

Test report No.: KES-RF-15T0056 Page (1) of (29)

TEST REPORT

Part 95(A/B)

Equipment under test GMRS / FRS 2-way Radio

Model name T55A

FCC ID MMAT55A

Applicant Midland Radio Corporation

Manufacturer Global Link Corporation Ltd.

Date of test(s) 2015.08.04~2015.08.25

Date of issue 2015.08.25

Issued to

Midland Radio Corporation

5900 Parretta Drive, Kansas City, Missouri United States 64120 Tel.: +1-816-241-8500 / Fax.: +1-816-241-571

Issued by

KES Co., Ltd.

C-3701, Simin-daero 365-40, Dongan-gu, Anyang-si, Gyeonggi-do,14057, Korea 473-29, Gayeo-ro, Yeoju-si, Gyeonggi-do, 126-58, Korea

Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
ma	acapty
Kwang-Yeol Choo	Jeff Do
Test engineer	Technical manager

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No .: KES-RF-15T0056 Page (2) of (29)

Revision history

Revision	Date of issue	Test report No.	Description
-	2015.08.25	KES-RF-15T0056	Initial

Test report No .: KES-RF-15T0056 Page (3) of (29)

TABLE OF CONTENTS

General i	nformation	4
1.1.	EUT description	4
1.2.	Test configuration	
1.3.	Frequency/channel operations	5
1.4.	Information about derivative model	
1.5.	Conclusion of worst-case for each mode of representative channel respectively	6
Summary	v of tests	7
Test resul	ts	8
3.1.	RF output power and radiated spurious emission	8
3.2.	Modulation limiting	. 15
3.3.	Audio frequency response	. 18
3.4.		
3.5.	Occupied bandwidth and emission mask	
3.6.	Frequency stability	. 25
oendix A.	Measurement equipment	. 28
endix B.	Test setup photo	. 29
	1.1. 1.2. 1.3. 1.4. 1.5. Summary Test resul 3.1. 3.2. 3.3. 3.4. 3.5. 3.6. pendix A.	 1.2. Test configuration

1. General information

Applicant:	Midland Radio Corporation		
Applicant address:	5900 Parretta Drive, Kansas C	ity, Missouri United States 6412	0
Test site:	KES Co., Ltd.		
Test site address:	C-3701, Simin-daero 365-40,	Dongan-gu, Anyang-si, Gyeongg	gi-do,14057, Korea
	473-29, Gayeo-ro, Yeoju-si, G	yeonggi-do, 126-58, Korea	
FCC rule part(s):	FCC Part 95		
Model:	T55A		
FCC ID:	MMAT55A		
Test device serial No.:	Production	Pre-production	Engineering

1.1. EUT description

L	
Equipment under test	FRS / GMRS
Serial number	N/A
Frequency range	462.562 5 Mz ~ 462.712 5 Mz (GMRS Channels 1 ~7)
	467.562 5 Mz ~ 467.712 5 Mz (FRS Channels 8 ~ 14)
	462.550 0 Mz ~ 462.725 0 Mz (GMRS Channels 15 ~ 22)
Type of Emission	11K0F3E
E.R.P.	GMRS: 0.247 W// FRS: 0.305 W
Number of channels	22
Power source	Rechargeable Ni-MH battery pack(DC 3.6 V)

1.2. Test configuration

The GMRS / FRS 2-way Radio FCC ID: MMAT55A was tested per the guidance of ANSI C63.10-2009, ANSI/TIA 603D: 2010 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

1.3. Frequency/channel operations

Mode	Ch.	Frequency (Mz)
	1	462.562 5
	2	462.587 5
	3	462.612 5
GMRS	4	462.637 5
	5	462.662 5
	6	462.687 5
	7	462.712 5
	8	467.562 5
	9	467.587 5
	10	467.612 5
FRS	11	467.637 5
	12	467.662 5
	13	467.687 5
	14	467.712 5
	15	462.550 0
	16	462.575 0
	17	462.600 0
CMDS	18	462.625 0
GMRS	19	462.650 0
	20	462.675 0
	21	462.700 0
	22	462.725 0

1.4. Information about derivative model

N/A

1.5. Conclusion of worst-case for each mode of representative channel respectively

The EUT has 2 type of mode (GMRS and FRS). Each conducted output power as following;

Mode Channel N			Conducted of	ed output power	
	Channel No.	Frequency(Mz)	dBm	W	
	1	462.562 5	25.10	0.324	
	2	462.587 5	25.15	0.327	
	3	462.612 5	25.18	0.330	
GMRS	4	462.637 5	25.20	0.331	
	5	462.662 5	25.19	0.330	
	6	462.687 5	25.20	0.331	
	7	462.712 5	25.22	0.333	
	8	467.562 5	25.69	0.371	
	9	467.587 5	25.70	0.372	
	10	467.612 5	25.68	0.370	
FRS	11	467.637 5	25.72	0.373	
	12	467.662 5	25.73	0.374	
	13	467.687 5	25.73	0.374	
	<u>14</u>	<u>467.712 5</u>	<u>25.74</u>	<u>0.375</u>	
	15	462.550 0	25.25	0.335	
	16	462.575 0	25.26	0.336	
	17	462.600 0	25.26	0.336	
	18	462.625 0	25.27	0.337	
GMRS	19	462.650 0	25.29	0.338	
	20	462.675 0	25.32	0.340	
	21	462.700 0	25.33	0.341	
	22	<u>462.725 0</u>	<u>25.33</u>	<u>0.341</u>	

Therefore all applicable requirements were tested to the two channels, the 22^{th} for GMRS and the 14^{th} for FRS.

DC input into the final amplifier

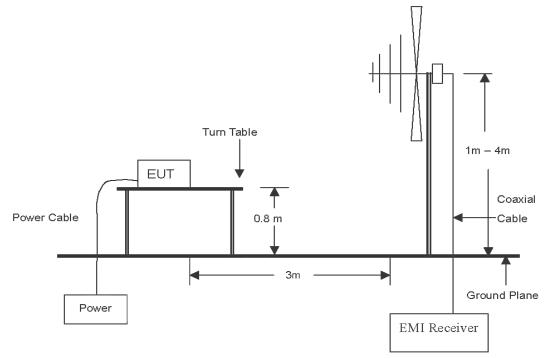
Mode	Voltage(V)	Current(A)	Power(W)
GMRS	3.6	0.35	1.26
FRS	3.6	0.36	1.30

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

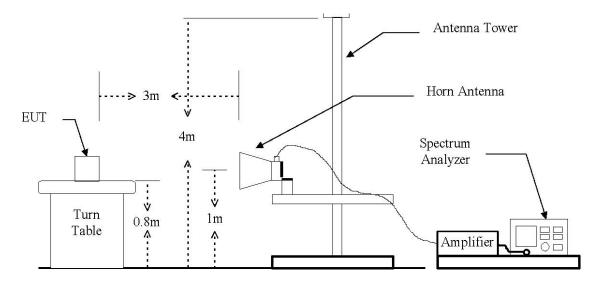
2. Summary of test	S	·
Reference	Test description	Test results
95.639	RF output power	PASS
95.635	Radiated spurious emissions	PASS
95.637	Modulation limiting P.	
2.1047	Audio frequency response	
95.637	Low-pass filter response	
2.1049, 95.633, 95.635	Occupied bandwidth and emission mask	
2.1055, 95.621, 95.627	Frequency stability	PASS

Note:

- 1. The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (ANSI C63.4-2009, ANSI/TIA 603D: 2010) were used in the measurement of the DUT.
- 2. All modes of operation were investigated. The test results shown in the following sections represent the worst case emissions.



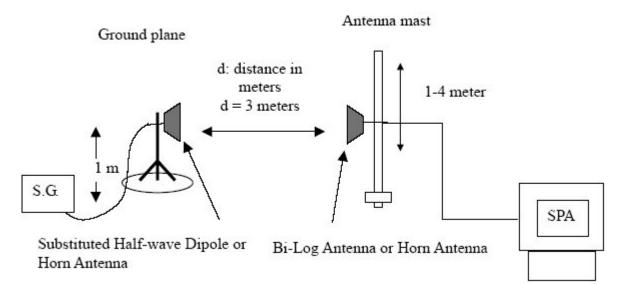
3. Test results


3.1. **RF** output power and radiated spurious emission

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 \mathbb{G} to 18 \mathbb{G} Emissions.



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No.: KES-RF-15T0056 Page (9) of (29)

The diagram below shows the test setup for substituted method

Test procedure: Based on ANSI/TIA 603D: 2010

RF output power & radiated spurious emissions

- 1. On a test site, the EUT shall be placed at 80 cm height on a turn table, and in the position closest to normal use as declared by the applicant.
- 2. The test antenna shall be oriented initially for vertical polarization located 3m from EUT to correspond to the fundamental frequency of the transmitter.
- 3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.
- 4. During the measurement of the EUT, the resolution bandwidth was to 1 MHz and the video bandwidth was set to 1 MHz
- 5. The transmitter shall be switched on, the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 6. The test antenna shall be raised and lowered through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 7. The transmitter shall then the rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 8. The test antenna shall be raised and lowered again through the specified range of height until a maximum signal level is detected by the measuring receiver.
- 9. The maximum signal level detected by the measuring receiver shall be noted.
- 10. The EUT was replaced by half-wave dipole(below 1000 Mb) or horn antenna(above 1000 Mb) connected to a signal generator.
- 11. In necessary, the input attenuator setting of the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.
- 12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.
- 13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.
- 14. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.
- 15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

Limit

RF output power

§95.639

Power output shall not exceed 0.50 Watts effective radiated power for the FRS channels. There can be no provisions for increasing the power or varying the power.

No GMRS channel, under any condition of modulation, shall exceed:

- 1. 50W Carrier power (average TP during one modulated RF cycle) when transmitting emissions type A1D, F1D, G1D, A3E, F3E, or G3E.
- 2. 50W peak envelope TP when transmitting emission type H1D, J1D, R1D, H3E, J3E or R3E.

Radiated spurious emissions

§95.635

(7) At least $43 + 10 \log_{10}(T)$ dB on any frequency removed from the center of the authorized bandwidth by more than 250%.

Test results

RF output power

Mode:	GRMS
Distance of measurement:	3 meter
Operating frequency:	462.725 0 Mtz
Channel:	22

Frequency	Ant. Pol.	E.F	R.P.
(MHz)	(H/V)	(dBm)	(W)
462.725 0	Н	7.97	0.006
462.725 0	V	23.93	0.247

Mode:	FRS
Distance of measurement:	3 meter
Operating frequency:	467.712 5 MHz
Channel:	14

Frequency	Ant. Pol.	E.R.P.	
(MHz)	(H/V)	(dBm)	(W)
467.712 5	Н	9.57	0.009
467.712 5	V	24.85	0.305

Radiated spurious emissions

Mode:	GRMS
Distance of measurement:	3 meter
Operating frequency:	462.725 0 MHz
Channel:	22

Frequency	Ant. Pol.	Spurious attenuation	Limit	Margin
(MHz)	(H/V)	(dBc)	(dBc)	(dB)
925.450	Н	59.86	36.93	22.93
925.450	V	55.05	36.93	18.12
1 388.175	Н	69.43	36.93	32.50
1 388.175	V	69.48	36.93	32.55
1 850.900	Н	61.19	36.93	24.26
1 850.900	V	49.39	36.93	12.46
2 313.625	Н	56.89	36.93	19.96
2 313.625	V	54.35	36.93	17.42
2 776.350	Н	62.30	36.93	25.37
2 776.350	V	62.35	36.93	25.42
3 239.075	Н	64.30	36.93	27.37
3 239.075	V	64.55	36.93	27.62
3 701.800	Н	65.04	36.93	28.11
3 701.800	V	61.65	36.93	24.72
4 164.525	Н	65.44	36.93	28.51
4 164.525	V	63.38	36.93	26.45
4 627.250	Н	73.42	36.93	36.49
4 627.250	V	75.93	36.93	39.00

Remark;

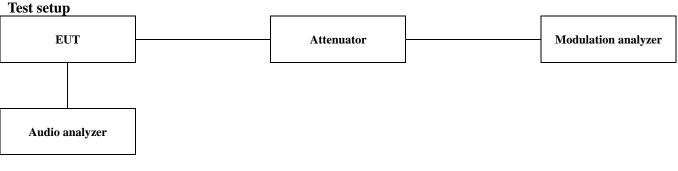
1. Spurious attenuation = EUT max. output power(dBm) - absolute level

2. Spurious attenuation limit in $dB = 43 + 10\log(\text{power in watts})$

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Mode:	FRS
Distance of measurement:	3 meter
Operating frequency:	467.712 5 MHz
Channel:	14

Frequency	Ant. Pol.	Spurious attenuation	Limit	Margin
(MHz)	(H/V)	(dBc)	(dBc)	(dB)
935.425	Н	70.29	37.85	32.44
935.425	V	69.89	37.85	32.04
1 403.138	Н	69.50	37.85	31.65
1 403.138	V	67.90	37.85	30.05
1 870.850	Н	57.36	37.85	19.51
1 870.850	V	48.18	37.85	10.33
2 338.563	Н	56.20	37.85	18.35
2 338.563	V	53.09	37.85	15.24
2 806.275	Н	63.69	37.85	25.84
2 806.275	V	59.02	37.85	21.17
3 273.988	Н	58.92	37.85	21.07
3 273.988	V	62.52	37.85	24.67
3 741.700	Н	60.53	37.85	22.68
3 741.700	V	59.59	37.85	21.74
4 209.413	Н	67.15	37.85	29.30
4 209.413	V	65.86	37.85	28.01
4 677.125	Н	72.94	37.85	35.09
4 677.125	V	72.16	37.85	34.31


Remark;

1. Spurious attenuation = EUT max. output power(dBm) - absolute level

2. Spurious attenuation limit in $dB = 43 + 10\log(\text{power in watts})$

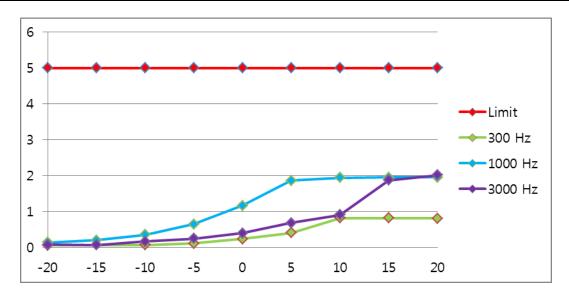
3.2. Modulation limiting

Test procedure

TIA/EIA-603-D

Limit §95.637

(a) A GMRS transmitter that transmits emission types F1D, G1D, or G3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A GMRS transmitter that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 5 kHz. A FRS unit that transmits emission type F3E must not exceed a peak frequency deviation of plus or minus 2.5 kHz, and the audio frequency response must not exceed 3.125 kHz.

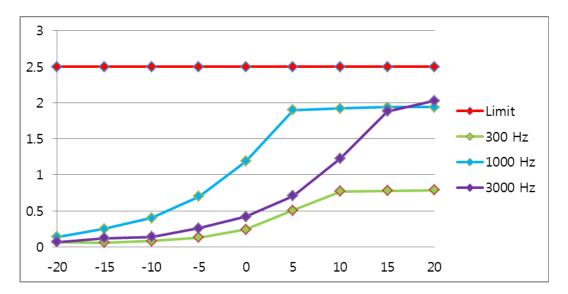


Test report No .: KES-RF-15T0056 Page (16) of (29)

Test results

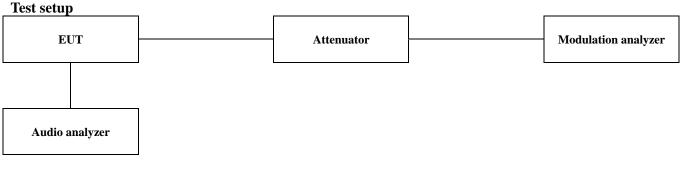
GMRS

Audio level (dB)	Deviation at 300 Hz	Deviation at 1 kHz	Deviation at 3 kHz	Limit (比)
-20	0.06	0.14	0.08	5
-15	0.07	0.21	0.07	5
-10	0.07	0.36	0.17	5
-5	0.12	0.65	0.25	5
0	0.24	1.17	0.40	5
5	0.41	1.87	0.69	5
10	0.82	1.95	0.91	5
15	0.82	1.96	1.88	5
20	0.81	1.96	2.02	5



Test report No .: KES-RF-15T0056 Page (17) of (29)

FRS


Audio level (dB)	Deviation at 300 Hz	Deviation at 1 kbz	Deviation at 3 kHz	Limit (地)
-20	0.07	0.14	0.07	2.5
-15	0.06	0.25	0.12	2.5
-10	0.08	0.40	0.14	2.5
-5	0.13	0.70	0.26	2.5
0	0.24	1.19	0.42	2.5
5	0.51	1.90	0.71	2.5
10	0.77	1.92	1.23	2.5
15	0.78	1.94	1.88	2.5
20	0.79	1.94	2.03	2.5

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

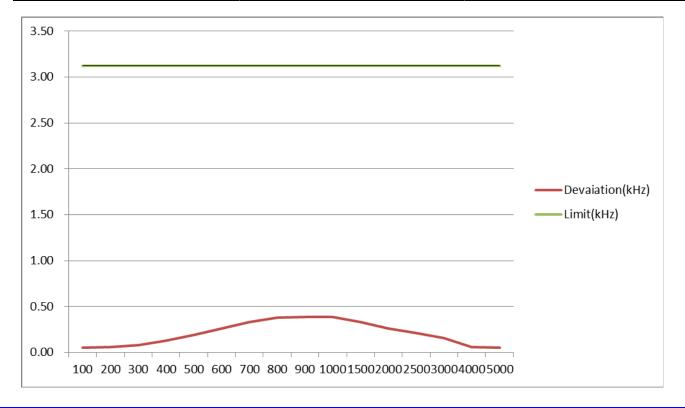
3.3. Audio frequency response

Test procedure

TIA/EIA-603-D

Limit §2.1047

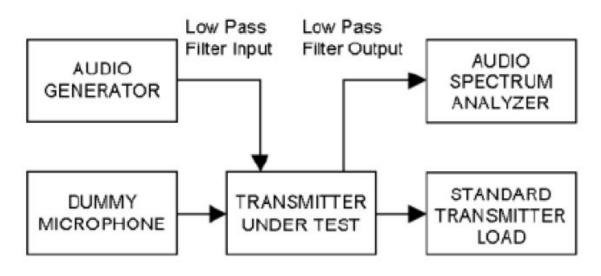
a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.


This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Test report No.: KES-RF-15T0056 Page (19) of (29)

Test results

FRS				
Audio frequency(Hz)	Deviation(ktz)	Limit(kHz)		
100	0.02	3.125		
200	0.02	3.125		
300	0.02	3.125		
400	0.05	3.125		
500	0.15	3.125		
600	0.21	3.125		
700	0.23	3.125		
800	0.24	3.125		
900	0.28	3.125		
1000	0.33	3.125		
1500	0.47	3.125		
2000	0.56	3.125		
2500	0.62	3.125		
3000	0.63	3.125		
4000	0.39	3.125		
5000	0.21	3.125		



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

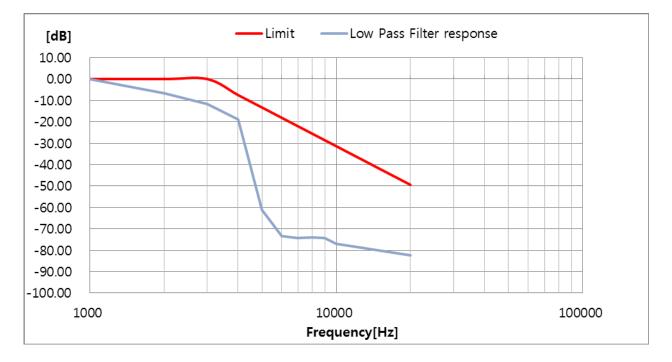
3.4. Low-pass filter response

Test setup

Test procedure

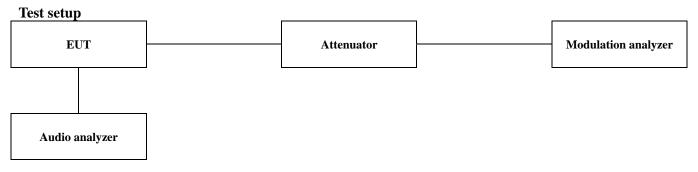
TIA/EIA-603-D

Limit


§95.637

(b) Each GMRS transmitter, except a mobile station transmitter with a power output of 2.5 W or less, must automatically prevent a greater than normal audio level from causing over modulation. The transmitter also must include audio frequency low pass filtering, unless it complies with the applicable paragraphs of §95.631 (without filtering.) The filter must be between the modulation limiter and the modulated stage of the transmitter. At any frequency (f in kHz) between 3 and 20 kHz, the filter must have an attenuation of at least 60 $\log_{10}(f/3)$ dB greater than the attenuation at 1 kHz. Above 20 kHz, it must have an attenuation of at least 50 dB greater than the attenuation at 1 kHz.

Test results


Audio frequency(Hz)	Response(dB)	Limit(dB)
1000	0.00	0.00
2000	-6.48	0.00
3000	-11.78	0.00
4000	-18.81	-7.50
5000	-61.25	-13.31
6000	-73.29	-18.06
7000	-74.39	-22.08
8000	-73.92	-25.56
9000	-74.36	-28.63
10000	-76.88	-31.37
20000	-82.35	-49.43

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

3.5. Occupied bandwidth and emission mask

Test procedure

TIA/EIA-603-D section 2.2.11

(Modulate the transmitter with a 2 500 $\,\rm Hz\,$ sine wave at an input level 16 $\,\rm dB\,$ greater than that necessary to produce 50 % of rated system deviation.)

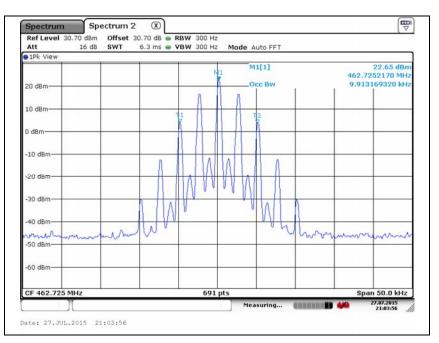
Limit

§95.633

The authorized bandwidth (maximum permissible bandwidth of a transmission) for emission type H1D, J1D, R1D, H3E, J3E or R3E is 4 kHz. The authorized bandwidth for emission type A1D or A3E is 8 kHz. The authorized bandwidth for emission type F1D, G1D, F3E or G3E is 20 kHz.

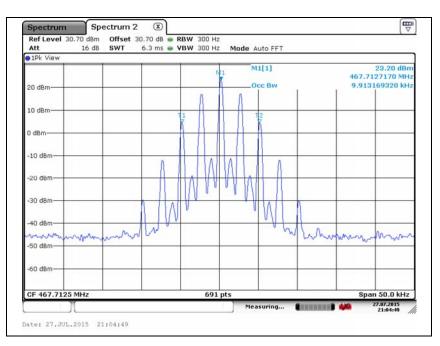
The authorized bandwidth for emission type F3E or F2D transmitted by a FRS unit is 12.5 kHz.

§95.635


At least 25 dB (decibels) on any frequency removed from the center of the authorized bandwidth by more than 50 % up to and including 100 % of the authorized bandwidth.

At least 35 dB on any frequency removed from the center of the authorized bandwidth by more than 100 % up to and including 250 % of the authorized bandwidth.

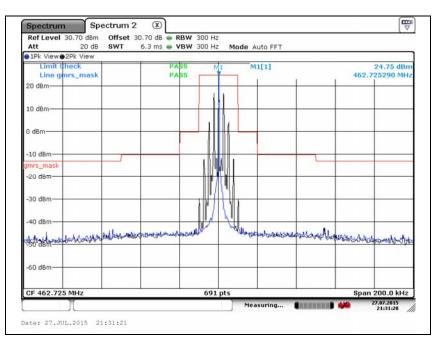
At least $43 + 10 \log_{10}(T) \text{ dB}$ on any frequency removed from the center of the authorized bandwidth by more than 250 %.



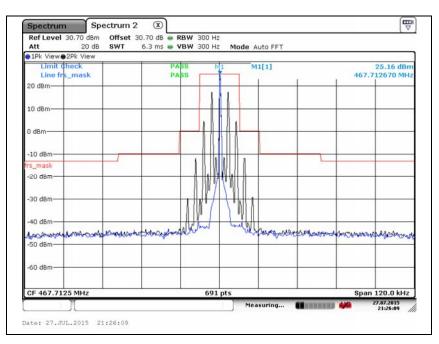
Test results

99 % bandwidth for GMRS

99 % bandwidth for FRS



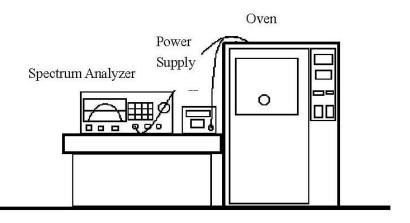
This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.



Test report No.: KES-RF-15T0056 Page (24) of (29)

Emission mask for GMRS

Emission mask for FRS



This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

3.6. Frequency stability

Test setup

Test procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. The transmission time was measured with the spectrum analyzer using RBW=1 kHz, VBW=1 kHz.
- 3. Set the temperature of chamber to -30° C. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- 4. Repeat step 2 with a 10° C decreased per stage until the highest temperature 50° C is measured, record all measured frequencies on each temperature step.

Frequency stability vs voltage;

- 1. Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment
- 2. For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

The output frequency was recorded for each voltage.

Limit

§95.621

(b) Each GMRS transmitter for mobile station, small base station and control station operation must be maintained within a frequency tolerance of 0.000 5%. Each GMRS transmitter for base station (except small base), mobile relay station or fixed station operation must be maintained within a frequency tolerance of 0.000 25%.

§95.627

(b) Each FRS unit must be maintained within a frequency tolerance of 0.000 25%.

Test results

Assigned frequency (Mz): 462.725 0					
Temperature (℃)	Measure frequency (Mz)	Frequency deviation (Hz)	Frequency deviation (ppm)	Frequency deviation (%)	
-30	462.725442	442	0.955	0.000096	
-20	462.725406	406	0.877	0.000088	
-10	462.725285	285	0.616	0.000062	
0	462.725125	125	0.270	0.000027	
10	462.725089	89	0.192	0.000019	
20	462.725062	62	0.134	0.000013	
30	462.725008	8	0.017	0.000002	
40	462.724962	-38	-0.082	-0.000008	
50	462.724802	-198	-0.428	-0.000043	

Temperature (°C)	Voltage (V)	Measure frequency (Mz)	Frequency deviation (ppm)	Frequency deviation (%)
25	3.06	462.725075	0.162	0.000016
25	4.14	462.725070	0.151	0.000015

Assigned frequency (Mz): 467.712 5

Temperature (℃)	Measure frequency (Mbz)	Frequency deviation (Hz)	Frequency deviation (ppm)	Frequency deviation (%)
-30	467.712993	493	1.054	0.000105
-20	467.712889	389	0.832	0.000083
-10	467.712813	313	0.669	0.000067
0	467.712702	202	0.432	0.000043
10	467.712618	118	0.252	0.000025
20	467.712575	75	0.160	0.000016
30	467.712535	35	0.075	0.00008
40	467.712470	-30	-0.064	-0.000006
50	467.712332	-168	-0.359	-0.000036

Temperature (℃)	Voltage (V)	Measure frequency (Mz)	Frequency deviation (ppm)	Frequency deviation (%)
25	3.06	467.712568	0.145	0.000015
25	4.14	467.712560	0.128	0.000013

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The test results in the report only apply to the tested sample.

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum analyzer	R&S	FSV30	100736	1 year	2016.07.25
Wideband Power Sensor	R&S	NRP-Z81	101886	1 year	2016.04.10
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2016.01.23
Trilog-broadband antenna	Schwarzbeck	VULB 9168	9168-461	2 years	2017.04.03
Dipole antenna	R&S	VHAP	574	2 years	2017.05.15
Dipole antenna	R&S	VHA 9103	91032557	2 years	2016.07.10
Dipole antenna	R&S	UHA 9105	91052417	2 years	2016.07.10
Dipole antenna	R&S	UHAP	546	2 years	2017.05.15
Horn antenna	A.H.	SAS-571	414	2 years	2017.02.09
Horn antenna	A.H.	SAS-571	781	2 years	2017.05.07
Preamplifier	HP	8447F	2805A02570	1 year	2016.01.23
Brodband preamplifier	Schwarzbeck	BBV9718	9718-246	1 years	2015.10.23
Attenuator	HP	8494B	2630A12857	1 year	2016.01.22
Attenuator	HP	30dB ATTENUATOR ASSEMBLY	3318A05137	1 year	2016.01.22
EMI Test Receiver	LIG NEX1	ISA-80	L0912K014	1 year	2015.11.14
High pass filter	Mini-circuits	NHP-800+	15542	1 year	2016.07.24
High pass filter	Weinschel	WHKX1.2/15G-6TT	1	1 year	2016.07.24
Modulation analyzer	HP	8901B	3538A05593	1 year	2016.07.24
Audio analyzer	HP	8903B	3011A11219	1 year	2016.07.23
DC power supply	HP	6632B	US36351824	1 year	2016.01.22
Temperature chamber	TABAI	MC711P	112000492	1 year	2016.01.23

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
N/A			