUT is used as the peripheral equipment of the PC. The data is transferred from EUT to PC; #### **Test Setup** Note: Power Supply is AC Power source and it is used to change the voltage 120V/60Hz. #### Limits | Frequency | Conducted Limits(dBµV) | | | | | | | |--|------------------------|-----------------------|--|--|--|--|--| | (MHz) | Quasi-peak | Average | | | | | | | 0.15 - 0.5 | 66 to 56 * | 56 to 46 [*] | | | | | | | 0.5 - 5 | 56 | 46 | | | | | | | 5 - 30 | 60 | 50 | | | | | | | Decreases with the logarithm of the frequency. | | | | | | | | ### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. U= 2.57 dB. **Test Results** Following plots, Blue trace uses the peak detection; Green trace uses the average detection. | Frequency
(MHz) | QuasiPeak
(dΒμV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.19 | 49.95 | | 63.92 | 13.97 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 0.26 | | 32.50 | 51.57 | 19.07 | 1000.0 | 9.000 | L1 | ON | 19.13 | | 0.64 | | 33.37 | 46.00 | 12.63 | 1000.0 | 9.000 | L1 | ON | 19.28 | | 0.64 | 43.57 | | 56.00 | 12.43 | 1000.0 | 9.000 | L1 | ON | 19.28 | | 1.41 | | 32.47 | 46.00 | 13.53 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 1.42 | 42.88 | | 56.00 | 13.12 | 1000.0 | 9.000 | L1 | ON | 19.18 | | 2.15 | | 29.13 | 46.00 | 16.87 | 1000.0 | 9.000 | L1 | ON | 19.07 | | 2.15 | 38.77 | | 56.00 | 17.23 | 1000.0 | 9.000 | L1 | ON | 19.07 | | 5.21 | | 24.67 | 50.00 | 25.33 | 1000.0 | 9.000 | L1 | ON | 19.09 | | 5.39 | 34.45 | | 60.00 | 25.55 | 1000.0 | 9.000 | L1 | ON | 19.10 | | 12.48 | | 21.93 | 50.00 | 28.07 | 1000.0 | 9.000 | L1 | ON | 19.44 | | 21.80 | 32.33 | | 60.00 | 27.67 | 1000.0 | 9.000 | L1 | ON | 19.51 | L line Conducted Emission from 150 KHz to 30 MHz 100 80 60 40 150k Level in dBµV Report No: R1903H0043-E1 20M 30M | Frequency
(MHz) | QuasiPeak
(dBµV) | Average
(dBµV) | Limit
(dBµV) | Margin
(dB) | Meas.
Time
(ms) | Bandwidth
(kHz) | Line | Filter | Corr.
(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.25 | | 31.70 | 51.72 | 20.02 | 1000.0 | 9.000 | N | ON | 19.11 | | 0.26 | 42.75 | | 61.57 | 18.82 | 1000.0 | 9.000 | N | ON | 19.13 | | 0.63 | | 33.83 | 46.00 | 12.17 | 1000.0 | 9.000 | N | ON | 19.27 | | 0.63 | 44.52 | | 56.00 | 11.48 | 1000.0 | 9.000 | N | ON | 19.27 | | 1.39 | 43.31 | | 56.00 | 12.69 | 1000.0 | 9.000 | N | ON | 19.18 | | 1.43 | | 34.06 | 46.00 | 11.94 | 1000.0 | 9.000 | N | ON | 19.18 | | 2.55 | | 29.68 | 46.00 | 16.32 | 1000.0 | 9.000 | N | ON | 19.02 | | 4.65 | 37.73 | | 56.00 | 18.27 | 1000.0 | 9.000 | N | ON | 19.09 | | 5.15 | 36.63 | | 60.00 | 23.37 | 1000.0 | 9.000 | N | ON | 19.09 | | 5.52 | | 25.78 | 50.00 | 24.22 | 1000.0 | 9.000 | N | ON | 19.11 | | 21.00 | | 22.73 | 50.00 | 27.27 | 1000.0 | 9.000 | N | ON | 19.67 | | 21.59 | 34.17 | | 60.00 | 25.83 | 1000.0 | 9.000 | N | ON | 19.56 | 2M Frequency in Hz 4M 5M 6 800 1M 300 400 500 N line Conducted Emission from 150 KHz to 30 MHz ## 4 Main Test Instrument | Name | Manufacturer | Туре | Serial
Number | Calibration
Date | Expiration
Time | | |----------------------------|--------------|-----------------------|------------------|---------------------|--------------------|--| | Spectrum
Analyzer | R&S | FSV40 | 15195-01-
00 | 2018-05-20 | 2019-05-19 | | | EMI Test
Receiver | R&S | ESCI | 100948 | 2018-05-20 | 2019-05-19 | | | Trilog Antenna | SCHWARZBECK | VULB 9163 | 9163-201 | 2017-11-18 | 2019-11-17 | | | Horn Antenna | R&S | HF907 | 100126 | 2018-07-07 | 2020-07-06 | | | Standard Gain
Horn | ETS-Lindgren | 3160-09 | 00102643 | 2018-06-20 | 2019-06-19 | | | Standard Gain
Horn | STEATITE | QSH-SL-26-
40-K-15 | 16779 | 2017-07-20 | 2019-07-19 | | | EMI Test
Receiver | R&S | ESR | 101667 | 2018-05-20 | 2019-05-19 | | | LISN | R&S | ENV216 | 101171 | 2016-12-16 | 2019-12-15 | | | Bore Sight
Antenna mast | ETS | 2171B | 00058752 | 1 | 1 | | | Test software | EMC32 | R&S | 9.26.0 | 1 | 1 | | *****END OF REPORT *****