TEST REPORT

FCC BT Test for ACB10HSGG

Certification

APPLICANT HYUNDAI MOBIS CO., LTD

REPORT NO. HCT-RF-2002-FC005

DATE OF ISSUE February 24, 2020

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 F ax. +82 31 645 6401

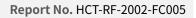
HCT Co., Ltd.

HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

REPORT NO. HCT-RF-2002-FC005

DATE OF ISSUE February 24, 2020

FCC ID TQ8-ACB10HSGG

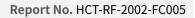

Applicant	HYUNDAI MOBIS CO., LTD 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, South Korea
Eut Type Model Name Additional Model	Car Audio System ACB10HSGG ACB11HSGG, ACB10HSGN, ACB10HSGL, ACB11HSMG
Max. RF Output Power	3.203 dBm (2.09 mW)
Modulation type	GFSK(Normal), $\pi/4DQPSK$ and $8DPSK(EDR)$
FCC Classification	FCC Part 15 Spread Spectrum Transmitter
FCC Rule Part(s)	Part 15 subpart C 15.247
	The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

This test results were applied only to the test methods required by the standard.

Tested by Jin Gwan Lee

Technical Manager Jong Seok Lee

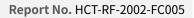
HCT CO., LTD. Soo Chan Lee / CEO


REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	February 24, 2020	Initial Release

Engineering Statement:


The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

CONTENTS

1. EUT DESCRIPTION	5
2. Requirements for Bluetooth transmitter(15.247)	6
3. TEST METHODOLOGY	7
EUT CONFIGURATION	7
EUT EXERCISE	7
GENERAL TEST PROCEDURES	7
DESCRIPTION OF TEST MODES	8
4. INSTRUMENT CALIBRATION	8
5. FACILITIES AND ACCREDITATIONS	8
FACILITIES	8
EQUIPMENT	8
6. ANTENNA REQUIREMENTS	9
7. MEASUREMENT UNCERTAINTY	10
8. DESCRIPTION OF TESTS	11
9. SUMMARY OF TEST RESULTS	29
10. TEST RESULT	30
10.1 PEAK POWER	30
10.2 BAND EDGES	36
10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	43
10.4 NUMBER OF HOPPING FREQUENCY	51
10.5 TIME OF OCCUPANCY (DWELL TIME)	55
10.6 SPURIOUS EMISSIONS	61
10.6.1 CONDUCTED SPURIOUS EMISSIONS	61
10.6.2 RADIATED SPURIOUS EMISSIONS	69
10.6.3 RADIATED RESTRICTED BAND EDGES	76
11. LIST OF TEST EQUIPMENT	79
12. ANNEX A_ TEST SETUP PHOTO	81

1. EUT DESCRIPTION

Model	ACB10HSGG
Additional Model	ACB11HSGG, ACB10HSGN, ACB10HSGL, ACB11HSMG
EUT Type	Car Audio System
Power Supply	DC 14.4 V
Frequency Range	2402 MHz - 2480 MHz
Max. RF Output Power	3.203 dBm (2.09 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)
Modulation Technique	FHSS
Number of Channels	79 Channels, Minimum 20 Channels(AFH)
Antenna Specification	Antenna type: Pattern Antenna Peak Gain : -0.01 dBi
Date(s) of Tests	February 14, 2020 ~ February 19, 2020

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.
 - 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements. Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR § 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

(1) The antennas of this E.U.T are permanently attached.

(2) The E.U.T Complies with the requirement of § 15.203

7. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of

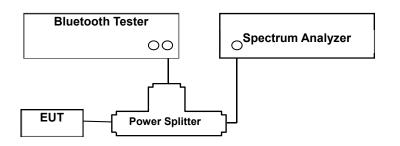
ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the *U*_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

<u>Limit</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

Test Procedure

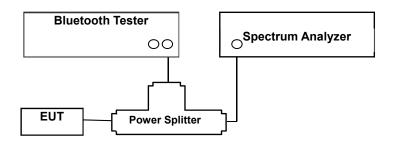
The transmitter output is connected to the Spectrum Analyzer. The Spectrum Analyzer is set to the peak detector mode. This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.5 in ANSI 63.10-2013 & Procedure 10(b)(6)(i) in KDB 558074 v05r02)

- 1) Span: approximately 5 times the 20 dB bandwidth, centered on a hopping channel
- 2) RBW > the 20 dB bandwidth of the emission being measured
- 3) VBW \geq RBW
- 4) Sweep = Auto
- 5) Detector = Peak
- 6) Trace = Max hold

Sample Calculation

Output Power = Spectrum Reading Power + Power Splitter loss + Cable loss(2 ea)


= 10 dBm + 6 dB + 1.5 dB = 17.5 dBm

8.2. Conducted Band Edge(Out of Band Emissions) Limit

According to § 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

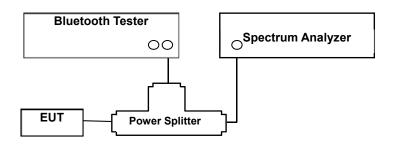
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- 2) Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold

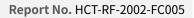


8.3. Frequency Separation & 20 dB Bandwidth

Limit

According to § 15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Configuration

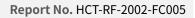


Test Procedure(Frequency Separation)

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW \geq RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

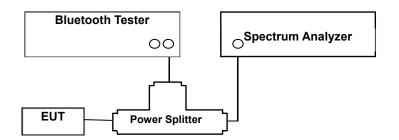


Test Procedure (20 dB Bandwidth)

And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (6.9.2 in ANSI 63.10-2013)

- 1) Span: Set between two times and five times the OBW
- 2) RBW: 1% to 5% of the OBW.
- 3) VBW \geq 3RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.



8.4. Number of Hopping Frequencies

Limit

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

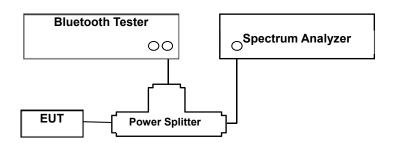
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW \geq RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

Limit

According to § 15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- 2) RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

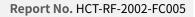
Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

- (1) Non-AFH Mode
- DH 5 (GFSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (1600/6)/79 x 31.6 = 308.27 (ms)

(2) AFH Mode

- DH 5 (GFSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 2-DH 5 (π /4DQPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 x (800/6)/20 x 8.0 = 154.13 (ms)

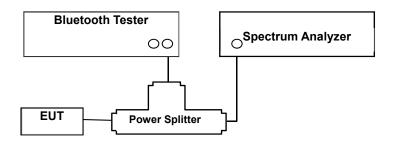

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance.

Each tx-time per appearance of DH5 is 2.890 ms. Dwell time = Tx-time x 106.667 = 308.27 (ms)

F-TP22-03 (Rev. 02)



8.6. Conducted Spurious Emissions

Limit

Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

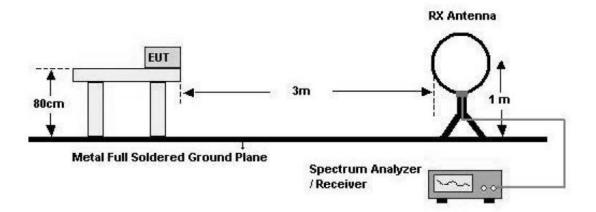
This test is performed with hopping off.

Factors for frequency

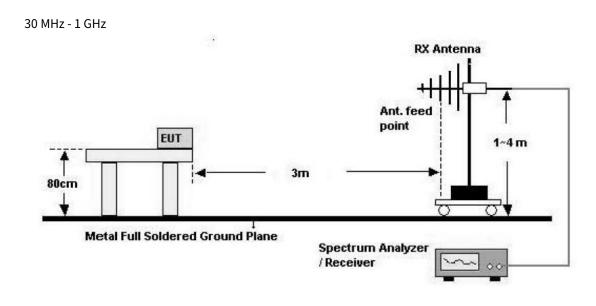
 Freq(MHz)	Factor(dB)
30	6.63
100	6.73
200	6.81
300	6.88
400	6.98
500	7.04
600	7.07
700	7.12
800	7.18
900	7.21
1000	7.26
2000	7.71
2400	7.87
2480	7.87
2500	7.88
3000	7.92
4000	8.2
5000	8.26
5150	8.27
5850	8.37
6000	8.39
7000	8.68
8000	9.02
9000	9.46
10000	9.39
11000	9.45
12000	9.41
13000	9.57
14000	9.88
15000	10.04
16000	9.9
17000	9.94
18000	9.84
19000	10.05
20000	10.21
21000	10.5
22000	10.82
23000	11.21
24000	11.13
25000	11.33
26000	11.27

Note : 1. 2400 ~ 2500 MHz is fundamental frequency range.

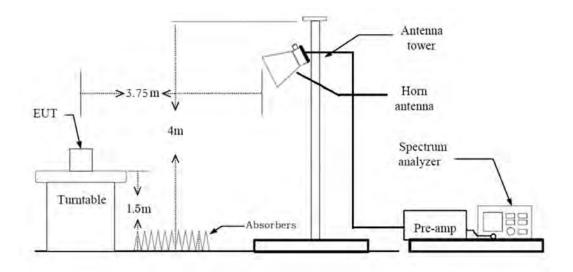
2. Factor = Cable loss(2 EA) + Splitter loss(6 dB) +Eut Cable loss


8.7. Radiated Test

Limit


Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 - 30	30	30

Test Configuration


Below 30 MHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission

level.

- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = $40\log(3 \text{ m}/300 \text{ m})$ = 80 dB
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = $40\log(3 \text{ m}/30 \text{ m})$ = 40 dB
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \geq 3 x RBW

9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1GHz)

1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.

- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - In general, (1) is used mainly
- 6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

7. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 7. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 8. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 9. The unit was tested with its standard battery.
- 10. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW $\geq 1/\tau$ Hz, where τ = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance

Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

1. Radiated test is performed with hopping off.

- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.

4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.

- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 - Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.

9. Spectrum Setting

- (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \geq 3 x RBW
- (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in Number.13 (On Page. 23)
 - * Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB
- 10. Total
 - = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 12. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels = Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' =1
 - c. Worst Case Dwell Time = τ [ms] x H ' = 2.9 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 13. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = H \rightarrow Round up to next highest integer, H ' = 2
 - c. Worst Case Dwell Time = τ [ms] x H ' = 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

8.8. AC Power line Conducted Emissions

Limit

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)	
0.50 to 5	56	46	
5 to 30	60	50	

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.

- For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected

- For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.9. Worst case configuration and mode

Radiated test

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone
- Worstcase : Stand alone
- 2. EUT Axis
 - Radiated Spurious Emissions : X
 - Radiated Restricted Band Edge : X

3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.

- GFSK : DH5
- π/4DQPSK : 2-DH5
- 8DPSK : 3-DH5

4. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.

- Position : Horizontal, Vertical, Parallel to the ground plane

5. ACB10HSGG & Additional Models were tested and the worst case results are reported.

(Worst case : ACB10HSGG)

AC Power line Conducted Emissions

1. We don't perform powerline conducted emission test. Because this EUT is used with vehicle.

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - π/4DQPSK : 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported.

(Worst case : Non-AFH)

3. ACB10HSGG & Additional Models were tested and the worst case results are reported.

(Worst case : ACB10HSGG)

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§ 15.247(a)(1)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§ 15.247(b)(1)	< 0.125 W		PASS
Carrier Frequency Separation	§ 15.247(a)(1)	> 25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§ 15.247(a)(1)(iii)	≥ 15	Conducted	PASS
Time of Occupancy	§ 15.247(a)(1)(iii)	< 400 ms		PASS
Conducted Spurious Emissions	§ 15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§ 15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§ 15.207(a)	cf. Section 8.8		N/A
Radiated Spurious Emissions	§ 15.247(d), 15.205, 15.209	cf. Section 8.7		PASS
Radiated Restricted Band Edge	§ 15.247(d), 15.205, 15.209	cf. Section 8.7	Radiated	PASS
Receiver Spurious Emissions	N/A	cf. Section 8.9		PASS

10. TEST RESULT

10.1 PEAK POWER

Channel (MHz)		Output Power (GFSK)		Limit
	(MHZ)	(dBm)	(mW)	(mW)
Low	2402	1.685	1.47	
Mid	2441	1.774	1.50	125
High	2480	1.395	1.38	

Channel	Frequency		t Power PSK)	Limit
(MHz)	(MHZ)	(dBm)	(mW)	(mW)
Low	2402	3.088	2.04	
Mid	2441	3.203	2.09	125
High	2480	2.853	1.93	

Channel Frequency		Output Power (π/4DQPSK)		Limit
(MHz)	(MHZ)	(dBm)	(mW)	(mW)
Low	2402	2.532	1.79	
Mid	2441	2.650	1.84	125
High	2480	2.266	1.69	

Note:

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB. Actual value of loss for the splitter and cable combination is 7.87 dB at 2400 MHz and is 7.87 dB at 2500 MHz.

So, 7.87 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

Test Plots (GFSK)

Peak Power (CH.0)

RL RF 300 AC Center Freq 2.402000000	GHz PNO: Fast	SENSE:INT Trig: Free Run Atten: 24 dB	#Avg Type: RMS Avg Hold: 1/1	02:00:29 PMFeb 13, 2020 TRACE 2 2 4 5 TYPE MUSEUM DET P P P P P	
Ref Offset 7.87 dB			Mkr1	2.401 990 GHz 1.685 dBm	Auto Tune
10.0		1			Center Free 2.402000000 GH
0 D0					Start Fre 2.399549906 GH
900					Stop Fre 2.404450094 GH
400					CF Ste 490.019 kH Auto Ma
58 0					Freq Offse 0 H
Center 2.402000 GHz #Res BW 3.0 MHz	#VBW	50 MHz	Sweep 1	Span 4.900 MHz .000 ms (1001 pts)	

Test Plots (GFSK) Peak Power (CH.39)

RL RF 500 AC	CHZ PNO: Fast	#Avg Type: RMS Avg Hold: 1/1	02:00:41 PMFeb 13, 2020 TRACE 2 2 4 5 TYPE MULLION DET P P P P P	Frequency
Ref Offset 7.87 dB		Mkr1	2.440 951 GHz 1.774 dBm	Auto Tune
og 10.0	1			Center Fre 2.441000000 GH
00				Start Fre 2.438530115 GH
0.0 				Stop Fre 2.443459885 GH
no				CF Ste 493.977 kH Auto Ma
α9				Freq Offse 0 H
enter 2.441000 GHz Res BW 3.0 MHz	#VBW 50 MHz	Sweep 1	Span 4.940 MHz .000 ms (1001 pts)	

Test Plots (GFSK)

GHz PNO: Fast	SENSE INT Trig: Free Run Atten: 24 dB	#Avg Type: RMS Avg Hold: 1/1	02:00:52 PMFeb 13, 2020 TRACE 2 2 4 5 TYPE MUNICIPAL DET P P P P P	Frequency
		Mkr1	2.479 995 GHz 1.395 dBm	Auto Tune
	1			Center Fre 2.480000000 GH
				Start Fre 2.477566526 GF
				Stop Fre 2.482433474 GF
				CF Ste 486,695 kH Auto Ma
				Freq Offse 0 H
#VBW	50 MHz	Sween	Span 4.867 MHz	
	IFGaint.ow	GHz PNO: Fast	GH2 PRO: Fast +- IFGain:Low Trig: Free Run Atten: 24 dB #Avg Type: RMS Avg Hold: 1/1 1 Mkr1	GHz PRO: Fast Trig: Free Run Atten: 24 dB Avg Hold: 1/1 Trace D2 Mkr1 2.479 995 GHz 1.395 dBm

Test Plots (8DPSK) Peak Power (CH.0)

gilent Spectrum Analyzer - Swept SA RL RF 50 Q AC		SENSE:INT	ALIGNAUTO	02:01:39 PMFeb 13, 2020	Anna
Center Freq 2.40200000	PNO: Fast	Trig: Free Run Atten: 24 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE	Frequency
Ref Offset 7.87 dB 0 dB/div Ref 20.00 dBm			Mkr1 2.4	401 852 11 GHz 3.088 dBm	Auto Tune
10.0		1			Center Fred 2.402000000 GH;
100					Start Free 2.398785000 GH:
30.0					Stop Free 2.405215000 GH
1010					CF Stej 643.000 kH <u>Auto</u> Ma
eno					Freq Offse 0 H
700 Center 2.402000 GHz Res BW 3.0 MHz	#VBW	50 MHz	Sweep 1	Span 6.430 MHz .000 ms (1001 pts)	
Res BW 3.0 MHz	#VBW	50 MHZ	Sweep 1		h.

Test Plots (8DPSK)

Peak Power (CH.39)

PNO: Fast Trig: Free Run IFGain:Low Atten: 24 dB	#Avg Type: RMS Avg Hold: 1/1	TRACE	Frequency
	Mkr1 2.4	40 948 48 GHz 3.203 dBm	Auto Tune
 1			Center Fre 2.441000000 GH
			Start Fre 2.437780000 GF
			Stop Fre 2.444220000 GH
			CF Ste 644.000 kł Auto Ma
			Freq Offs 0 H
#VBW 50 MHz	Sweep 1	Span 6.440 MHz .000 ms (1001 pts)	
	PNO: Fast Trig: Free Run IFGain:Low Atten: 24 dB	PNO: Fast ++ Ing: Free Run Atten: 24 dB Mkr1 2.4	PNO: Fast + Trig: Free Run Arten: 24 dB Mkr1 2.440 948 48 GHz 3.203 dBm


Test Plots (8DPSK) Peak Power (CH.78)

PNO: Fast Irig: Free Run	#Avg Type: RMS Avg Hold: 1/1	02:02:02 PM Feb 13, 2020	Frequency
IFGain:Low Auen. 24 do	Mkr1 2.4		Auto Tune
1			Center Free 2.480000000 GH
			Start Fre 2.476775000 GH
			Stop Fre 2.483225000 GH
			CF Ste 645,000 kH Auto Ma
			Freq Offse 0 H
		Span 6.450 MHz	
	IFGaln:Low Atten: 24 dB	PNO: Fast	PNC: Fast ++ Trig: Free Run Atten: 24 dB Mkr1 2.480 006 45 GHz 2.853 dBm

Test Plots (π/4DQPSK)

Peak Power (CH.0)

Test Plots (π/4DQPSK) Peak Power (CH.39)

RL RF 300 AC Center Freq 2.441000000 (CHZ PNO: Fast IFGain:Low Atten: 24 dB	#Avg Type: RMS	02:01:16 PMFeb 13, 2020 TRACE 2 2 4 5 TYPE MULTINE DET P P P P P	Frequency
Ref Offset 7.87 dB 0 dB/div Ref 20.00 dBm		Mkr1 2	.441 089 32 GHz 2.650 dBm	Auto Tune
10.0				Center Fre 2.441000000 GH
				Start Fre 2.437810000 GH
00				Stop Fre 2.444190000 GH
<u>unp</u>				CF Ste 638.000 kH <u>Auto</u> Ma
60.9				Freq Offse 0 H
70 0 Center 2.441000 GHz #Res BW 3.0 MHz	#VBW 50 MHz	Sweep	Span 6.380 MHz 1.000 ms (1001 pts)	

Test Plots (π/4DQPSK)

Peak Power	(CH.78)
------------	---------

RL RF 50.0 AC Center Freq 2.480000000	GHz	sense INT) ree Run 24 dB	#Avg Type: RMS Avg[Hold: 1/1	02:01:27 PMFeb 13, 2020 TRACE 2 2 4 3 TYPE MULLING DET P P P P P	Frequency
Ref Offset 7.87 dB			Mkr1	2.480 013 GHz 2.266 dBm	Auto Tune
10.0		1			Center Free 2.480000000 GH;
0 00 từ 0					Start Fred 2.476812500 GH
300					Stop Free 2.483187500 GH
100					CF Stej 637.500 kH Auto Ma
£10					Freq Offse 0 H
700 Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 50 MH		Sugar d	Span 6.375 MHz .000 ms (1001 pts)	
sg	#V5W 50 MA	2	Sweep		

10.2 BAND EDGES

Without hopping

Outoido Fraguenou Dond	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	58.605	58.613	58.476	20
Upper	58.497	59.273	59.151	20

With hopping

Outside Frequency Band	GFSK	8DPSK	π/4DQPSK	Limit
	(dB)	(dB)	(dB)	(dBc)
Lower	56.172	57.105	57.636	20
Upper	56.918	57.845	57.425	20

Note :

1. Spectrum reading values are not plot data.

The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

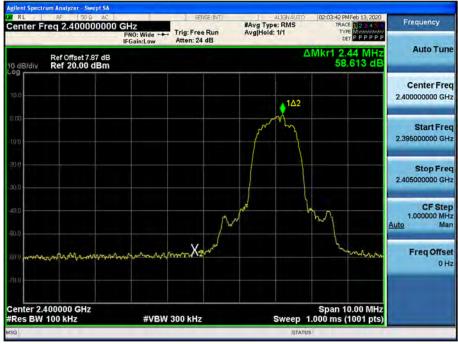
Actual value of loss for the splitter and cable combination is 7.87 dB at 2400 MHz and is 7.87 dB at 2500 MHz.

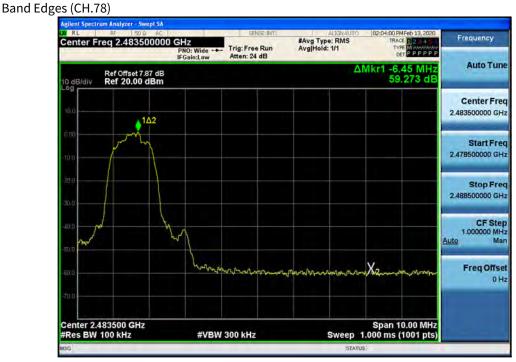
So, 7.87 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.



Test Plots without hopping (GFSK)

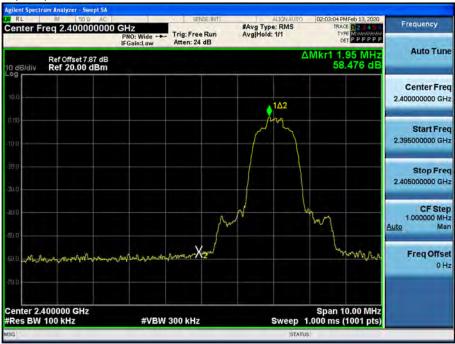
Band Edges (CH.0)


Test Plots without hopping (GFSK) Band Edges (CH.78)



Test Plots without hopping (8DPSK)

Band Edges (CH.0)


Test Plots without hopping (8DPSK)

Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots without hopping (π/4DQPSK) Band Edges (CH.78)

Test Plots with hopping (GFSK)

Band Edges (CH.0)

Test Plots with hopping (GFSK)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK)

Band Edges (CH.78)

Test Plots with hopping ($\pi/4DQPSK$)

Band Edges (CH.0)

Test Plots with hopping (π /4DQPSK)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

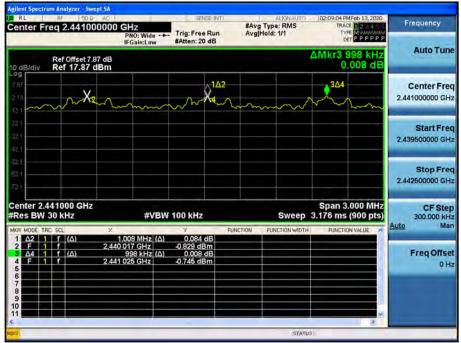
99% BW (kHz)								
Channel	Channel GFSK 8DPSK π/4DQPSK							
CH.0	875.54	1159.7	1156.8					
CH.39	879.77	1157.3	1152.7					
CH.78	876.45	1160.2	1154.1					

20dB BW (kHz)								
Channel	GFSK	8DPSK	π/4DQPSK					
CH.0	980.0	1286	1274					
CH.39	988.0	1288	1276					
CH.78	973.4	1290	1275					

	Channel Separation(kHz)					
GFSK	8DPSK	(kHz)				
000	000	000	>25 kHz			
998	998	998	or >2/3 of the 20dB BW			

Test Plots (GFSK)

Channel Separation


Test Plots (8DPSK) Channel Separation

Test Plots (π/4DQPSK)

Channel Separation

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

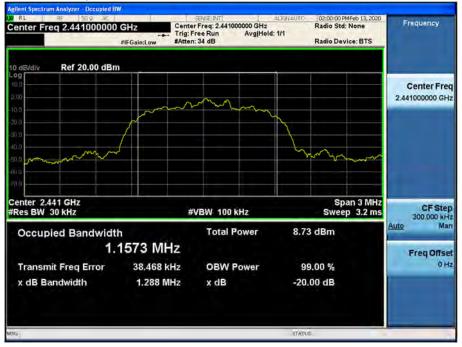
Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

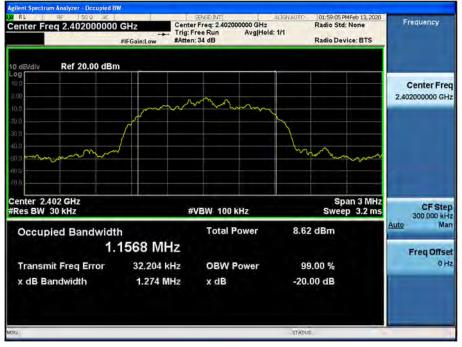
Test Plots (8DPSK)

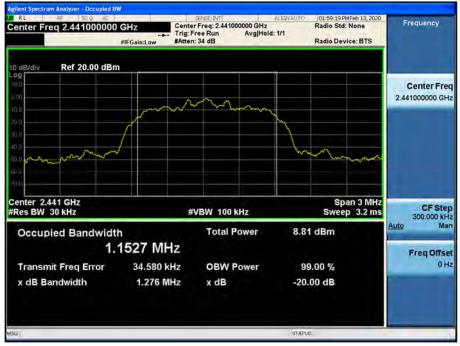

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

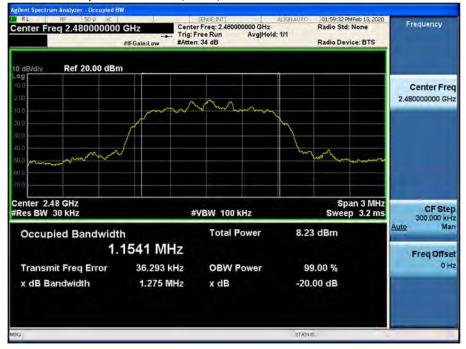
Test Plots (8DPSK)

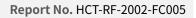

20 dB Bandwidth & Occupied Bandwidth (CH.78)


Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (π /4DQPSK)

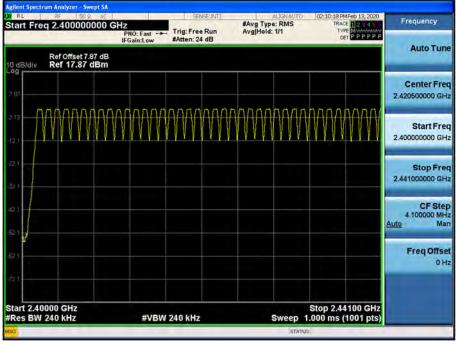

20 dB Bandwidth & Occupied Bandwidth (CH.39)



Test Plots (π/4DQPSK)

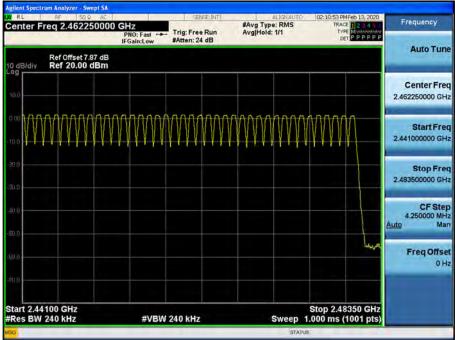
20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

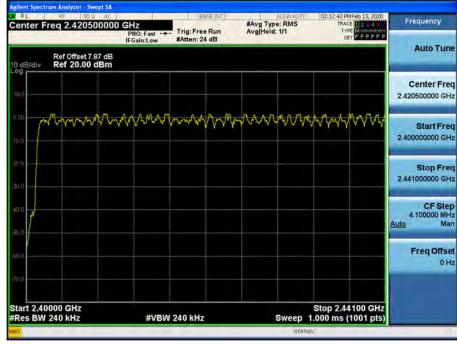

	Result (No. of CH)		
GFSK	8DPSK	π/4DQPSK	Limit
79	79	79	>15

Note :

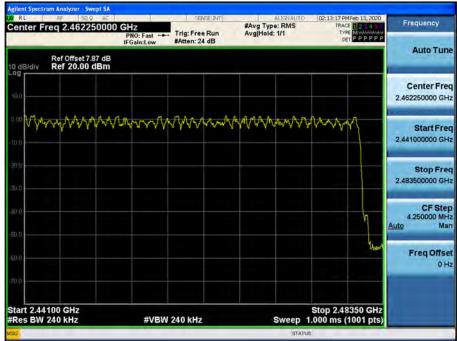
In case of AFH mode, minimum number of hopping channels is 20.



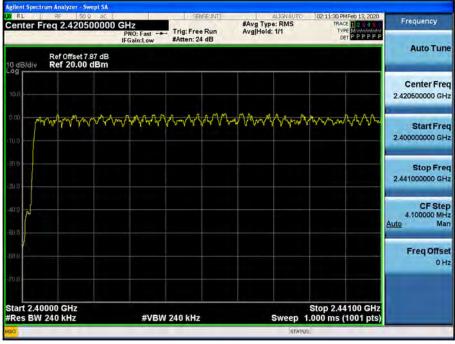
Test Plots (GFSK) Number of Channels (2.4 GHz - 2.441 GHz)


Test Plots (GFSK)

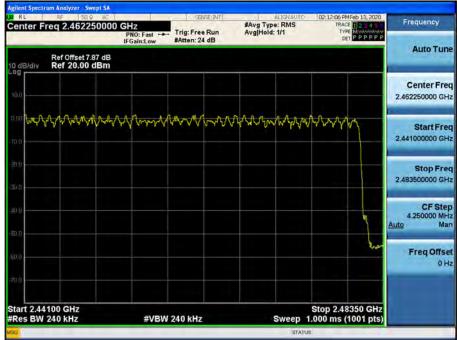
Number of Channels (2.441 GHz - 2.4835 GHz)



Test Plots (8DPSK) Number of Channels (2.4 GHz - 2.441 GHz)


Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)



Test Plots (π/4DQPSK) Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (π/4DQPSK)

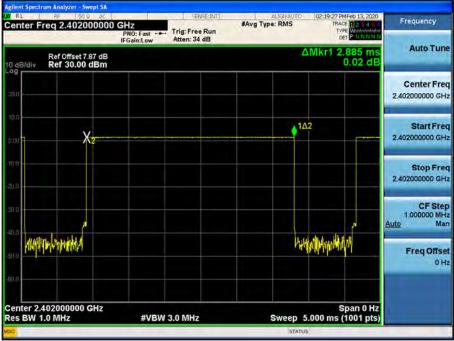
Number of Channels (2.441 GHz - 2.4835 GHz)

10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.885	2.895	2.890
(ms)	Mid	2.890	2.890	2.885
	High	2.890	2.895	2.890

Non-AFH Mode

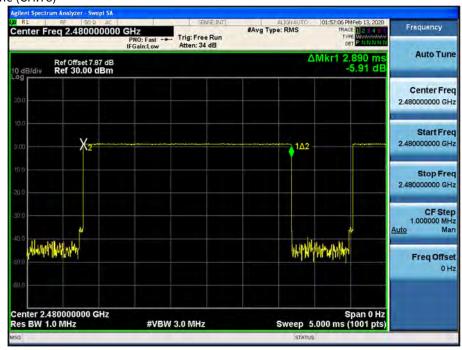
Tatal of	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	307.73	308.80	308.27	31.6	
(ms)	Mid	308.27	308.27	307.73	31.6	400
	High	308.27	308.80	308.27	31.6	1


AFH Mode

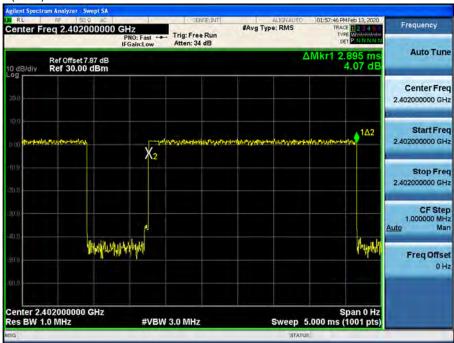
Tatal of	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	153.87	154.40	154.13	8.0	
(ms)	Mid	154.13	154.13	153.87	8.0	400
	High	154.13	154.40	154.13	8.0	

Test Plots (GFSK)

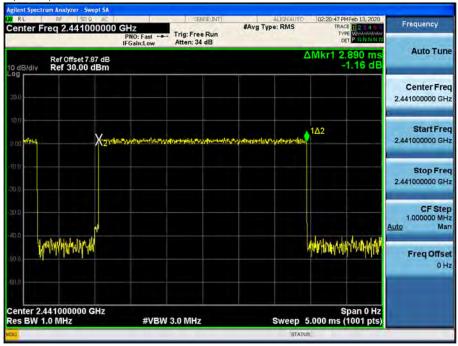
Dwell Time (CH.0)



Test Plots (GFSK) Dwell Time (CH.39)



Test Plots (GFSK) Dwell Time (CH.78)


Test Plots (8DPSK) Dwell Time (CH.0)

Test Plots (8DPSK)

Dwell Time (CH.39)

Test Plots (8DPSK) Dwell Time (CH.78)

Test Plots (π/4DQPSK)

Dwell Time (CH.0)

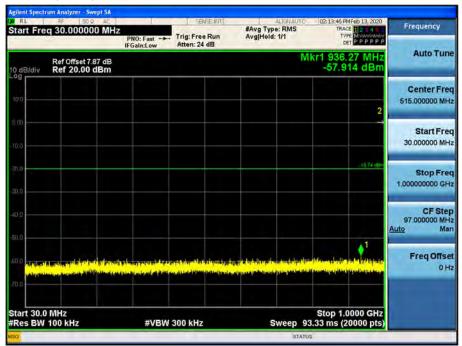
Test Plots (π/4DQPSK) Dwell Time (CH.39)

Test Plots (π/4DQPSK)

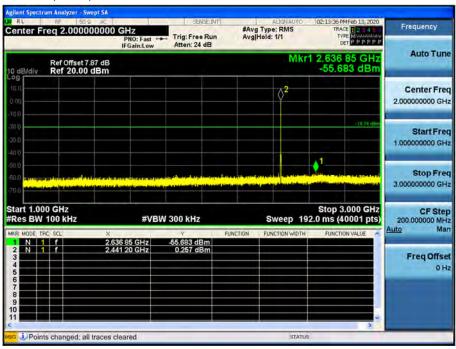
Dwell Time (CH.78)

10.6 SPURIOUS EMISSIONS

10.6.1 CONDUCTED SPURIOUS EMISSIONS

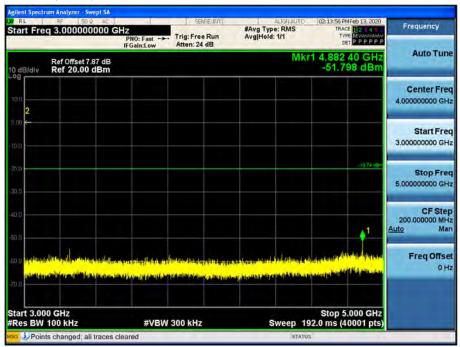

Test Result : please refer to the plot below.

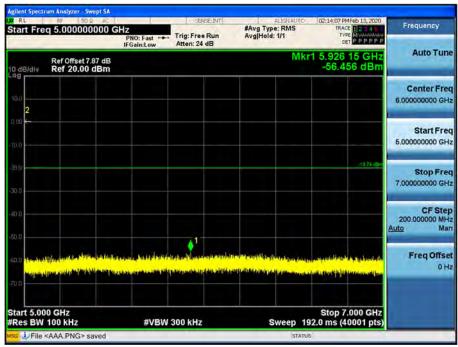
In order to simplify the report, attached plots were only the worst case channel and data rate.



Test Plots (8DPSK)- 30 MHz - 1 GHz

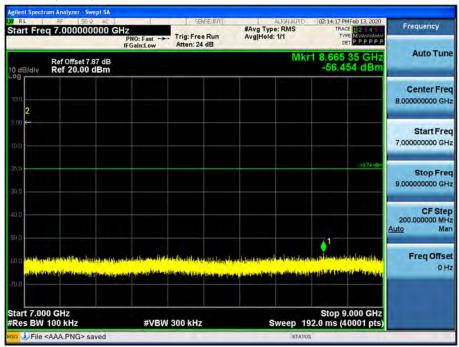
Spurious Emission (CH.39)

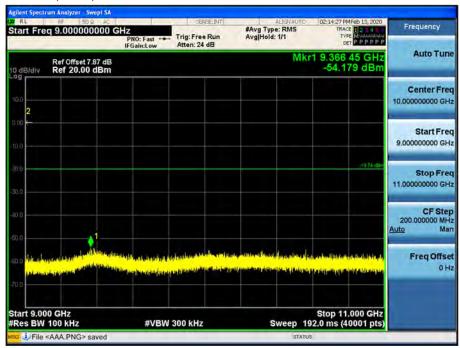

Test Plots (8DPSK)- 1 GHz – 3 GHz



Test Plots(8DPSK)- 3 GHz - 5 GHz

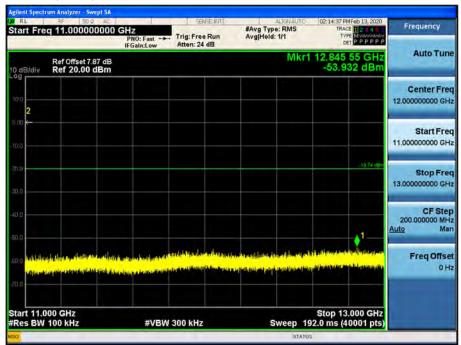
Spurious Emission (CH.39)

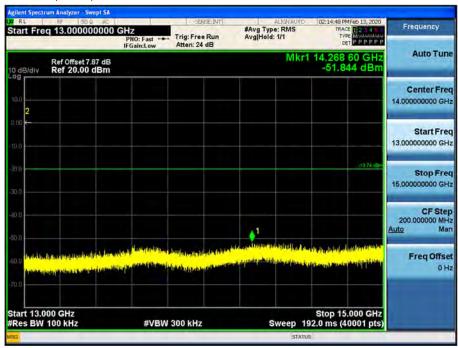

Test Plots (8DPSK)- 5 GHz - 7 GHz



Test Plots(8DPSK)- 7 GHz - 9 GHz

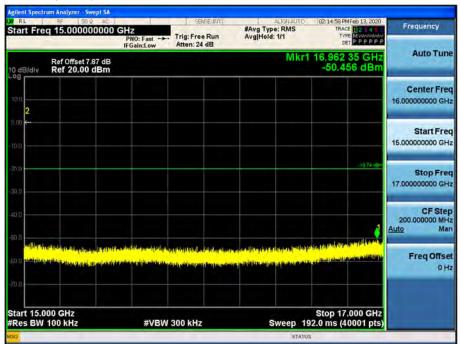
Spurious Emission (CH.39)

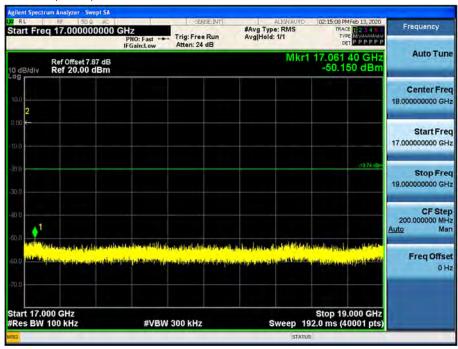

Test Plots(8DPSK)- 9 GHz - 11 GHz



Test Plots(8DPSK) 11 GHz - 13 GHz

Spurious Emission (CH.39)

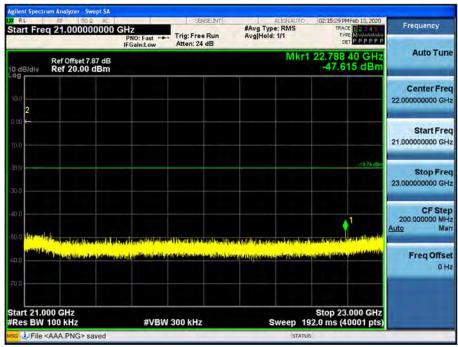

Test Plots (8DPSK)- 13 GHz - 15 GHz



Test Plots(8DPSK)- 15 GHz - 17 GHz

Spurious Emission (CH.39)

Test Plots(8DPSK)- 17 GHz - 19 GHz



Test Plots (8DPSK)- 19 GHz - 21 GHz

Spurious Emission (CH.39)

Test Plots (8DPSK)- 21 GHz - 23 GHz

Test Plots (8DPSK)- 23 GHz - 25 GHz

RL RF 50 Q AC	1	SENSEINT		LIGNAUTO	02:15:39 PMFeb 13, 2020	Para de la compañía de
tart Freq 23.000000000 G	PNO: Fast +++ FGain:Low	Trig: Free Run Atten: 24 dB	#Avg Type Avg Hold:		TYPE MWWWWWWW DET P P P P P	Frequency
Ref Offset 7.87 dB				Mkr1	24,927 10 GHz -45.749 dBm	Auto Tune
00 2						Center Fred 24.000000000 GH2
000 <						Start Free 23.000000000 GH:
n.o					- 19 74 ngun	Stop Fred 25.000000000 GH:
0.0 shidennesku daha ta ta ta ta ta ta	la bilina an islan a is	and stations in	wayne fersterslad	and an international state	And an appropriate the design	CF Step 200.000000 MH Auto Mar
alagahan da da da maya manga na manakin ^{kanan} 20 0	ini unaniden inverse	di nati di kata di kata Kata di kata di	Altrinet see (september 1	and the second second	Andreas and a second and the second and the second s	Freq Offse 0 Ha
tart 23.000 GHz Res BW 100 kHz	#VBW 3	300 kHz	9	ween 10	Stop 25.000 GHz 2.0 ms (40001 pts)	

10.6.2 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40xlog (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin	
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB	
No Critical peaks found								

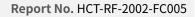
Note:

- 1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 2. Radiated test is performed with hopping off.

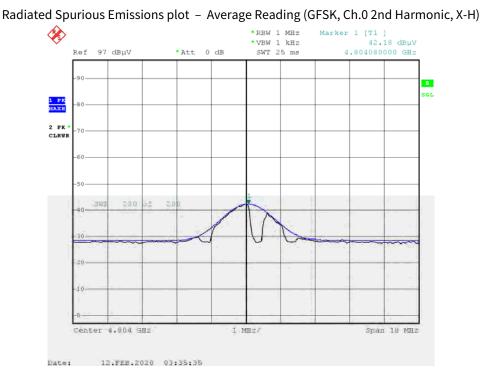
Frequency Range : Above 1 GHz

Operation Mode: CH Low(GFSK)

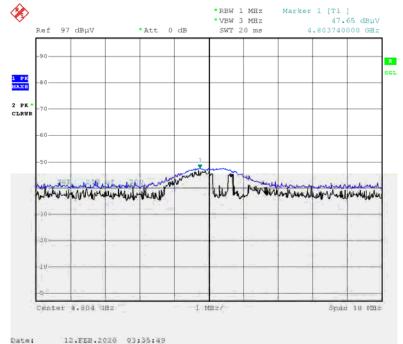
[MHz] [dBuV] [dB] [H/V] [dBuV/m] [dBuV/m] [dB] Type 4804 46.29 2.36 V 48.65 73.98 25.33 PK 4804 40.35 2.36 V 42.71 53.98 11.27 AV 7206 38.78 8.66 V 47.44 73.98 26.54 PK 7206 25.11 8.66 V 33.77 53.98 20.21 AV 4804 47.65 2.36 H 50.01 73.98 23.97 PK 4804 42.18 2.36 H 44.54 53.98 9.44 AV 7206 38.98 8.66 H 47.64 73.98 26.34 PK 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mote: CH Mid(GFSK) [dB] [H/V] [dBuV/m] [dB] Type 4882 44.95 2.84 V <td< th=""><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	-							
[MH2] [LBB0] [HV] [LBB0/H] [LT] AV 7206 38.78 8.66 H 44.54 53.98 20.21 AV 4804 42.18 2.36 H 50.01 73.98 26.34 PK 4804 42.18 2.36 H 44.54 53.98 20.16 AV 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mode: CH Mid(GFSK) [dB1/H] [dB1/H] [dB1/H] [dB1/H] [dB1/H] [dB1/H] [dB1/H] [dB1/H] [dB1/H]	Frequency	Reading	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
4804 40.35 2.36 V 42.71 53.98 11.27 AV 7206 38.78 8.66 V 47.44 73.98 26.54 PK 7206 25.11 8.66 V 33.77 53.98 20.21 AV 4804 47.65 2.36 H 50.01 73.98 23.97 PK 4804 42.18 2.36 H 44.54 53.98 9.44 AV 7206 38.98 8.66 H 47.64 73.98 26.34 PK 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mote: CH Mid(GFSK) [dB] [H/V] [dBUV/m] [dB] Magin Measuremer Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.	[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
7206 38.78 8.66 V 47.44 73.98 26.54 PK 7206 25.11 8.66 V 33.77 53.98 20.21 AV 4804 47.65 2.36 H 50.01 73.98 23.97 PK 4804 42.18 2.36 H 44.54 53.98 9.44 AV 7206 38.98 8.66 H 47.64 73.98 26.34 PK 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mote: CH Mid(GFSK) Frequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measuremen Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 </td <td>4804</td> <td>46.29</td> <td>2.36</td> <td>V</td> <td>48.65</td> <td>73.98</td> <td>25.33</td> <td>PK</td>	4804	46.29	2.36	V	48.65	73.98	25.33	PK
7206 25.11 8.66 V 33.77 53.98 20.21 AV 4804 47.65 2.36 H 50.01 73.98 23.97 PK 4804 42.18 2.36 H 44.54 53.98 9.44 AV 7206 38.98 8.66 H 44.54 53.98 26.34 PK 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mode: CH Mid(GFSK) Margin Masuremer Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 11.62 AV 7323 25.24 9.27 V	4804	40.35	2.36	V	42.71	53.98	11.27	AV
4804 47.65 2.36 H 50.01 73.98 23.97 PK 4804 42.18 2.36 H 44.54 53.98 9.44 AV 7206 38.98 8.66 H 47.64 73.98 26.34 PK 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mode: CH Mid(GFSK) Total Limit Margin Measuremer [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] PK 4882 44.95 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 39.52 2.84 H 48.35 73.98 25.63 PK 7323 25.33 9.27 H 48.44 <td>7206</td> <td>38.78</td> <td>8.66</td> <td>V</td> <td>47.44</td> <td>73.98</td> <td>26.54</td> <td>PK</td>	7206	38.78	8.66	V	47.44	73.98	26.54	PK
4804 42.18 2.36 H 44.54 53.98 9.44 AV 7206 38.98 8.66 H 47.64 73.98 26.34 PK 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mode: CH Mid(GFSK) Frequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measuremen Type [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] PK 4882 44.95 2.84 V 47.79 73.98 26.19 PK 4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 39.52 2.84 H 48.35 73.98 25.54 PK 7323 <td< td=""><td>7206</td><td>25.11</td><td>8.66</td><td>V</td><td>33.77</td><td>53.98</td><td>20.21</td><td>AV</td></td<>	7206	25.11	8.66	V	33.77	53.98	20.21	AV
7206 38.98 8.66 H 47.64 73.98 26.34 PK 7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mode: CH Mid(GFSK) 13.82 53.98 20.16 AV Frequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measuremen Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 39.52 2.84 H 48.35 73.98 25.63 PK 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 39.52 2.84	4804	47.65	2.36	Н	50.01	73.98	23.97	PK
7206 25.16 8.66 H 33.82 53.98 20.16 AV Operation Mode: CH Mid(GFSK) Frequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measurement [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 48.44 73.98 25.54 PK 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323	4804	42.18	2.36	Н	44.54	53.98	9.44	AV
Operation Mode: CH Mid(GFSK) Frequency [MHz] Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] Limit [dBuV/m] Margin [dB] Measuremer Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 48.35 73.98 25.54 PK 7323 39.17 9.27 H 34.60 53.98 11.62 AV Operation Mode: CH High(GFSK)	7206	38.98	8.66	Н	47.64	73.98	26.34	PK
Frequency [MHz] Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] Limit [dBuV/m] Margin [dB] Measuremen Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 48.35 73.98 25.54 PK 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 11.62 AV Operation Mode: CH High(GFSK) Imit Margin Measuremen Type Frequency Reading [dBuV] <td>7206</td> <td>25.16</td> <td>8.66</td> <td>Н</td> <td>33.82</td> <td>53.98</td> <td>20.16</td> <td>AV</td>	7206	25.16	8.66	Н	33.82	53.98	20.16	AV
[MH2] [dBuV] [dB] [H/V] [dBuV/m] [dBuV/m] [dB] Type 4882 44.95 2.84 V 47.79 73.98 26.19 PK 4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 48.31 73.98 25.63 PK 4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 48.35 73.98 25.54 PK 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(GFSK) [dB] [H/V] [dBuV/m] [dB] [dB] [H/V] [dBuV/m] [dB] Type	Operation Mo	ode: CH Mid((GFSK)					1
Image Image <th< td=""><td>Frequency</td><td>Reading</td><td>AN.+CL-AMP G</td><td>Pol.</td><td>Total</td><td>Limit</td><td>Margin</td><td>Measurement</td></th<>	Frequency	Reading	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
4882 38.87 2.84 V 41.71 53.98 12.27 AV 7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 42.36 53.98 11.62 AV 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(FFSK) 53.98 19.38 AV 0 19.38 AV Prequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measuremer [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] Type 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 <t< td=""><td>[MHz]</td><td>[dBuV]</td><td>[dB]</td><td>[H/V]</td><td>[dBuV/m]</td><td>[dBuV/m]</td><td>[dB]</td><td>Туре</td></t<>	[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
7323 39.04 9.27 V 48.31 73.98 25.67 PK 7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 42.36 53.98 11.62 AV 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(GFSK) Margin Margin Measuremer [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] Type 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 34.90 </td <td>4882</td> <td>44.95</td> <td>2.84</td> <td>V</td> <td>47.79</td> <td>73.98</td> <td>26.19</td> <td>PK</td>	4882	44.95	2.84	V	47.79	73.98	26.19	PK
7323 25.24 9.27 V 34.51 53.98 19.47 AV 4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 42.36 53.98 11.62 AV 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(GFSK) Frequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measuremer Type [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] Type 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 48.64 73.98 25.34 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV	4882	38.87	2.84	V	41.71	53.98	12.27	AV
4882 45.51 2.84 H 48.35 73.98 25.63 PK 4882 39.52 2.84 H 42.36 53.98 11.62 AV 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(GFSK) Total Limit Margin Measuremer [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dBU/m] [dB] PK 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 48.64 73.98 25.34 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 36.56 2.14 H 46.74 73.98 27.24 PK 4960 36.56	7323	39.04	9.27	V	48.31	73.98	25.67	PK
4882 39.52 2.84 H 42.36 53.98 11.62 AV 7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(GFSK) H 34.60 53.98 19.38 AV Frequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measuremen Type [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] Type 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 48.64 73.98 25.34 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 36.56 2.14 <	7323	25.24	9.27	V	34.51	53.98	19.47	AV
7323 39.17 9.27 H 48.44 73.98 25.54 PK 7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(GFSK) Frequency Reading AN.+CL-AMP G Pol. Total Limit Margin Measuremen Type [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dBuV/m] [dB] Type 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 48.64 73.98 25.34 PK 4960 44.60 2.14 H 46.74 73.98 27.24 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 36.56 2.14 H 38.70 53.98 15.28 <td>4882</td> <td>45.51</td> <td>2.84</td> <td>Н</td> <td>48.35</td> <td>73.98</td> <td>25.63</td> <td>PK</td>	4882	45.51	2.84	Н	48.35	73.98	25.63	PK
7323 25.33 9.27 H 34.60 53.98 19.38 AV Operation Mode: CH High(GFSK) AN.+CL-AMP G Pol. Total Limit Margin Measuremer [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dB] Type 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 48.64 73.98 25.34 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 36.56 2.14 H 46.74 73.98 27.24 PK 7440 38.66 10.06 H 48.72 73.98 15.28 AV 4960 36.56 2.14 H 38.70 53.98 15.28 </td <td>4882</td> <td>39.52</td> <td>2.84</td> <td>Н</td> <td>42.36</td> <td>53.98</td> <td>11.62</td> <td>AV</td>	4882	39.52	2.84	Н	42.36	53.98	11.62	AV
Operation Mode: CH High(GFSK) AN.+CL-AMP G Pol. Total Limit Margin Measuremen Type [MHz] [dBuV] [dB] [H/V] [dBuV/m] [dBuV/m] [dB] Type 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 48.64 73.98 25.34 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 44.60 2.14 H 46.74 73.98 27.24 PK 7440 38.58 10.06 V 34.90 53.98 19.08 AV 4960 44.60 2.14 H 46.74 73.98 27.24 PK 4960 36.56 2.14 H 38.70 53.98 15.28 AV 7440 38.66	7323	39.17	9.27	Н	48.44	73.98	25.54	PK
Frequency [MHz] Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] Limit [dBuV/m] Margin [dB] Measuremen Type 4960 43.15 2.14 V 45.29 73.98 28.69 PK 4960 35.29 2.14 V 37.43 53.98 16.55 AV 7440 38.58 10.06 V 48.64 73.98 25.34 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 44.60 2.14 H 46.74 73.98 27.24 PK 4960 36.56 2.14 H 38.70 53.98 15.28 AV 4960 36.56 2.14 H 38.70 53.98 15.28 AV 7440 38.66 10.06 H 48.72 73.98 25.26 PK	7323	25.33	9.27	Н	34.60	53.98	19.38	AV
[MHz][dBuV][dB][H/V][dBuV/m][dBuV/m][dB]Type496043.152.14V45.2973.9828.69PK496035.292.14V37.4353.9816.55AV744038.5810.06V48.6473.9825.34PK744024.8410.06V34.9053.9819.08AV496044.602.14H46.7473.9827.24PK496036.562.14H38.7053.9815.28AV744038.6610.06H48.7273.9825.26PK	Operation Mo	ode: CH High	(GFSK)					1
[MH2] [dBdv] [dB] [dB] [dBdv/m] [dBdv/m] [dB]	Frequency	Reading	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
496035.292.14V37.4353.9816.55AV744038.5810.06V48.6473.9825.34PK744024.8410.06V34.9053.9819.08AV496044.602.14H46.7473.9827.24PK496036.562.14H38.7053.9815.28AV744038.6610.06H48.7273.9825.26PK	[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
7440 38.58 10.06 V 48.64 73.98 25.34 PK 7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 44.60 2.14 H 46.74 73.98 27.24 PK 4960 36.56 2.14 H 38.70 53.98 15.28 AV 7440 38.66 10.06 H 48.72 73.98 25.26 PK	4960	43.15	2.14	V	45.29	73.98	28.69	PK
7440 24.84 10.06 V 34.90 53.98 19.08 AV 4960 44.60 2.14 H 46.74 73.98 27.24 PK 4960 36.56 2.14 H 38.70 53.98 15.28 AV 7440 38.66 10.06 H 48.72 73.98 25.26 PK	4960	35.29	2.14	V	37.43	53.98	16.55	AV
4960 44.60 2.14 H 46.74 73.98 27.24 PK 4960 36.56 2.14 H 38.70 53.98 15.28 AV 7440 38.66 10.06 H 48.72 73.98 25.26 PK	7440	38.58	10.06	V	48.64	73.98	25.34	PK
4960 36.56 2.14 H 38.70 53.98 15.28 AV 7440 38.66 10.06 H 48.72 73.98 25.26 PK	7440	24.84	10.06	V	34.90	53.98	19.08	AV
7440 38.66 10.06 H 48.72 73.98 25.26 PK	4960	44.60	2.14	Н	46.74	73.98	27.24	PK
	4960	36.56	2.14	Н	38.70	53.98	15.28	AV
7440 24.86 10.06 H 34.92 53.98 19.06 AV	7440	38.66	10.06	Н	48.72	73.98	25.26	PK
	7440	24.86	10.06	Н	34.92	53.98	19.06	AV

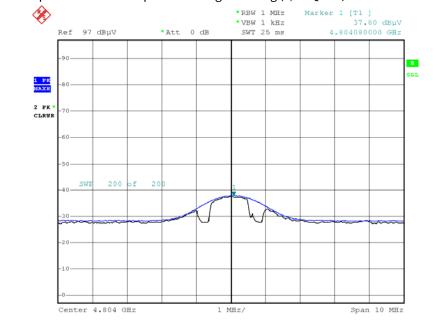

Operation Mo		N/4DQF3N)					
Frequency [MHz]	Reading [dBuV]	AN.+CL-AMP G [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4804	46.80	2.36	V	49.16	73.98	24.82	PK
4804	36.56	2.36	V	38.92	53.98	15.06	AV
7206	38.88	8.66	V	47.54	73.98	26.44	PK
7206	25.32	8.66	V	33.98	53.98	20.00	AV
4804	47.20	2.36	Н	49.56	73.98	24.42	PK
4804	37.80	2.36	Н	40.16	53.98	13.82	AV
7206	39.01	8.66	Н	47.67	73.98	26.31	PK
7206	25.33	8.66	Н	33.99	53.98	19.99	AV
Operation Mo	ode: CH Mid(7	τ/4DQPSK)					
Frequency [MHz]	Reading [dBuV]	AN.+CL-AMP G [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4882	45.20	2.84	V	48.04	73.98	25.94	PK
4882	35.02	2.84	V	37.86	53.98	16.12	AV
7323	39.72	9.27	V	48.99	73.98	24.99	PK
7323	25.41	9.27	V	34.68	53.98	19.30	AV
4882	45.36	2.84	н	48.20	73.98	25.78	PK
4882	35.47	2.84	Н	38.31	53.98	15.67	AV
7323	39.90	9.27	Н	49.17	73.98	24.81	PK
7323	25.43	9.27	Н	34.70	53.98	19.28	AV
Operation Mo							
Frequency [MHz]	Reading [dBuV]	AN.+CL-AMP G [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4960	43.75	2.14	V	45.89	73.98	28.09	PK
4960	31.79	2.14	V	33.93	53.98	20.05	AV
7440	39.38	10.06	V	49.44	73.98	24.54	PK
7440	25.03	10.06	V	35.09	53.98	18.89	AV
4960	44.06	2.14	V H	46.20	73.98	27.78	PK
4960	32.96	2.14	н	35.10	53.98	18.88	AV
7440	39.45	10.06	н	49.51	73.98	24.47	PK
7440	25.05	10.06	н	35.11	53.98	18.87	AV

Operation Mode: CH Low(π /4DQPSK)

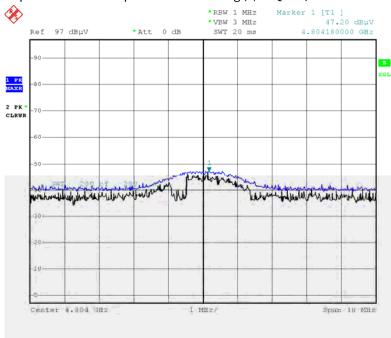

Reading	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
47.59	2.36	V	49.95	73.98	24.03	PK
36.44	2.36	V	38.80	53.98	15.18	AV
39.17	8.66	V	47.83	73.98	26.15	PK
25.22	8.66	V	33.88	53.98	20.10	AV
48.05	2.36	Н	50.41	73.98	23.57	PK
37.83	2.36	Н	40.19	53.98	13.79	AV
39.20	8.66	Н	47.86	73.98	26.12	PK
25.54	8.66	Н	34.20	53.98	19.78	AV
ode: CH Mid(8	3DPSK)					1
Reading	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
45.24	2.84	V	48.08	73.98	25.90	PK
34.26	2.84	V	37.10	53.98	16.88	AV
39.75	9.27	V	49.02	73.98	24.96	PK
25.21	9.27	V	34.48	53.98	19.50	AV
45.55	2.84	Н	48.39	73.98	25.59	PK
35.46	2.84	Н	38.30	53.98	15.68	AV
39.69	9.27	н	48.96	73.98	25.02	PK
25.50	9.27	Н	34.77	53.98	19.21	AV
ode: CH High	(8DPSK)					
Reading	AN.+CL-AMP G	Pol.	Total	Limit	Margin	Measurement
[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
43.97	2.14	V	46.11	73.98	27.87	PK
31.87	2.14	V	34.01	53.98	19.97	AV
37.54	10.06	V	47.60	73.98	26.38	PK
25.07	10.06	V	35.13	53.98	18.85	AV
44.01	2.14	Н	46.15	73.98	27.83	PK
33.05	2.14	Н	35.19	53.98	18.79	AV
38.83	10.06	Н	48.89	73.98	25.09	PK
25.13	10.06	Н	35.19	53.98	18.79	AV
	Reading [dBuV] 47.59 36.44 39.17 25.22 48.05 37.83 39.20 25.54 ode: CH Mid(8 Reading [dBuV] 45.24 39.75 25.51 35.46 39.69 25.50 ode: CH High Reading [dBuV] 45.55 35.46 39.69 25.50 ode: CH High Reading [dBuV] 43.97 31.87 37.54 25.07 44.01 33.05 38.83	[dBuV][dB]47.592.3636.442.3639.178.6625.228.6648.052.3637.832.3637.832.3639.208.6625.548.6625.548.6625.548.6625.548.6625.548.6625.548.6625.548.6625.548.6625.548.6625.548.6625.548.6625.548.6625.542.8434.262.8439.759.2725.219.2725.519.2725.50 <td< td=""><td>Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] 47.59 2.36 V 36.44 2.36 V 39.17 8.66 V 39.17 8.66 V 25.22 8.66 V 48.05 2.36 H 37.83 2.36 H 39.20 8.66 H 25.54 8.66 H 25.54 8.66 H ode: CH Mid(BDPSK) [H/V] [H/V] 45.24 2.84 V 39.75 9.27 V 34.26 2.84 H 35.46 2.84 H 35.46 2.84 H 35.46 2.84 H 35.46 2.84 H 39.69 9.27 H 25.50 9.27 H 25.50 9.27 H 31.87 2.14 V 31.87 2.14 V</td><td>Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] 47.59 2.36 V 49.95 36.44 2.36 V 38.80 39.17 8.66 V 47.83 25.22 8.66 V 33.88 48.05 2.36 H 50.41 37.83 2.36 H 40.19 39.20 8.66 H 47.86 25.54 8.66 H 47.86 25.54 8.66 H 34.20 ode: CH Mid(8DPSK) [dBuV] [dB] [H/V] [dBuV/m] 45.24 2.84 V 48.08 34.26 2.84 V 48.08 34.26 2.84 V 37.10 39.75 9.27 V 44.33 35.46 2.84 H 38.30 39.69 9.27 H 48.96 25.50 9.27 H 48.96 25.50 9.27</td></td<> <td>Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] Limit [dBuV/m] 47.59 2.36 V 49.95 73.98 36.44 2.36 V 38.80 53.98 39.17 8.66 V 38.80 53.98 39.17 8.66 V 33.88 53.98 25.22 8.66 V 33.88 53.98 48.05 2.36 H 50.41 73.98 37.83 2.36 H 40.19 53.98 39.20 8.66 H 34.20 53.98 39.20 8.66 H 34.20 53.98 39.20 8.66 H 34.20 53.98 39.21 8.66 H 34.20 53.98 39.22 8.66 H 34.20 53.98 34.26 2.84 V 48.08 73.98 34.26 2.84 V 37.10 53.98 35.46 2.84 H</td> <td>Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] Limit [dBuV/m] Margin [dB] 47.59 2.36 V 49.95 73.98 24.03 36.44 2.36 V 38.80 53.98 15.18 39.17 8.66 V 47.83 73.98 26.15 25.22 8.66 V 33.88 53.98 20.10 48.05 2.36 H 50.41 73.98 23.57 37.83 2.36 H 40.19 53.98 13.79 39.20 8.66 H 47.86 73.98 26.12 25.54 8.66 H 34.20 53.98 19.78 ode: CH Mid(8DPSK) [dB] [H/V] [dBuV/m] [dB] [dBuV/m] [dB] 45.24 2.84 V 48.08 73.98 25.90 34.26 2.84 V 37.10 53.98 19.50 45.55 2.84 H 48.39 73.98</td>	Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] 47.59 2.36 V 36.44 2.36 V 39.17 8.66 V 39.17 8.66 V 25.22 8.66 V 48.05 2.36 H 37.83 2.36 H 39.20 8.66 H 25.54 8.66 H 25.54 8.66 H ode: CH Mid(BDPSK) [H/V] [H/V] 45.24 2.84 V 39.75 9.27 V 34.26 2.84 H 35.46 2.84 H 35.46 2.84 H 35.46 2.84 H 35.46 2.84 H 39.69 9.27 H 25.50 9.27 H 25.50 9.27 H 31.87 2.14 V 31.87 2.14 V	Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] 47.59 2.36 V 49.95 36.44 2.36 V 38.80 39.17 8.66 V 47.83 25.22 8.66 V 33.88 48.05 2.36 H 50.41 37.83 2.36 H 40.19 39.20 8.66 H 47.86 25.54 8.66 H 47.86 25.54 8.66 H 34.20 ode: CH Mid(8DPSK) [dBuV] [dB] [H/V] [dBuV/m] 45.24 2.84 V 48.08 34.26 2.84 V 48.08 34.26 2.84 V 37.10 39.75 9.27 V 44.33 35.46 2.84 H 38.30 39.69 9.27 H 48.96 25.50 9.27 H 48.96 25.50 9.27	Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] Limit [dBuV/m] 47.59 2.36 V 49.95 73.98 36.44 2.36 V 38.80 53.98 39.17 8.66 V 38.80 53.98 39.17 8.66 V 33.88 53.98 25.22 8.66 V 33.88 53.98 48.05 2.36 H 50.41 73.98 37.83 2.36 H 40.19 53.98 39.20 8.66 H 34.20 53.98 39.20 8.66 H 34.20 53.98 39.20 8.66 H 34.20 53.98 39.21 8.66 H 34.20 53.98 39.22 8.66 H 34.20 53.98 34.26 2.84 V 48.08 73.98 34.26 2.84 V 37.10 53.98 35.46 2.84 H	Reading [dBuV] AN.+CL-AMP G [dB] Pol. [H/V] Total [dBuV/m] Limit [dBuV/m] Margin [dB] 47.59 2.36 V 49.95 73.98 24.03 36.44 2.36 V 38.80 53.98 15.18 39.17 8.66 V 47.83 73.98 26.15 25.22 8.66 V 33.88 53.98 20.10 48.05 2.36 H 50.41 73.98 23.57 37.83 2.36 H 40.19 53.98 13.79 39.20 8.66 H 47.86 73.98 26.12 25.54 8.66 H 34.20 53.98 19.78 ode: CH Mid(8DPSK) [dB] [H/V] [dBuV/m] [dB] [dBuV/m] [dB] 45.24 2.84 V 48.08 73.98 25.90 34.26 2.84 V 37.10 53.98 19.50 45.55 2.84 H 48.39 73.98

Operation Mode: CH Low(8DPSK)

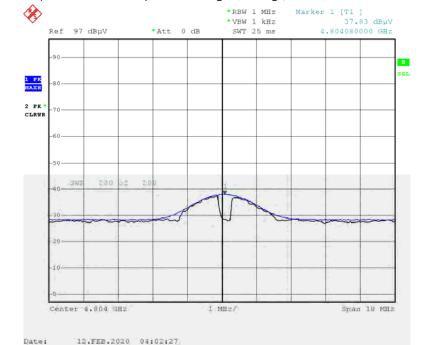



RESULT PLOTS (Worst case)

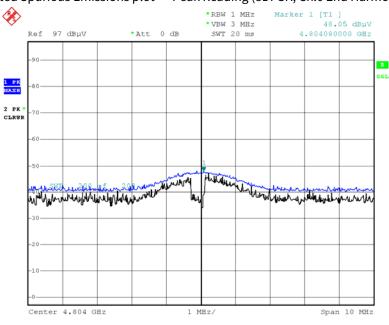
Radiated Spurious Emissions plot - Peak Reading (GFSK, Ch.0 2nd Harmonic, X-H)



Radiated Spurious Emissions plot – Average Reading (π/4DQPSK, Ch.0 2nd Harmonic, H)


Date: 12.FEB.2020 04:01:15

Radiated Spurious Emissions plot – Peak Reading (π /4DQPSK, Ch.0 2nd Harmonic, H)


Date: 12.EEB.2020 04:01:25

Radiated Spurious Emissions plot - Average Reading (8DPSK, Ch.0 2nd Harmonic, H)

Date: 12.FEB.2020 04:02:51

Note:

Plot of worst case are only reported.

10.6.3 RADIATED RESTRICTED BAND EDGES

Operation Mode Operating Frequency Channel No Normal(GFSK) 2402 MHz, 2480 MHz CH 0, CH 78

Frequency [MHz]	Reading [dBuV]	※ A.F.+CL [dB]	Pol. [H/V]	Duty Cycle Correction [dB]	Total	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	47.38	0.56	Н	0	47.94	73.98	26.04	PK
2390.0	37.24	0.56	Н	-24.73	13.06	53.98	40.92	AV
2390.0	48.05	0.56	V	0	48.61	73.98	25.37	PK
2390.0	38.73	0.56	V	-24.73	14.55	53.98	39.43	AV
2483.5	56.04	1.24	Н	0	57.28	73.98	16.70	PK
2483.5	53.23	1.24	Н	-24.73	29.73	53.98	24.25	AV
2483.5	56.97	1.24	V	0	58.21	73.98	15.77	PK
2483.5	54.15	1.24	V	-24.73	30.65	53.98	23.33	AV

Operation Mode

Operating Frequency Channel No $EDR(\pi/4DQPSK)$

2402 MHz, 2480 MHz	
CH 0, CH 78	

Frequency [MHz]	Reading [dBuV]	※ A.F.+CL [dB]	Pol. [H/V]	Duty Cycle Correction [dB]		Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	47.03	0.56	н	0	47.59	73.98	26.39	PK
2390.0	35.88	0.56	н	-24.73	11.70	53.98	42.28	AV
2390.0	47.10	0.56	V	0	47.66	73.98	26.32	PK
2390.0	36.57	0.56	V	-24.73	12.39	53.98	41.59	AV
2483.5	56.47	1.24	н	0	57.71	73.98	16.27	PK
2483.5	51.41	1.24	н	-24.73	27.91	53.98	26.07	AV
2483.5	57.38	1.24	V	0	58.62	73.98	15.36	PK
2483.5	52.67	1.24	V	-24.73	29.17	53.98	24.81	AV

Operation Mode	EDR(8DPSK)
Operating Frequency	2402 MHz, 2480 MHz
Channel No	СН 0, СН 78

Frequency [MHz]	Reading [dBuV]	※ A.F.+CL [dB]	Pol. [H/V]	Duty Cycle Correction [dB]	Total	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	47.26	0.56	Н	0	47.82	73.98	26.16	PK
2390.0	36.12	0.56	Н	-24.73	11.94	53.98	42.04	AV
2390.0	47.75	0.56	V	0	48.31	73.98	25.67	PK
2390.0	36.69	0.56	V	-24.73	12.51	53.98	41.47	AV
2483.5	56.27	1.24	н	0	57.51	73.98	16.47	PK
2483.5	51.19	1.24	Н	-24.73	27.69	53.98	26.29	AV
2483.5	57.23	1.24	V	0	58.47	73.98	15.51	PK
2483.5	52.72	1.24	V	-24.73	29.22	53.98	24.76	AV

RESULT PLOTS (Worst case : X-V)

2.5 MHz/

warming and the shipping and a shipping

F

Span 25 MHz

Date: 12.FEB.2020 01:28:22

Center 2.4875 GHz

Note:

Plot of worst case are only reported.

11. LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Rohde & Schwarz	ENV216 / LISN	09/11/2019	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/18/2019	Annual	100033
ESPAC	SU-642 /Temperature Chamber	03/12/2019	Annual	0093008124
Agilent	N9020A / Signal Analyzer	05/23/2019	Annual	MY51110085
Agilent	N9030A / Signal Analyzer	01/13/2020	Annual	MY49431210
Agilent	N1911A / Power Meter	04/10/2019	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/10/2019	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/11/2019	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	05/24/2019	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/18/2019	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/02/2019	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
HCT CO., LTD.	FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	N/A	N/A
Rohde & Schwarz	CBT / Bluetooth Tester	05/16/2019	Annual	100422

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

Manufacturer	Model / Equipment	Calibration Date	Calibration Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Emco	2090 / Controller	N/A	N/A	060520
Ets	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	04/26/2019	Biennial	1513-175
Schwarzbeck	VULB 9160 / Hybrid Antenna	08/09/2018	Biennial	3368
Schwarzbeck	BBHA 9120D / Horn Antenna	11/18/2019	Biennial	9120D-1191
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	11/29/2019	Biennial	BBHA9170541
Rohde & Schwarz	FSP(9 kHz ~ 30 GHz) / Spectrum Analyzer	09/11/2019	Annual	836650/016
Rohde & Schwarz	FSV40-N / Spectrum Analyzer	09/26/2019	Annual	101068-SZ
Wainwright Instruments	WRCJV2400/2483.5-2370/2520- 60/12SS / Band Reject Filter	06/19/2019	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	02/10/2020	Annual	1
CERNEX WEINSCHEL	CBLU1183540B-01/Broadband Bench Top LNA 56-10 / Attenuator(10 dB)	12/24/2019	Annual	N/A
CERNEX Api tech.	CBL06185030 / Broadband Low Noise Amplifier 18B-03 / Attenuator (3 dB)	12/24/2019	Annual	N/A
Wainwright Instruments	WHKX10-2700-3000-18000-40SS / High Pass Filter	12/24/2019	Annual	N/A
Wainwright Instruments	WHKX8-6090-7000-18000-40SS / High Pass Filter	12/24/2019	Annual	N/A
T&M SYSTEM	COAXIAL ATTENUATOR / Thru	12/24/2019	Annual	N/A
CERNEX	CBL18265035 / Power Amplifier	12/26/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/18/2019	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/26/2019	Annual	3000C000276

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

12. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2002-FC005-P