

Page 1 of 49 JQA File No. : KL80160352R Issue Date : September 20, 2016

TEST REPORT (SAR EVALUATION)

Applicant Address	:	Sharp Corporation, Consumer Electronics Company,Communication Systems Division2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima,739-0192, Japan
Products	:	Smart Phone
Model No.	:	SH-02J
Serial No.	:	004401115841179
FCC ID	:	APYHRO00242
Test Standard	:	FCC Rules and Regulations Title 47 CFR Part 2
Test Results	:	Passed
Date of Test	:	August 18 ~ 30, 2016

Kousei Shibata Manager Japan Quality Assurance Organization KITA-KANSAI Testing Center SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

- The test results in this test report was made by using the measuring instruments which are traceable to national standards of measurement in accordance with ISO/IEC 17025.
- The applicable standard, testing condition and testing method which were used for the tests are based on the request of the applicant.
- The test results presented in this report relate only to the offered test sample.
- The contents of this test report cannot be used for the purposes, such as advertisement for consumers.
- This test report shall not be reproduced except in full without the written approval of JQA.
- VLAC does not approve, certify or warrant the product by this test report.

Page 2 of 49

TABLE OF CONTENTS

Page

1	Description of the Device Under Test (DUT)
2	Summary of Test Results
3	Test Procedure
4	Test Location
5	Recognition of Test Laboratory
6	Measurement System Diagram
7	System Components
8	Measurement Process
9	Measurement Uncertainties
10	Test Arrangement
11	Tissue Verification
12	System Performance Check
13	RF Output Power Measurements
14	SAR Measurements
15	Test Setup Photographs
16	Test Instruments
17	Appendix

Page 3 of 49

1 Description of the Device Under Test (DUT)

1.1 General Information

1.	Manufacturer	:	Sharp Corporation, Consumer Electronics Company, Communication Systems Division 2-13-1, Iida, Hachihonmatsu, Higashi-Hiroshima City, Hiroshima, 739-0192, Japan
2.	Products	:	Smart Phone
3.	Model No.	:	SH-02J
4.	Serial No.	:	004401115841179
5.	Product Type	:	Pre-production
6.	Date of Manufacture	:	June, 2016
7.	Transmitting Frequency	:	GSM 850 (824 MHz – 849 MHz) PCS 1900 (1850 MHz – 1910 MHz) W-CDMA Band V (824 MHz – 849 MHz) LTE Band 5 (824 MHz – 849 MHz) WLAN 2.4 GHz (DTS : 2412 MHz – 2462 MHz) Bluetooth (2402 MHz – 2480 MHz)
8.	Battery Option	:	Lithium-ion Battery Pack UBATIA273AFN1 (2700mAh)
9.	Power Rating	:	4.0VDC
10.	DUT Grounding	:	None
11.	Device Category	:	Portable Device (§2.1093)
12.	Exposure Category	:	General Population/Uncontrolled Exposure
13.	FCC Rule Part(s)	:	22(H), 24(E), 15.247
14.	DUT Authorization	:	Certification
15.	Received Date of DUT	:	August 1, 2016

Page 4 of 49

1.2 Wireless Technologies

Air Interface	Description				
	Frequency band(s)	850, 1900			
	Quanting and	GSM (GMSK)			
GSM	Operating mode	GPRS (GMSK)			
GSM	GPRS Multi-Slot Class	Class 12 – Four Up			
	VoIP	Supported			
	DTM (Dual Transfer Mode)	Not supported			
	Frequency band(s)	Band V			
		UMTS Rel.99 (Voice & Data)			
W-CDMA	Operating mode	HSDPA Rel.8			
		HSUPA Rel.8			
	VoIP	Supported			
	Frequency band(s)	Band 5			
	Operating mode	QPSK			
LTE (FDD)	Operating mode	16QAM			
	VoLTE	Supported			
	Carrier Aggregation	Not supported			
	Frequency band(s)	2.4 GHz			
		802.11b			
	Operating mode	802.11g			
WLAN (DTS)		802.11n [HT20]			
	VoIP	Supported			
	Wireless Router (Hotspot)	Supported			
	Wi-Fi Direct	Supported			
	Frequency band(s)	2.4 GHz			
Bluetooth	Operating mode	Version 4.2+EDR			
	Operating mode	Version 4.2 LE			

Page 5 of 49

1.3 Maximum Output Power

	Mode	Max. Tune-up Limit (dBm)			
	Voice	33.4			
	GPRS 1 slot	33.4			
GSM 850	GPRS 2 slots	31.2			
	GPRS 3 slots	29.4			
	GPRS 4 slots	28.4			
	Voice	30.4			
	GPRS 1 slot	30.4			
PCS 1900	GPRS 2 slots	28.2			
	GPRS 3 slots	26.4			
	GPRS 4 slots	25.4			
	Rel. 99	24.0			
W-CDMA	HSDPA	23.0			
Band V	HSUPA	23.0			
LTE Band 5	QPSK	24.0			

	Mode	Max. Tune-up Limit (dBm)		
	802.11b	13.0		
WLAN 2.4 GHz (DTS)	802.11g	12.0		
	802.11n HT20	12.0		

Mode	Max. Tune-up Limit (dBm)
Bluetooth	7.3
Bluetooth LE	7.3

Page 6 of 49

1.4 General LTE SAR Test and Reporting Considerations

Item	Description								
	LTE Band 5 (824 MHz – 849 MHz)								
	Bandwidt	h	Low			Mid		High	
	1.4 MHz		$20407 \mathrm{~ch}$		20	$20525~{ m ch}$		$20643 \mathrm{~ch}$	
			824.7 MHz		83	$836.5~\mathrm{MHz}$		848.3 MHz	
Frequency range and	$3 \mathrm{~MHz}$		$20415~{ m ch}$		20	$20525~{ m ch}$		$20635 \mathrm{~ch}$	
channel bandwidth	5 11112		825.5 l	MHz	83	$6.5 \mathrm{MHz}$	8	$347.5~\mathrm{MHz}$	
	$5 \mathrm{~MHz}$		20425	5 ch	20	$0525~{ m ch}$		$20625~{ m ch}$	
	5 11112		826.5 l	MHz	83	$6.5 \mathrm{MHz}$	8	846.5 MHz	
	10 MHz		20450) ch	20	$20525 \mathrm{~ch}$		20600 ch	
	10 1112		829.0 l	MHz	83	$836.5~\mathrm{MHz}$		844.0 MHz	
LTE transmitter and	LTE has one (1) Tx/Rx antenna and one (1) RX antenna.								
antenna implementation									
	Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3					ingener en en			
	Modulation	Ch 1.4	annel bandw 3.0	idth / Tra 5	nsmission 10	bandwidth (15	N _{RB}) 20	MPR (dB)	
Marian and a straight		MHz	MHz	MHz	MHz	MHz	MHz		
Maximum power reduction	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
(MPR)	16 QAM 16 QAM	≤5 >5	≤ 4 > 4	≤8 >8	≤ 12 > 12	≤ 16 > 16	≤ 18 > 18	≤ 1 ≤ 2	
	MPR Built-in by design A-MPR (additional MPR) was disabled during SAR testing.								
Power reduction	No								
Spectrum plots	A properly configured base station simulator was used for the SAR and power measurements; therefore, spectrum plots for each RB allocation and								
for RB configurations	offset configuration are not included in the SAR report.								

Page 7 of 49

2 Summary of Test Results

Applied Standard:FCC Rules and Regulations Title 47 CFR Part 2 – Frequency Allocations
and Radio Treaty Matters; General Rules and Regulations
§2.1093 Radiofrequency radiation exposure evaluation: poratble devices

The st Class Connections		Limit			
Test Configuration	Licensed	DTS	U-NII	DSS (BT)	(W/kg)
Head	0.76	< 0.10			
Body-worn Accessory	0.82	0.22		NT/A	1.0
Wireless Router (Hotspot)	0.82	0.22	N/A	N/A	1.6
Simultaneous Transmission	1.04	1.04			

The test results are **passed** for exposure limits specified in ANSI/IEEE Std. C95.1.

In the approval of test results,

- Determining compliance with the limits in this report was based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- No deviations were employed from the applied standard.
- No modifications were conducted by JQA to achieve compliance to the limitations.

Reviewed by:

Shigeru Kinoshita Assistant Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Tested by:

Yasuhisa Sakai Manager JQA KITA-KANSAI Testing Center SAITO EMC Branch

Page 8 of 49

3 Test Procedure

The tests documented in this report were performed in accordance with FCC 47 CFR 2.1093, IEEE Std.1528–2013 and the following KDB Procedures.

248227 D01 802.11 Wi-Fi SAR v02r02

447498 D01 General RF Exposure Guidance v06

648474 D04 SAR Handset SAR v01r03

865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04

865664 D02 RF Exposure Reporting v01r02

941225 D01 3G SAR Procedures v03r01

941225 D05 SAR for LTE Devices v02r04

941225 D06 Hot Spot SAR v02r01

4 Test Location

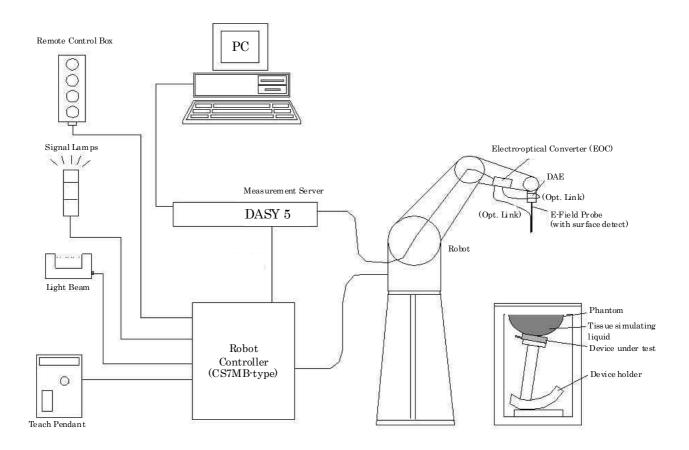
Japan Quality Assurance Organization (JQA) KITA-KANSAI Testing Center 7-7, Ishimaru, 1-chome, Minoh-shi, Osaka, 562-0027, Japan SAITO EMC Branch 7-3-10, Saito-asagi, Ibaraki-shi, Osaka 567-0085, Japan

5 Recognition of Test Laboratory

JQA KITA-KANSAI Testing Center SAITO EMC Branch is accredited under ISO/IEC 17025 by following accreditation bodies and the test facility is registered by the following bodies.

VLAC Accreditation No.	:	VLAC-001-2 (Expiry date : March 30, 2018)
VCCI Registration No.	:	A-0002 (Expiry date : March 30, 2018)
BSMI Registration No.	:	SL2-IS-E-6006, SL2-IN-E-6006, SL2-R1/R2-E-6006, SL2-A1-E-6006
		(Expiry date : September 14, 2016)
IC Registration No.	:	2079E-3, 2079E-4 (Expiry date : July 16, 2017)

Accredited as conformity assessment body for Japan electrical appliances and material law by METI. (Expiry date : February 22, 2019)



Page 9 of 49

6 Measurement System Diagram

These measurements are performed using the DASY5 automated dosimetric assessment system (manufactured by Schmid & Partner Engineering AG (SPEAG) in Zürich, Switzerland). It consists of high precision robotics system, cell controller system, DASY5 measurement server, personal computer with DASY5 software, data acquisition electronic (DAE) circuit, the Electro-optical converter (EOC), near-field probe, and the twin SAM phantom containing the equivalent tissue. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

The Robot is connected to the cell controller to allow software manipulation of the robot. The DAE is connected to the EOC. The DAE performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY5 measurement server.

Page 10 of 49

7 System Components

7.1 Probe Specification ET3DV6

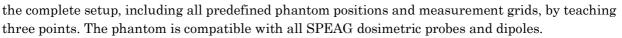
Construction	 Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static changes PEEK enclosure material (resistant to organic solvents, e.g., DGBE) 				
Calibration	 In air form 10 MHz to 2.3 GHz In head tissue simulating liquid (HSL) and muscle tissue simulating liquid 835 MHz (accuracy ± 12.0%; k=2) 900 MHz (accuracy ± 12.0%; k=2) 1450 MHz (accuracy ± 12.0%; k=2) 1750 MHz (accuracy ± 12.0%; k=2) 1900 MHz (accuracy ± 12.0%; k=2) 1950 MHz (accuracy ± 12.0%; k=2) 				
Frequency	: 10 MHz to 2.3 GHz Linearity: ± 0.2 dB (30 MHz to 2.3 GHz)				
Directivity	: ± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis)				
Dynamic Range	: 5 μ W/g to >100 mW/g; Linearity: ± 0.2 dB				
Surface Detection	: \pm 0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces				
Dimensions	 Overall length 337 mm Tip length 16 mm Body diameter 12 mm Tip diameter 6.8 mm Distance from probe tip to dipole centers 2.7 mm 				

Page 11 of 49

7.2 Probe Specification EX3DV4

Construction	Symmetrical design with triangular core							
	Built-in shielding against static changes							
	PEEK enclosure n	naterial (resistant to organic solvents, e.g., DGBE)						
Calibration	 In air form 10 MH In head tissue sim muscle tissue sim 2450 MHz (accura 2600 MHz (accura 5200 MHz (accura 5300 MHz (accura 5500 MHz (accura 5600 MHz (accura 5800 MHz (accura 	$\begin{array}{c} \text{nulating liquid (HSL) and} \\ \text{ulating liquid} \\ \text{acy } \pm 12.0\%; \ \text{k=2}) \\ \text{acy } \pm 12.0\%; \ \text{k=2}) \\ \text{acy } \pm 13.1\%; \ \text{k=2}) \end{array}$						
Frequency	: 10 MHz to 6 GHz Linearity: ± 0.2 dI	B (30 MHz to 6 GHz)						
Directivity		rotation around probe axis) material (rotation normal to probe axis)						
Dynamic Range	: 10 μ W/g to >100 n	nW/g; Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)						
Dimensions	Tip diameter	337 mm 20 mm 12 mm 2.5 mm be tip to dipole centers 1 mm						

Page 12 of 49

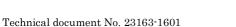

7.3 Twin SAM Phantom

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Shell Thickness	: 2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm
Filling Volume	: Volume Approx. 25 liters
Dimensions	: 810 × 1000 × 500 mm (H × L × W)

7.4 ELI4 Flat Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of


Shell Thickness	$\therefore 2 \pm 0.2 \text{ mm} \text{ (sagging: <1\%)}$
Filling Volume	: Volume Approx. 30 liters
Dimensions	: Major ellipse axis : 600 mm
	Minor axis : 400 mm

7.5 Mounting Device for Transmitters

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat point).

Page 13 of 49

8 Measurement Process

Step 1: Power Reference Measurement

The power reference job measures the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method. The minimum distance of probe sensors to surface set to 4 mm for an ET3DV6 probe, or 2 mm for EX3DV4 probe. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2 : Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations in relatively coarse grids. When an area scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. If only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maxima within 2 dB of the maximum SAR value are detected, the number of zoom scans has to be increased accordingly.

Step 3 : Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The zoom scan measures points specified in standards within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure.

Step 4: Z Scan

The Z scan measures points along a vertical straight line. The line runs along the Z axis of a one-dimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Step 5: Power Drift Measurement

The power drift measurement measures the field at the same location as the most recent power reference measurement job within the same procedure, and with the same settings. The power drift measurement gives the field difference in dB from the reading conducted within the last power reference measurement. The power reference measurement and power drift measurement are for monitoring the power drift of the device under test in the batch process.

Page 14 of 49

9 Measurement Uncertainties

9.1 300 MHz to 3 GHz

Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	<i>c</i> _{<i>i</i>} (1g)	c_i	Std. Unc. (± %)		V i
	(± /0)	Dist.		(1g)	(10g)	(10g) 1g		1
Measurement System								T
Probe calibration	6.0	N	1	1	1	6.0	6.0	∞
Axial isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	×
Hemispherical isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	~
Boundary effects	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	~
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	×
Modulation response	2.4	R	$\sqrt{3}$	1	1	1.4	1.4	×
Readout electronics	0.3	Ν	1	1	1	0.3	0.3	×
Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	×
Integration time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	~
RF ambient conditions – noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	x
RF ambient conditions – reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	×
Probe positioner mechanical tolerance	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	×
Probe positioning with respect to phantom shell	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	×
Extrapolation, interpolation and integration	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	×
algorithms for max. SAR evaluation								
Test Sample Related								
Device holder uncertainty	2.9	N	1	1	1	2.9	2.9	5
Test sample positioning	3.4	N	1	1	1	3.4	3.4	23
Output power variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	×
Power Scaling	0.0	R	$\sqrt{3}$	1	1	0.0	0.0	×
Phantom and Tissue Parameters								
Phantom uncertainty	6.1	R	$\sqrt{3}$	1	1	3.5	3.5	×
Algorithms for correcting SAR for deviations	1.9	R	$\sqrt{3}$	1	0.84	1.1	0.9	×
Liquid Conductivity – measurement uncertainty	3.2	N	1	0.78	0.71	2.5	2.3	5
Liquid Permittivity – measurement uncertainty	3.0	N	1	0.26	0.26	0.8	0.8	5
Liquid Conductivity – temperature uncertainty	5.2	R	$\sqrt{3}$	0.78	0.71	2.3	2.1	×
Liquid Permittivity – temperature uncertainty	0.8	R	$\sqrt{3}$	0.23	0.26	0.1	0.1	×
Combined Standard Uncertainty		RSS				11.5	11.4	
Expanded Uncertainty (95% Confidence Interval)		k=2				22.9	22.7	1

NOTES

1. Tol. : tolerance in influence quantity

2. Prob. Dist. \vdots probability distributions

3. N, R $\stackrel{:}{\cdot}$ normal, rectanglar

4. Div. : divisor used to obtain standard uncertainty

5. c_i : sensitivity coefficient

6. Std. Unc. : standard uncertainty

7. Measurement uncertainties are according to IEEE Std.1528 and IEC 62209-1.

Page 15 of 49

9.2 3 GHz to 6 GHz

Uncertainty Component	Tol. (± %)	Prob. Dist.	Div.	<i>c</i> _{<i>i</i>} (1g)	<i>c</i> _{<i>i</i>} (10g)	Std. Unc. (± %)		V i
	(± /0)	Dist.		(1g)	(10g)	1g	10g	1
Measurement System								
Probe calibration	6.6	N	1	1	1	6.6	6.6	×
Axial isotropy	4.7	R	$\sqrt{3}$	0.7	0.7	1.9	1.9	~
Hemispherical isotropy	9.6	R	$\sqrt{3}$	0.7	0.7	3.9	3.9	~
Boundary effects	2.0	R	$\sqrt{3}$	1	1	1.2	1.2	8
Linearity	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	~
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Modulation response	2.4	R	$\sqrt{3}$	1	1	1.4	1.4	∞
Readout electronics	0.3	N	1	1	1	0.3	0.3	~
Response time	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	~
Integration time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	00
RF ambient conditions - noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
RF ambient conditions - reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe positioner mechanical tolerance	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	~
Probe positioning with respect to phantom shell	6.7	R	$\sqrt{3}$	1	1	3.9	3.9	∞
Extrapolation, interpolation and integration	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	~
algorithms for max. SAR evaluation								
Test Sample Related								
Device holder uncertainty	2.9	N	1	1	1	2.9	2.9	5
Test sample positioning	3.4	N	1	1	1	3.4	3.4	23
Output power variation – SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Power Scaling	0.0	R	$\sqrt{3}$	1	1	0.0	0.0	~
Phantom and Tissue Parameters				1				
Phantom uncertainty	6.6	R	$\sqrt{3}$	1	1	3.8	3.8	~
Algorithms for correcting SAR for deviations	1.9	R	$\sqrt{3}$	1	0.84	1.1	0.9	∞
Liquid Conductivity – measurement uncertainty	3.2	N	1	0.78	0.71	2.5	2.3	5
Liquid Permittivity – measurement uncertainty	3.0	N	1	0.26	0.26	0.8	0.8	5
Liquid Conductivity – temperature uncertainty	3.4	R	$\sqrt{3}$	0.78	0.71	1.5	1.4	×
Liquid Permittivity – temperature uncertainty	0.4	R	$\sqrt{3}$	0.23	0.26	0.1	0.1	x
Combined Standard Uncertainty		RSS				12.5	12.4	
Expanded Uncertainty (95% Confidence Interval)		k=2				24.9	24.8	

NOTES

1. Tol. : tolerance in influence quantity

2. Prob. Dist. : probability distributions

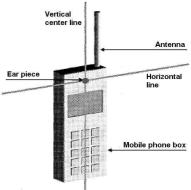
3. N, R $\stackrel{:}{\cdot}$ normal, rectanglar

4. Div. : divisor used to obtain standard uncertainty

5. c_i : sensitivity coefficient

6. Std. Unc. : standard uncertainty

7. Measurement uncertainties are according to IEEE Std.1528 and IEC 62209-1.


Page 16 of 49

10 Test Arrangement

10.1 Head Exposure Conditions

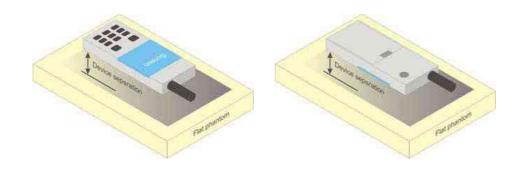
10.1.1 Cheek-Touch Position

- 1. Position the device with the vertical center line of the body of the device and the horizontal line crossing the center of the ear piece in a plane parallel to the sagittal plane of the phantom.
- 2. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and align the center of the ear piece with the line RE-LE.
- 3. Translate the mobile phone box towards the phantom with the ear piece aligned with the line RE-LE until the phone touches the ear.

4. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the box until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

10.1.2 Ear-Tilt Position

- 1. Position the device in the "Cheek-Touch Position".
- 2. While maintaining the device in the reference plane and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.


Page 17 of 49

10.2 Body-worn Accessory Exposure Conditions

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Both the physical spacing to the body of the user as dictated by the accessory and the materials used in an accessory affect the SAR produced by the transmitting device. For purpose of determining test requirements, accessories may be divided into two categories: those that do not contain metallic components and those that do.

When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the surface of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

10.3 Hotspot Mode Exposure Conditions

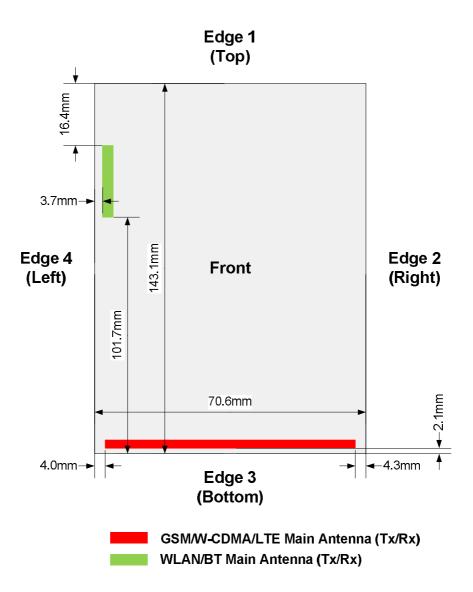
For cell phones that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm \times 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

Page 18 of 49

10.4 RF Exposure Conditions

Handsets are tested for SAR compliance in head, body-worn accessory and other use configurations according to the procedures described in KDB 648474 D04.

RF Exposure Conditions	DUT-to-User Separation	Wireless Technologies	Test Position	Antenna-to- edge/surface	SAR Required	Note
	_		Left Touch	N/A	YES	
IIl	0		Left Tilt (15°)	N/A	YES	
Head	0 mm	All IX	Right Touch	N/A	YES	
			esTest Positionedge/surfaceRequiredLeft TouchN/AYESLeft Tilt (15°)N/AYESRight TouchN/AYESRight Tilt (15°)N/AYESRight Tilt (15°)N/AYESFrontN/AYESFrontN/AYESFrontN/AYESFrontN/AYESEdge 1 (Top)> 25 mmYESEdge 2 (Right)< 25 mm	YES		
Deducero	10	A 11 /T	Rear	N/A	YES	
Body-worn	10 mm	All IX	Front	N/A	YES	
			Rear	< 25 mm	YES	
		COM	Front	< 25 mm	YES	
			Edge 1 (Top)	> 25 mm	NO	1
			Edge 2 (Right)	< 25 mm	YES	
			Edge 3 (Bottom)	< 25 mm	YES	
II.	10		Edge 4 (Left)	< 25 mm	YES	
Hotspot	10 mm		Rear	< 25 mm	YES	
			Front	< 25 mm	YES	
		WLAN	Edge 1 (Top)	< 25 mm	YES	
		Bluetooth	Edge 2 (Right)	> 25 mm	NO	1
	ions Separation Technol d 0 mm All vorn 10 mm All oot 10 mm WL		Edge 3 (Bottom)	> 25 mm	NO	1
			Edge 4 (Left)	< 25 mm	YES	

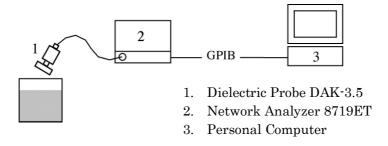

Note(s):

1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06.

Page 19 of 49

Antenna Location and Separation Distances

Page 20 of 49


11 Tissue Verification

11.1 Tissue Verification Measurement Condition

The tissue dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The parameters should be re-measured after each 3 - 4 days of use, or earlier if dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

The temperature of the tissue-equivalent medium used during measurement must be within 18°C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

It is verified by using the dielectric probe and the network analyzer.

11.2 Tissue Dielectric Properties

The tissue dielectric properties are specified in KDB 865664 D01.

Target Frequency	Н	ead	В	ody
[MHz]	Permittivity (ɛr)	Conductivity (o)	Permittivity (ɛr)	Conductivity (o)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

For tissue dielectric properties at other frequencies within the range, a linear interpolation method shall be used.

Page 21 of 49

11.3 Composition of Ingredients for the Tissue Material Used in the SAR Tests

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Teau and body Liquids (Delow 1 GHz)					
Item	Head and Muscle Tissue Simulation Liquids HSL/MSL 750, HSL/MSL 900				
H ₂ O	Water, 35 - 58 %				
Sucrose	Sugar, white, refined, $40 - 60$ %				
NaCl	Sodium Chloride, $0-6\%$				
Hydroxyethyl-cellulose	Medium Viscosity (CAS# 9004-62-0), < 0.3 %				
Preventol-D7	Preservative: a queous preparation, (CAS# 55965-84-9), containing 5-chloro-2-methyl-3 (2H)-isothiazolone and 2-methyyl-3 (2H)-isothiazolone, $0.1-0.7~\%$				

Head and Body Liquids (Below 1 GHz)

Head and Body Liquids (1 to 3 GHz)

iiouu uiiu Doug Diquius (i	
Item	Head and Muscle Tissue Simulation Liquids HSL/MSL 1750, HSL/MSL 1900, HSL/MSL 2450
H ₂ O	Water, 52 – 75 %
C ₈ H ₁₈ O ₃	Diethylene glycol monobutyl ether (DGBE), 25 – 48% (CAS-No. 112-34-5, EC-No. 203-961-6, EC-index-No. 603-096-00-8)
NaCl	Sodium Chloride, < 1.0 %

Head Liquids (3 to 6 GHz)

Item	Head Broad Band Tissue Simulation Liquids HBBL 3500-5800
Water	50-65~%
Mineral oil	10 - 30 %
Emulsifiers	8-25~%
Sodium salt	$0{-}1.5\%$
Safety relevant ingredients	according to EU directives:
EINECS-No 203-489-0	1.0 – 2.8 % 2-Methyl-pentane-2,4-diol (Hexylene Glycol):
CAS-No 107-41-5	(Xi irritant, R36/38 irritant for eyes and skin)

Body Liquids (3 to 6 GHz)

Item	Muscle Broad Band Tissue Simulation Liquids MBBL 3500-5800
Water	60 - 80 %
Esters, Emulsifiers,	20 - 40 %
Inhibitors	
Sodium salt	0-1.5~%
Safety relevant ingredients	according to EU directives: none
Safety relevant ingredients	according to other directives:
CAS-No 26399-02-0	10 – 28 % Oleic acid, alkylester

Page 22 of 49

11.4 Tissue Verification Results

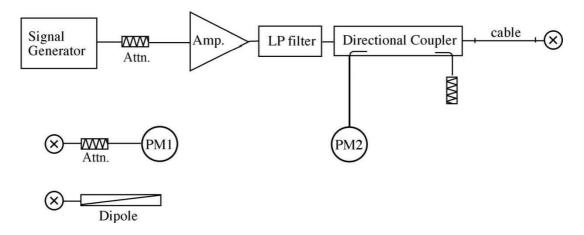
Tissue dielectric parameters are measured at the low, middle and high frequency of each operating frequency range of the test device.

Date	Liquid	Frequency [MHz]	Parameters	Target	Measured	Deviation [%]	Limit [%]	
		000	Permittivity (er)	55.3	54.85	-0.81	± 5	
		820	Conductivity (o)	0.97	0.973	+0.31	± 5	
0/10/0010	D I	00 7	Permittivity (er)	55.2	54.75	-0.82	± 5	
8/18/2016	Body	835	Conductivity (o)	0.97	0.989	+1.96	± 5	
		050	Permittivity (er)	55.2	54.63	-1.03	± 5	
		850	Conductivity (o)	0.99	1.004	+1.41	± 5	
		220	Permittivity (er)	41.6	41.92	+0.77	± 5	
		820	Conductivity (o)	0.90	0.902	+0.22	± 5	
0/00/001 0	8/22/2016 Head	00 7	Permittivity (er)	41.5	41.78	+0.67	± 5	
8/22/2016		835	Conductivity (o)	0.90	0.917	+1.89	± 5	
		0 5 0	Permittivity (ɛr)	41.5	41.62	+0.29	± 5	
		850	Conductivity (o)	0.92	0.932	+1.30	± 5	
		1050	Permittivity (ɛr)	40.0	39.63	-0.92	± 5	
8/23/2016 Head	1850	Conductivity (o)	1.40	1.353	-3.36	± 5		
	1900	Permittivity (e _r)	40.0	39.43	-1.43	± 5		
		Conductivity (o)	1.40	1.406	+0.43	± 5		
		1010	Permittivity (e _r)	40.0	39.39	-1.53	± 5	
		1910	Conductivity (o)	1.40	1.418	+1.29	± 5	
		1050	Permittivity (e _r)	53.3	52.72	-1.09	± 5	
		1850	Conductivity (o)	1.52	1.490	-1.97	± 5	
0/00/0010	D. I.	1000	Permittivity (e _r)	53.3	52.66	-1.20	± 5	
8/23/2016		Body	1900	Conductivity (o)	1.52	1.551	+2.04	± 5
		1010	Permittivity (er)	53.3	52.65	-1.22	± 5	
		1910	Conductivity (o)	1.52	1.564	+2.89	± 5	
		820	Permittivity (ɛr)	41.6	42.11	+1.23	± 5	
		820	Conductivity (o)	0.90	0.902	+0.22	± 5	
0/00/0010	Heed	835	Permittivity (er)	41.5	41.92	+1.01	± 5	
0/20/2010	пеац	000	Conductivity (o)	0.90	0.916	+1.78	± 5	
		250	Permittivity (er)	41.5	41.74	+0.58	± 5	
	850	Conductivity (o)	0.92	0.930	+1.09	± 5		
		2410	Permittivity (er)	39.3	38.97	-0.84	± 5	
		2410	Conductivity (o)	1.76	1.806	+2.61	± 5	
0/00/0010	Head	9450	Permittivity (er)	39.2	38.81	-0.99	± 5	
0/29/2010	пеаа	2450	Conductivity (o)	1.80	1.854	+3.00	± 5	
	8/23/2016 Head	9475	Permittivity (er)	39.2	38.71	-1.25	± 5	
		2475	Conductivity (o)	1.83	1.883	+2.90	± 5	

Page 23 of 49

Tissue Verification Results (continued)

Date	Liquid	Frequency [MHz]	Parameters	Target	Measured	Deviation [%]	Limit [%]
		0.410	Permittivity (_{Er})	52.8	52.83	+0.06	± 5
		2410	Conductivity (o)	1.91	1.880	-1.57	± 5
0/20/2016	8/30/2016 Body	2450	Permittivity (ɛr)	52.7	52.74	+0.08	± 5
8/30/2016			Conductivity (o)	1.95	1.924	-1.33	± 5
		Permittivity (ɛr)	52.7	52.61	-0.17	± 5	
		2475	Conductivity (o)	1.99	1.956	-1.71	± 5


Page 24 of 49

12 System Performance Check

12.1 System Performance Check Measurement Condition

The power meter PM1 (including Attenuator) measures the forward power at the location of the validation dipole connector. The signal generator is adjusted for 250 mW (100 mW for 3 to 6 GHz) at the dipole connector and the power meter PM2 is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2.

The dipole antenna is matched to be used near flat phantom filled with tissue simulating solution. A specific distance holder is used in the positioning of the antenna to ensure correct spacing between the phantom and the dipole.

12.2 Target SAR Values for System Performance Check

The target SAR values can be obtained from the calibration certificate of system validation dipoles.

System 1	Dipole	Cal Data	Frequency Target SAR Values [W/kg]			
Туре	Serial	Cal. Date	[MHz]	1g/10g	Head	Body
Deervo	41104		0.9 5	$1 \mathbf{g}$	9.28	9.52
D835V2	4d104	5/18/2015 835	835	10g	6.04	6.25
D1000V0	× 1100		1000	1g	38.1	39.3
D1900V2	5d129	5/6/2015	1900	10g	20.0	20.8
De 47 OVe	51.4	11/10/2018	2450	1g	53.5	53.1
D2450V2	D2450V2 714 11/10/2015	2450	10g	25.0	25.1	

Page 25 of 49

12.3 System Performance Check Results

The SAR measured with a system validation dipole, using the required tissue-equivalent medium at the test frequency, must be within 10 % of the manufacturer calibrated dipole SAR target.

Date	System I Type)ipole Serial	Liquid		ured SAR [W/kg] nalized to 1 W)	Target	Deviation [%]	Limit [%]
0/10/2010		4 110 4	D I	1 g	9.40	9.52	-1.26	± 10
8/18/2016	D835V2	4d104	Body	10 g	6.24	6.25	-0.16	± 10
0/00/0010		4 110 4	TT 1	1 g	9.68	9.28	+4.31	± 10
8/22/2016	D835V2	4d104	Head	10 g	6.32	6.04	+4.64	± 10
0/00/0010	D10001/0	F 1100	TT 1	1 g	38.92	38.1	+2.15	± 10
8/23/2016	D1900V2	5d129	Head	10 g	20.32	20.0	+1.60	± 10
0/00/0010	DIGONIO	F 1100	D 1	1 g	40.40	39.3	+2.80	± 10
8/23/2016	D1900V2	5d129	Body	10 g	21.24	20.8	+2.12	± 10
0/00/0010	Doortio	41104		1 g	9.32	9.28	+0.43	± 10
8/26/2016	D835V2	4d104	Head	10 g	6.12	6.04	+1.32	± 10
0/00/001 0				1 g	52.40	53.5	-2.06	± 10
8/29/2016	D2450V2	714	Head	10 g	24.32	25.0	-2.72	± 10
0/00/0010	DOUTOUTO	5 1.4	D 1	1 g	50.40	53.1	-5.08	± 10
8/30/2016	D2450V2	714	Body	10 g	23.92	25.1	-4.70	± 10

Page 26 of 49

13 RF Output Power Measurements

13.1 GSM

Settings	Mode	Parameter	
Quarter 1 Quarter in the	Band Indicator	GSM 850	PCS 1900
General Settings	Power Control Level	5 (33 dBm)	0 (30 dBm)
appa a le	Connection Type	Test Mode A	
GPRS Specific	Multi Slot Class	12 (4 down / 4 up / 5 sum)	
Settings	Coding Scheme	CS1 (GMSK)	

GSM 850 Results

		Conducted Average Power (dBm)							
Mode		$128 ext{ ch}$		189) ch	$251~{ m ch}$		Sepc.	
		(824.2	MHz)	(836.4 MHz)		(848.8 MHz)		Max.	
		Burst	Frame	Burst	Frame	Burst	Frame	(Frame)	
GSM	Voice	31.91	22.88	31.75	22.72	31.84	22.81	24.37	
	1 slot	31.91	22.88	31.75	22.72	31.84	22.81	24.37	
appa	2 slots	29.42	23.40	29.33	23.31	29.42	23.40	25.18	
GPRS	3slots	27.64	23.38	27.57	23.31	27.65	23.39	25.14	
	4 slots	26.66	23.65	26.58	23.57	26.68	23.67	25.39	

Note(s):

KDB 941225 D01 – The worst-case configuration for SAR testing is determined to be as follows.

- 1. Body : GPRS mode with 4 time slots, based on the output power above
- 2. Head : Same mode as Body SAR testing (VoIP applicable using GPRS multi-slot)

PCS 1900 Results

					Conducted Average Power (dBm)					
Mode		512 ch (1850.2 MHz)		661	ch	810	810 ch			
				(1880.0 MHz)		(1909.8 MHz)		Sepc. Max.		
		Burst	Frame	Burst	Frame	Burst	Frame	(Frame)		
GSM	Voice	29.26	20.23	29.08	20.05	28.96	19.93	21.37		
	1 slot	29.26	20.23	29.08	20.05	28.96	19.93	21.37		
GDDG	2 slots	26.91	20.89	26.79	20.77	26.76	20.74	22.18		
GPRS	3slots	25.00	20.74	25.00	20.74	24.97	20.71	22.14		
	4 slots	24.08	21.07	23.96	20.95	23.91	20.90	22.39		

Note(s):

 $\mathrm{KDB}\ 941225\ \mathrm{D01}-\mathrm{The}\ \mathrm{worst}\ \mathrm{case}\ \mathrm{configuration}\ \mathrm{for}\ \mathrm{SAR}\ \mathrm{testing}\ \mathrm{is}\ \mathrm{determined}\ \mathrm{to}\ \mathrm{be}\ \mathrm{as}\ \mathrm{follows}.$

1. Body : GPRS mode with 4 time slots, based on the output power above

2. Head : Same mode as Body SAR testing (VoIP applicable using GPRS multi-slot)

Page 27 of 49

13.2 W-CDMA

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification.

Release 99 W-CDMA

Settings	Release 99	
Loopback Mode	Mode 1	OFF
Channel Coding	12.2kbps RMC	Voice AMR
TPC Bit Pattern	All 1	
Power Tolerance (dB)	+1.7/-3.7	

HSDPA

IIGDIA				
Settings	Release 8 HS	DPA		
Sub-test	1	2	3	4
Loopback Mode	Mode 1			
Channel Coding	Fixed Referen	ice Channel (QPSK	C) (C	
TPC Algorithm	2			
TPC Bit Pattern	All 1			
Beta C	2	11	15	15
Beta D	15	15	8	4
Delta ACK	8			
Delta NACK	8			
Delta CQI	8			
CQI Feedback Cycle	4 ms			
Ack-Nack Repetition Factor	3			
CQI Repetition Factor	2			
MPR (dB)	0	0	0.5	0.5
Power Tolerance (dB)	+1.7/-3.7	+1.7/-3.7	+2.7/-3.7	+3.7/-3.7

HSPA (HSDPA & HSUPA)

Settings	Release 8 H	ISPA					
Sub-test	1	2	3	4	5		
Loopback Mode	Mode 1	Mode 1					
Channel Coding	E-DCH RF	E-DCH RF Test with TTI 10ms (QPSK)					
TPC Algorithm	2	2 1					
TPC Bit Pattern	Inner Loop	Power Control			All 1		
Beta C	10	6	15	2	15		
Beta D	15	15	9	15	0		
Delta ACK	8				0		
Delta NACK	8	8					
Delta CQI	8	8 0					
CQI Feedback Cycle	4 ms						
Ack-Nack Repetition Factor	3						
CQI Repetition Factor	2						
Delta E-DPCCH	6	8	8	5	0		
Absolute Grant Value	20	12	15	17	12		
E-TFCI	75	67	92	71	67		
MPR (dB)	0	2	1	2	0		
Power Tolerance (dB)	+1.7/-6.7	+3.7/-5.2	+2.7/-5.2	+3.7/-5.2	+1.7/-3.7		

Page 28 of 49

Band V Results

		Condu	icted Average Power	(dBm)	
	Mode	4132 ch	4182 ch	$4233 ext{ ch}$	MPR
		(826.4 MHz)	(836.4 MHz)	(846.6 MHz)	
	12.2 kbps RMC	23.36	23.46	23.23	
	64 kbps RMC	23.36	23.46	23.23	
Rel.99	144 kbps RMC	23.37	23.47	23.24	
	384 kbps RMC	23.36	23.47	23.23	
	Voice AMR	23.34	23.45	23.22	
	Sub-test 1	22.32	22.46	22.25	0
	Sub-test 2	22.28	22.42	22.23	0
HSDPA	Sub-test 3	21.68	21.83	21.66	0.5
	Sub-test 4	21.68	21.83	21.66	0.5
	Sub-test 1	22.33	22.44	22.23	0
	Sub-test 2	21.22	21.33	21.23	2
HSPA	Sub-test 3	21.33	21.44	21.28	1
	Sub-test 4	21.35	21.46	21.38	2
	Sub-test 5	22.33	22.47	22.24	0

Page 29 of 49

13.3 LTE

The following tests were completed according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

For UE power class 1 and 3, the allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 1 and 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A
			3	>5	≤1
		0 4 40 00 05	5	>6	≤ 1
NS_03	6.6.2.2.1	2, 4,10, 23, 25,	10	>6	≤ 1
		35, 36	15	>8	≤ 1
			20	>10	≤1
NR 04	6.6.2.2.2	41	5	>6	≤ 1
NS_04	0.0.2.2.2	41	10, 15, 20	Table	6.2.4-4
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	N/A
NS_07	6.6.2.2.3 6.6.3.3.2	13	10	Table	6.2.4-2
NS 08	6.6.3.3.3	19	10, 15	> 44	≤ 3
	66224	21		> 40	≤ 1
NS_09	6.6.3.3.4	21	10, 15	> 55	≤ 2
NS_10		20	15, 20	Table	6.2.4-3
NS_11	6.6.2.2.1	23	1.4, 3, 5, 10, 15, 20	Table	6.2.4-5
 NS 32	-	-	-	-	(-

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)	Table	6.2.4-1:	Additional	Maximum	Power	Reduction	(A-MPR)
---	-------	----------	------------	---------	-------	-----------	---------

Page 30 of 49

Band 5 Results

	Mode	1		Conduc	cted Average Power	r (dBm)	
BW	NC 1 1 4.	RB All	ocation	20407 ch	$20525\mathrm{ch}$	$20643 \mathrm{~ch}$	MPR
[MHz]	Modulation	RB#	Offset	(824.7 MHz)	(836.5 MHz)	(848.3 MHz)	
		1	0	22.72	22.81	22.68	0
		1	3	22.85	22.79	22.63	0
		1	5	22.66	22.84	22.78	0
	QPSK	3	0	23.05	22.94	22.71	0
		3	2	23.07	22.91	22.75	0
		3	3	22.90	22.91	22.79	0
1.4		6	0	22.01	21.96	21.88	1
1.4		1	0	21.74	21.87	21.43	1
		1	3	21.90	21.86	21.72	1
		1	5	21.54	22.03	21.53	1
	16QAM	3	0	22.05	21.93	21.73	1
		3	2	21.99	22.13	21.81	1
		3	3	22.03	22.04	21.87	1
		6	0	20.88	20.78	20.72	2
	Mode			Conduc	cted Average Power	r (dBm)	
BW	Modulation	RB All	ocation	$20415\mathrm{ch}$	$20525\mathrm{ch}$	$20635~{ m ch}$	MPR
[MHz]	Modulation	RB#	Offset	(825.5 MHz)	(836.5 MHz)	(847.5 MHz)	
		1	0	22.79	22.97	22.71	0
		1	8	22.83	22.92	22.68	0
		1	14	22.94	22.87	22.90	0
	QPSK	8	0	22.01	22.02	22.02	1
		8	4	21.94	21.97	22.02	1
		8	7	21.94	22.06	21.94	1
0		15	0	22.04	21.94	21.87	1
3		1	0	21.72	21.84	21.82	1
		1	8	21.62	21.64	21.59	1
		1	14	21.87	21.92	21.33	1
	16QAM	8	0	21.01	20.66	20.96	2
		8	4	20.67	20.90	20.81	2
		8	7	20.87	20.69	20.88	2
		15	0	21.01	21.00	20.83	2

Page 31 of 49

	Mode			Conduc	eted Average Power	r (dBm)	
BW		RB All	ocation	$20425~\mathrm{ch}$	20525 ch	$20625 ext{ ch}$	MPR
[MHz]	Modulation	RB#	Offset	(826.5 MHz)	(836.5 MHz)	(846.5 MHz)	
		1	0	22.85	22.70	22.79	0
		1	13	22.90	22.90	22.91	0
		1	24	22.83	22.83	22.54	0
	QPSK	12	0	22.00	21.96	21.86	1
		12	7	22.05	21.99	21.98	1
		12	13	21.99	21.97	21.93	1
~		25	0	21.97	21.92	21.84	1
5		1	0	21.62	21.81	21.62	1
		1	13	21.95	21.87	21.79	1
		1	24	21.59	21.40	21.44	1
	16QAM	12	0	20.97	20.75	20.85	2
		12	7	20.83	20.88	20.80	2
		12	13	20.75	20.85	20.68	2
		25	0	21.09	20.91	20.85	2
	Mode			Conduc	ted Average Power	r (dBm)	
BW	Modulation	RB All	ocation		$20525 \mathrm{ch}$		MPR
[MHz]	Modulation	RB#	Offset		(836.5 MHz)		
		1	0		22.93		0
		1	50		22.95		0
		1	99		22.77		0
	QPSK	50	0		22.01		1
		50	25		22.02		1
		50	50		22.01		1
10		100	0		21.97		1
10		1	0		21.49		1
		1	50		21.95		1
		1	99		21.54		1
	16QAM	50	0		21.00		2
		50	25		21.02		2
		50	50		20.87		2
		100	0		20.95		2

Note(s):

LTE Band 5 does not support three non-overlapping channels in 10 MHz channel bandwidths. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing per KDB 941225 D05 SAR for LTE Devices

Page 32 of 49

13.4 WLAN (DTS Band)

DTS Band Results

David	Mada	Data	Ch#	Frequency	Average Po	ower (dBm)
Band	Mode	Rate	Cn#	(MHz)	Measred	Spec. Max.
			1	2412	12.52	
	802.11b	1 Mbps	6	2437	11.76	13.0
			11	2462	12.73	
0 4 CH			1	2412	11.49	
2.4 GHz (DTS)	802.11g	6 Mbps	6	2437	10.65	12.0
(D15)			11	2462	11.71	
			1	2412	11.50	
	802.11n [HT20]	MCS 0	6	2437	10.67	12.0
			11	2462	11.72	

Note(s):

Power measurement is required for the transmission mode configuration with the highest maximum output power specified for production units. (802.11b DSSS and 802.11g/n OFDM configurations are considered separately.)

- When the same highest maximum output power specification applies to multiple transmission modes, the largest channel bandwidth configuration with the lowest order modulation and lowest data rate is measured.
- When the same highest maximum output power is specified for multiple largest channel bandwidth configurations with the same lowest order modulation or lowest order modulation and lowest data rate, power measurement is required for all equivalent 802.11 configurations with the same maximum output power.

Page 33 of 49

13.5 Bluetooth

Maximum tune-up tolerance limit is 7.3 dBm from the rated nominal maximum output power. This power level qualifies for exclusion of SAR testing.

13.6 Standalone SAR Test Exclusion Considerations (KDB 447498 D01)

The 1 g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by;

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f}_{(GHz)}] \leq 3.0$ for 1 g SAR and ≤ 7.5 for 10 g extremity SAR, where

- $f_{(GHz)}$ is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.
- When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied.

Deed	Freq.	Max. Power		Test	Distance	/ml h . 1 .1	Test
Band	(MHz)	(dBm)	(mW)	Position	(mm)	Threshold	Exclusion
	0400	10.0	00	Head	< 5	6.3	NO
WLAN (DTS)	2462	13.0	20	Body	10	3.1	NO
	9400	7 0	-	Head	< 5	1.6	YES
Bluetooth	2480	7.3	5	Body	10	0.8	YES

Page 34 of 49

14 SAR Measurements

SAR test reduction criteria are as follows:

When 10 g extremity SAR is required, SAR values indicated below are multiplied by 2.5, i.e. the ratio of the 1 g and extremity 10 g SAR limit.

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1 g SAR for the mid-band or highest output power channel is:

- $~\leq 0.8$ W/kg when the transmission band is $\leq 100~MHz$
- ≤ 0.6 W/kg when the transmission band is between 100 MHz and 200 MHz
- ≤ 0.4 W/kg when the transmission band is ≥ 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the <u>reported</u> SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest <u>reported</u> SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest <u>reported</u> SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

For phablets, when hotspot mode applies, the UMPC mini-tablet 10 g extremity SAR is not required for the surfaces and edges with hotspot mode 1 g <u>reported</u> SAR ≤ 1.2 W/kg.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the *reported* SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1 RB, and 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest <u>reported</u> SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the <u>reported</u> SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the *reported* SAR for QPSK is < 1.45 W/Kg and its output power is not more than ½ dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the <u>reported</u> SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than $\frac{1}{2}$ dB higher than that of the highest channel bandwidth.

Page 35 of 49

KDB 248227 D01 802.11 Wi-Fi SAR:

SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM in both 2.4 GHz and 5 GHz bands, an <u>initial test configuration</u> is first determined for each standalone and aggregated frequency band according to the maximum output power and tune-up tolerance specified for production units. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the <u>initial test configuration</u>, for each frequency band.

SAR is measured using the highest measured maximum output power channel for the determined exposure configurations. When there are multiple test channels with the same measured maximum output power, the channel closest to mid-band frequency is selected for SAR measurement. When there are multiple test channels with the same measured maximum output power and equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

An <u>initial test position</u> is applied to further reduce the number of SAR tests for devices operating in next to the ear, UMPC mini-tablet or hotspot mode exposure configurations that require multiple test positions SAR is measured in the <u>initial test position</u> using the 802.11 transmission mode configuration required by the DSSS procedure or <u>initial test configuration</u> according to the OFDM procedures. The <u>initial test position</u> procedure is described in the following:

- When the <u>reported</u> SAR of the <u>initial test position</u> is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combination within the frequency band or aggregated band.
- When the <u>reported</u> SAR of the <u>initial test position</u> is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the <u>initial test position</u> using subsequent highest extrapolated or estimated 1 g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- For all positions/configurations tested using the <u>initial test position</u> and subsequent test positions, when the <u>reported</u> SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the <u>reported</u> SAR is ≤ 1.2 W/kg or all required channels are tested.

To determine the <u>initial test position</u>, Area Scans were performed to determine the position with the estimated 1 g SAR (fast SAR). The position that produced the highest fast SAR is considered the worst case position; thus used as the <u>initial test position</u>. The averaged fast SAR is scaled according to <u>reported</u> SAR requirements.

Page 36 of 49

14.1 GSM 850

GPRS 4 slots (C	GPRS 4 slots (CS1) – Duty Cycle 48.0%										
	The state	D: /		п	Power	[dBm]	1 g SAI	R [W/kg]			
RF Exposure Conditions	Test Position	Dist. [mm]	Ch#	Freq. [MHz]	Tune-up Limit	Meas.	Meas.	Scaled	Plot No.		
			128	824.2	28.4	26.66	0.334	0.499			
	Left Touch	0	189	836.4	28.4	26.58	0.402	0.611			
			251	848.8	28.4	26.68	0.510	0.758	1		
Head	Left Tilt	0	189	836.4	28.4	26.58	0.178	0.271			
	Right Touch	0	189	836.4	28.4	26.58	0.336	0.511			
	Right Tilt	0	189	836.4	28.4	26.58	0.161	0.245			
			128	824.2	28.4	26.66	0.466	0.696			
Body-worn	Rear	10	189	836.4	28.4	26.58	0.477	0.725			
& Hotspot			251	848.8	28.4	26.68	0.552	0.820	2		
	Front	10	189	836.4	28.4	26.58	0.406	0.617			
	Edge 2	10	189	836.4	28.4	26.58	0.211	0.321			
Hotspot	Edge 3	10	189	836.4	28.4	26.58	0.043	0.065			
	Edge 4	10	189	836.4	28.4	26.58	0.328	0.499			

14.2 PCS 1900

GPRS 4 slots (C	GPRS 4 slots (CS1) – Duty Cycle 48.0%											
DDD	m ,	D: 4		п	Power	[dBm]	1 g SAF	R [W/kg]	D1 /			
RF Exposure Conditions	Test Position	Dist. [mm]	Ch#	Freq. [MHz]	Tune-up Limit	Meas.	Meas.	Scaled	Plot No.			
	Left Touch	0	661	1880.0	25.4	23.96	0.253	0.352				
TT 1	Left Tilt	0	661	1880.0	25.4	23.96	0.088	0.123				
Head	Right Touch	0	661	1880.0	25.4	23.96	0.273	0.380	3			
	Right Tilt	0	661	1880.0	25.4	23.96	0.144	0.201				
Body-worn	Rear	10	661	1880.0	25.4	23.96	0.405	0.564				
& Hotspot	Front	10	661	1880.0	25.4	23.96	0.415	0.578	4			
	Edge 2	10	661	1880.0	25.4	23.96	0.197	0.274				
Hotspot	Edge 3	10	661	1880.0	25.4	23.96	0.141	0.196				
	Edge 4	10	661	1880.0	25.4	23.96	0.147	0.205				

Page 37 of 49

14.3 W-CDMA Band V

Rel.99 12.2kbps	RMC – Duty Cycle 1	.00%							
DEE	The second se	D: (п	Power	[dBm]	1 g SAF		
RF Exposure Conditions	Test Position	Dist. [mm]	Ch#	Freq. [MHz]	Tune-up Limit	Meas.	Meas.	Scaled	Plot No.
	Left Touch	0	4182	836.4	24.0	23.46	0.479	0.542	5
	Left Tilt	0	4182	836.4	24.0	23.46	0.242	0.274	
Head	Right Touch	0	4182	836.4	24.0	23.46	0.420	0.476	
	Right Tilt	0	4182	836.4	24.0	23.46	0.219	0.248	
Body-worn	Rear	10	4182	836.4	24.0	23.46	0.538	0.609	6
& Hotspot	Front	10	4182	836.4	24.0	23.46	0.477	0.540	
	Edge 2	10	4182	836.4	24.0	23.46	0.269	0.305	
Hotspot	Edge 3	10	4182	836.4	24.0	23.46	0.056	0.063	
	Edge 4	10	4182	836.4	24.0	23.46	0.393	0.445	

14.4 LTE Band 5

QPSK 10 MHz l	QPSK 10 MHz BW – Duty Cycle 100%										
DEE	m i	D' /		Б			Power	[dBm]	1 g SAF	t [W/kg]	Plot
RF Exposure Conditions	Test Position	Dist. [mm]	Ch#	Freq. [MHz]	RB#	Offset	Tune-up Limit	Meas.	Meas.	Scaled	No.
	I G M I	0	00505	000 -	1	25	24.0	22.95	0.479	0.610	7
	Left Touch	0	20525	836.5	25	13	23.0	22.02	0.389	0.487	
	Left Tilt	0	20525	836.5	1	25	24.0	22.95	0.262	0.334	
Head	Lett Int	0	20323	000.0	25	13	23.0	22.02	0.206	0.258	
Heau	Right Touch	0	20525	836.5	1	25	24.0	22.95	0.414	0.527	
	Right Touch	0	20323	000.0	25	13	23.0	22.02	0.330	0.414	
	Right Tilt	0	20525	836.5	1	25	24.0	22.95	0.209	0.266	
	Kight I lit	0	20323	030.0	25	13	23.0	22.02	0.175	0.219	
	Rear	10	20525	836.5	1	25	24.0	22.95	0.507	0.646	8
Body-worn	near	10	20323	000.0	25	13	23.0	22.02	0.402	0.504	
& Hotspot	Front	10	20525	836.5	1	25	24.0	22.95	0.472	0.601	
	Front	10	20323	000.0	25	13	23.0	22.02	0.366	0.459	
	Edge 2	10	20525	836.5	1	25	24.0	22.95	0.284	0.362	
	Edge 2	10	20323	030.0	25	13	23.0	22.02	0.204	0.256	
Hotanot	Edma 2	10	20525	836.5	1	25	24.0	22.95	0.048	0.061	
Hotspot	Edge 3	10	20929	000.0	25	13	23.0	22.02	0.040	0.050	
	Edua 4	10	20525	836.5	1	25	24.0	22.95	0.404	0.514	
	Edge 4	10	20929	836.9	25	13	23.0	22.02	0.310	0.388	

Page 38 of 49

14.5 WLAN (DTS Band)

802.11b (1 Mbps	s) – Duty Cycle 1	00%								
DEE	The state	D: 1		п	Averaged	Power	[dBm]	1 g SAF	t [W/kg]	
RF Exposure Conditions	Test Position	Dist. [mm]	Ch#	Freq. [MHz]	Fast SAR [W/kg]	Tune-up Limit	Meas.	Meas.	Scaled	Plot No.
	Left Touch	0	11	2462	0.029	13.0	12.73			
TT 1	Left Tilt	0	11	2462	0.020	13.0	12.73			
Head	Right Touch	0	11	2462	0.091	13.0	12.73	0.086	0.092	9
	Right Tilt	0	11	2462	0.039	13.0	12.73			
Body-worn	Rear	10	11	2462	0.214	13.0	12.73	0.210	0.223	10
& Hotspot	Front	10	11	2462	0.023	13.0	12.73			
TT	Edge 1	10	11	2462	0.008	13.0	12.73			
Hotspot	Edge 4	10	11	2462	0.080	13.0	12.73			

Note(s):

SAR is not required for 802.11g/n OFDM configurations when the highest <u>reported</u> SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

Page 39 of 49

14.6 SAR Measurement Variability

In accordance with the KDB 865664 D01, these additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The DUT should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a 2nd repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a 3rd repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

		Standalone SAR [W/kg]			
Frequency Band [MHz]	Air Interface	Head	Body		
	GSM 850	0.510	0.552		
835	W-CDMA Band V	0.479	0.538		
	LTE Band 5	0.479	0.507		
1900	PCS 1900	0.273	0.415		
2450	WLAN 802.11b	0.086	0.210		

14.6.1 Highest Measured SAR Configuration in Each Frequency Band

14.6.2 Repeated SAR Measurement Results

Repeated SAR measurement is not required because the highest measured SAR is < 0.80 W/kg.

Page 40 of 49

14.7 Simultaneous Transmission SAR Analysis

14.7.1 Simultaneous Transmission Condition

WWAN can transmit simultaneously with WLAN/Bluetooth.

WLAN cannot transmit simultaneously with Bluetooth since they share an antenna port.

No.	Conditions	Head	Body	Hotspot
1	GSM + WLAN 2.4 GHz	YES	YES	YES
2	W-CDMA + WLAN 2.4 GHz	YES	YES	YES
3	LTE + WLAN 2.4 GHz	YES	YES	YES
4	GSM + Bluetooth	YES	YES	NO
5	W-CDMA + Bluetooth	YES	YES	NO
6	LTE + Bluetooth	YES	YES	NO

14.7.2 Standalone SAR Estimation

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

 $[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] \cdot [\sqrt{f_{(GHz)}} / 7.5] W/kg for 1 g SAR, test separation distances \le 50 mm, or$

0.4 W/kg for 1 g SAR, test separation distances > 50 mm

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied.

	Frequency	Max.	Power	Test	Distance	Estimated SAR
Band	(MHz)	(dBm)	(mW)	Position	(mm)	(W/kg)
	9,400	7 9	-	Head	< 5	0.210
Bluetooth	2480	7.3	б	Body	10	0.105

Page 41 of 49

14.7.3 Sum of the SAR for GSM 850, WLAN & Bluetooth

RF Exposure Conditions	Simultaneous Transmission Scenario				
	GSM 850	DTS	U-NII	Bluetooth	$\begin{array}{c} \Sigma \ 1 \ g \ SAR \\ (W/kg) \end{array}$
Head	0.758	0.092			0.850
	0.758			0.210	0.968
Body-worn	0.820	0.223			1.043
	0.820			0.105	0.925
Hotspot	0.820	0.223			1.043

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1 g SAR is < 1.6 W/kg.

14.7.4 Sum of the SAR for PCS 1900, WLAN & Bluetooth

RF Exposure Conditions	Simultaneous Transmission Scenario				
	PCS 1900	DTS	U-NII	Bluetooth	$\Sigma 1 \text{ g SAR}$ (W/kg)
Head	0.380	0.092			0.472
	0.380			0.210	0.590
Body-worn	0.578	0.223			0.801
	0.578			0.105	0.683
Hotspot	0.578	0.223			0.801

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required.

<u>Conclusion:</u>

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1 g SAR is < 1.6 W/kg.

Page 42 of 49

14.7.5 Sum of the SAR for W-CDMA Band V, WLAN & Bluetooth

RF Exposure Conditions	Si				
	W-CDMA Band V	DTS	U-NII	Bluetooth	$\begin{array}{c} \Sigma \ 1 \ g \ SAR \\ (W/kg) \end{array}$
TT 1	0.542	0.092			0.634
Head	0.542			0.210	0.752
Body-worn	0.609	0.223			0.832
	0.609			0.105	0.714
Hotspot	0.609	0.223			0.832

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required.

Conclusion:

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1 g SAR is < 1.6 W/kg.

14.7.6 Sum of the SAR for LTE Band 5, WLAN & Bluetooth

RF Exposure Conditions	Simultaneous Transmission Scenario				
	LTE Band 5	DTS	U-NII	Bluetooth	$\begin{array}{c} \Sigma \ 1 \ g \ SAR \\ (W/kg) \end{array}$
Head	0.610	0.092			0.702
	0.610			0.210	0.820
Body-worn	0.646	0.223			0.869
	0.646			0.105	0.751
Hotspot	0.646	0.223			0.869

SAR to Peak Location Separation Ratio (SPLSR)

As the sum of the 1 g SAR is < 1.6 W/kg, SPLSR assessment is not required.

<u>Conclusion:</u>

Simultaneous transmission SAR measurement (Volume Scan) is not required because the sum of the 1 g SAR is < 1.6 W/kg.

Page 48 of 49

16 Test Instruments

Shielded Room S3						
Туре	Model	Serial No. (ID)	Manufacturer	Cal. Due		
E-Field Probe	EX3DV4	7372	SPEAG	2017/03/14		
DAE	DAE4	508 (S-3)	SPEAG	2016/11/22		
Robot	RX60L	F02/5R10A1/A/01 (S-7)	Stäubli	N/A		
Probe Alignment Unit	LB5/80	SE UKS 030 AA (S-13)	SPEAG	N/A		
Network Analyzer	E8357A	US41070304	Agilent	2016/10/22		
Dielectric Probe	DAK-3.5	1124 (S-32)	SPEAG	2017/07/11		
835MHz Dipole	D835V2	4d104	SPEAG	2017/05/17		
1900MHz Dipole	D1900V2	5d129	SPEAG	2017/05/05		
2450MHz Dipole	D2450V2	714 (S-6)	SPEAG	2016/11/09		
Signal Generator	MG3710A	6201171711 (B-41)	Anritsu	2016/11/09		
RF Power Amplifier	CGA020M602-2633R	B10840 (A-51)	R&K	N/A		
Directional Coupler	4226-20	03736 (D-87)	Narda Microwave	N/A		
Base Station Simulator	CMU200	103210 (B-21)	Rohde & Schwarz	2017/05/29		
Base Station Simulator	MT8820C	6200918329 (B-5)	Anritsu	2017/02/22		
Power Meter	E4417A	GB41290850 (B-51)	Agilent	2017/06/21		
Power Sensor	E9323A	US40411939 (B-59)	Agilent	2017/06/21		
Power Meter	N1911A	GB45100291 (B-63)	Agilent	2017/07/10		
Power Sensor	N1921A	US44510470 (B-64)	Agilent	2017/07/10		
Attenuator	54A-10	W5675 (D-28)	Weinschel	2017/08/02		
Attenuator	2-20	BY7535 (D-36)	Weinschel	2016/10/12		

NOTE : The calibration interval of the above test instruments is 12 months.

Page 49 of 49

17 Appendix

Refer to separated files for the following appendixes.

- Appendix 1 System Performance Check Plots
- Appendix 2 Highest SAR Test Plots
- Appendix 3 Dosimetric E-Field Probe Calibration Data
- Appendix 4 System Validation Dipole Calibration Data