

FCC RADIO TEST REPORT FCC ID: 2BA4J-ZHD520R

Product: Digital DAY/NIGHT SCOPE

Trade Mark: HITTAC , ARKEN -ZULUS

Model No.: COMPACT HD 5 - 20X LRF

CP258R, CP238R, ZHD520, ZHD520R,

Family Model: ZHD16,ZHD312,CP258RCN,

COMPACT HD 3 - 12X LRF, COMPACT HD 1 - 6X LRF

Report No.: S23072005606002

Issue Date: Sep 18, 2023

Prepared for

Pangooptics

201A, Building 13, Xingong International Industrial Park, Yuelu District, Changsha City, Hunan Province

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1/F, Building E, Fenda Science Park, Sanwei Community,
Xixiang Street Bao'an District, Shenzhen 518126 P.R. China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090

Website: http://www.ntek.org.cn

Version.1.3 Page 1 of 74

TABLE OF CONTENTS

1 7	FEST RESULT CERTIFICATION	3
2 S	SUMMARY OF TEST RESULTS	4
3 H	FACILITIES AND ACCREDITATIONS	5
3.1	FACILITIES	
3.2 3.3		
4 (GENERAL DESCRIPTION OF EUT	6
5 I	DESCRIPTION OF TEST MODES	8
6 8	SETUP OF EQUIPMENT UNDER TEST	10
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
6.2		
6.3		
7]	TEST REQUIREMENTS	14
7.1	CONDUCTED EMISSIONS TEST	
7.2	THE DESIGNATION OF PROPERTY AND ADDRESS OF THE PROPERTY OF THE	
7.3	v= = =	
7.4		
7.5		
7.6		
7.7		
7.8 7.9		
	TEST RESULTS	
8.1	DUTY CYCLE	
8.2		
8.3		
8.4 8.5		
8.6		
8.7		
0.7	CONDUCTED IN SPURIOUS EMISSION	

1 TEST RESULT CERTIFICATION

Applicant's name:	Pangooptics		
Address:	201A, Building 13, Xingong International Industrial Park, Yuelu District, Changsha City, Hunan Province		
Manufacturer's Name:	Pangooptics		
Address:	201A, Building 13, Xingong International Industrial Park, Yuelu District, Changsha City, Hunan Province		
Factory's name:	Pangooptics		
Address:	201A, Building 13, Xingong International Industrial Park, Yuelu District, Changsha City, Hunan Province		
Product description			
Product name:	Digital DAY/NIGHT SCOPE		
Model and/or type reference:	COMPACT HD 5 - 20X LRF		
Family Model:	CP258R,CP238R,ZHD520,ZHD520R,ZHD16,ZHD312,CP258RCN, COMPACT HD 3 - 12X LRF,COMPACT HD 1 - 6X LRF		
Test Sample Number	S230720056006		

Measurement Procedure Used:

Wedsdrement i recedure esed:					
APPLICABLE STANDARDS					
TEST RESULT					
Complied					
Complied					

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Jul 20. 2023 ~ Sep 04, 2023	
Prepared By	: Gavan Zhang	
	Gavan Zhang (Project Engineer)	
	Sason Cheng	
Reviewed By	:	
	Aaron Cheng (Supervisor)	
Approved By	:Li	
	Alex Li (Manager)	

Version.1.3 Page 3 of 74

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section	Verdict	Remark				
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Maximum Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	15.247 (d) Spurious RF Conducted Emission					
15.203 Antenna Requirement		PASS				

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Version.1.3 Page 4 of 74

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CAB identifier: CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for

the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District

Shenzhen, Guangdong, China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

uncertain	incertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.				
No.	Item	Uncertainty			
1	Conducted Emission Test	±2.80dB			
2	RF power, conducted	±0.16dB			
3	Spurious emissions, conducted	±0.21dB			
4	All emissions, radiated(30MHz~1GHz)	±2.64dB			
5	All emissions, radiated(1GHz~6GHz)	±2.40dB			
6	All emissions, radiated(>6GHz)	±2.52dB			
7	Temperature	±0.5°C			
8	Humidity	±2%			
9	All emissions, radiated(9KHz~30MHz)	±6dB			
10	Occupied bandwidth	±3.7dB			

Version.1.3 Page 5 of 74

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Digital DAY/NIGHT SCOPE			
Trade Mark HITTAC ,ARKEN -ZULUS				
FCC ID	2BA4J-ZHD520R			
Model No.	COMPACT HD 5 - 20X LRF			
Family Model	CP258R,CP238R,ZHD520,ZHD520R,ZHD16,ZHD312,CP258RCN, COMPACT HD 3 - 12X LRF,COMPACT HD 1 - 6X LRF			
Model Difference	All models are the same circuit and RF module, except the model name.			
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20);			
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;			
Number of Channels	11 channels for 802.11b/g/11n(HT20);			
Antenna Type	PCB antenna			
Antenna Gain	-1.43 dBi			
Power supply	DC 5V from Charge port or DC 3.6V from battery			
Adapter	N/A			
Battery	N/A			
HW Version	N/A			
FW Version	N/A			

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Version.1.3 Page 6 of 74

Revision History

Report No.	Version	Description	Issued Date
S23072005606002	Rev.01	Initial issue of report	Sep 18, 2023

Version.1.3 Page 7 of 74

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0;) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20):

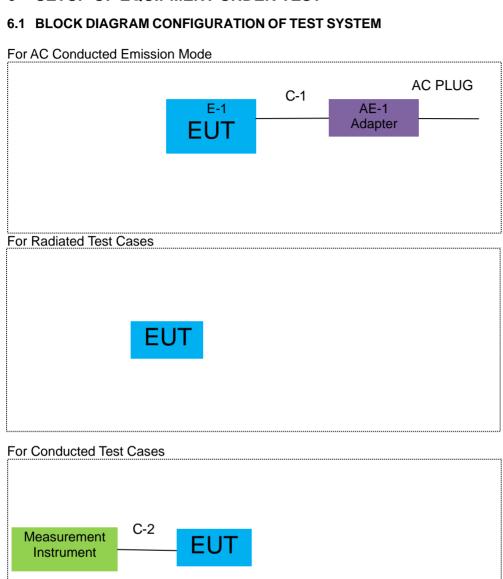
Channel	Frequency(MHz)
1	2412
2	2417
	•••
5	2432
6	2437
	•••
10	2457
11	2462

Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

EUT built-in battery-powered, the battery is fully-charged.

EUT can be set to greater than 98% duty cycle for testing.


Version.1.3 Page 8 of 74

Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
	11b/CCK	1 Mbps	1/6/11	1
Power Spectral Density	11g/BPSK 11n HT20	6 Mbps	1/6/11	1
	11n H120	MCS0	1/6/11	1
	141 (0.01)		1,10,111	
EdD Chastrum Dandwidth	11b/CCK	1 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
D #	11b/CCK	1 Mbps	1/6/11	1
Radiated Emissions Above 1GHz	11g/BPSK	6 Mbps	1/6/11	1
10112	11n HT20	MCS0	1/6/11	1
	11b/CCK	1 Mbps	1/6/11	1
Band Edge Emissions	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1

Version.1.3 Page 9 of 74

6 SETUP OF EQUIPMENT UNDER TEST

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Version.1.3 Page 10 of 74

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No. Series No.		Note
E-1	Digital DAY/NIGHT SCOPE	COMPACT HD 5 - 20X LRF	N/A	EUT
AE-1	Adapter	pter N/A N		Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	Power Cable	NO	NO	1.0m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Version.1.3 Page 11 of 74

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

\ <u>auiai</u>	iona Conducted i	est equipment					
Iten	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4440A	MY41000130	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.05.29	2024.05.28	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.15	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2025.03.30	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.27	2026.03.26	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.3 Page 12 of 74

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Version.1.3 Page 13 of 74

7 TEST REQUIREMENTS

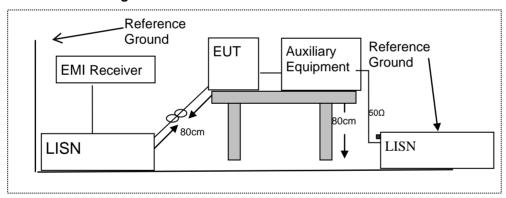
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Fraguency/MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

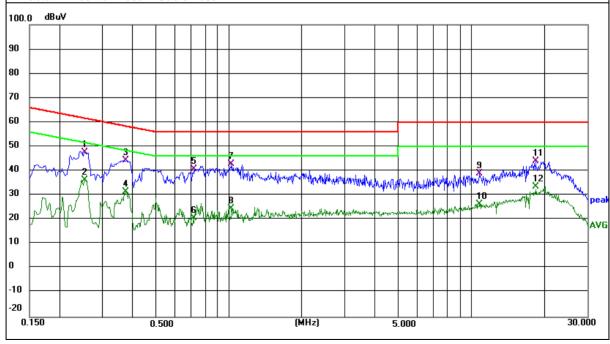
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

Version.1.3 Page 14 of 74


7.1.6 Test Results

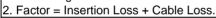
EUT:	Digital DAY/NIGHT SCOPE	IIVIOGEI IVAME •	COMPACT HD 5 - 20X LRF
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
	DC 5V from adapter AC 120V/60Hz	Test Mode:	Normal Link

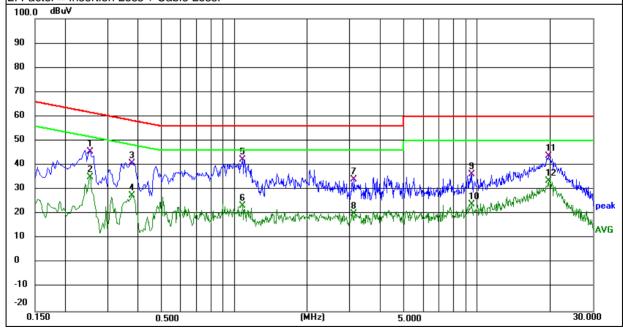
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2540	37.53	10.14	47.67	61.63	-13.96	QP
0.2540	26.14	10.14	36.28	51.63	-15.35	AVG
0.3740	33.84	10.38	44.22	58.41	-14.19	QP
0.3740	21.12	10.38	31.50	48.41	-16.91	AVG
0.7180	29.68	11.09	40.77	56.00	-15.23	QP
0.7180	9.70	11.09	20.79	46.00	-25.21	AVG
1.0220	31.26	11.70	42.96	56.00	-13.04	QP
1.0220	12.99	11.70	24.69	46.00	-21.31	AVG
10.7940	29.16	9.69	38.85	60.00	-21.15	QP
10.7940	16.70	9.69	26.39	50.00	-23.61	AVG
18.3340	34.20	9.71	43.91	60.00	-16.09	QP
18.3340	23.81	9.71	33.52	50.00	-16.48	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.3 Page 15 of 74




EUT:	Digital DAY/NIGHT SCOPE	IIVIOGEI IVIAME .	COMPACT HD 5 - 20X LRF
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 5V from adapterAC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2540	35.33	10.14	45.47	61.63	-16.16	QP
0.2540	24.77	10.14	34.91	51.63	-16.72	AVG
0.3780	30.23	10.40	40.63	58.32	-17.69	QP
0.3780	17.29	10.40	27.69	48.32	-20.63	AVG
1.0820	30.58	11.82	42.40	56.00	-13.60	QP
1.0820	11.45	11.82	23.27	46.00	-22.73	AVG
3.1099	24.62	9.67	34.29	56.00	-21.71	QP
3.1099	10.36	9.67	20.03	46.00	-25.97	AVG
9.5260	26.68	9.69	36.37	60.00	-23.63	QP
9.5260	14.34	9.69	24.03	50.00	-25.97	AVG
19.7060	34.14	9.72	43.86	60.00	-16.14	QP
19.7060	23.72	9.72	33.44	50.00	-16.56	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

Version.1.3 Page 16 of 74

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

According to FCC Part 15.200	o, restricted barras		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	/m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

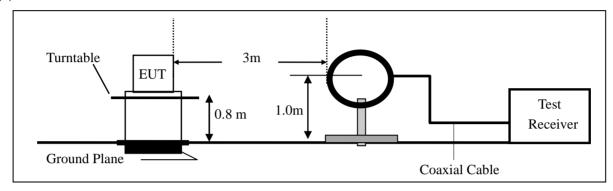
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

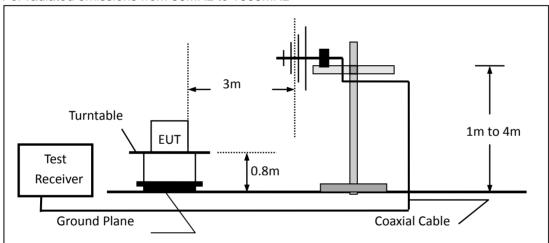
Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

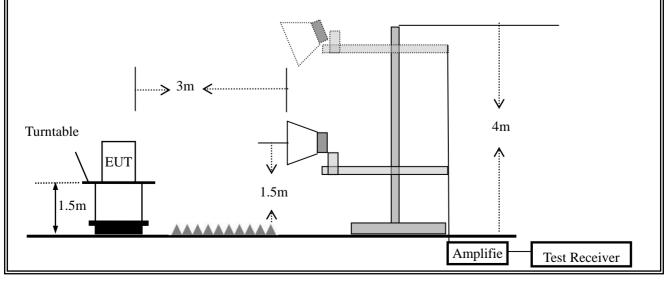
Version.1.3 Page 17 of 74



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.3 Page 18 of 74

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Version.1.3 Page 19 of 74

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

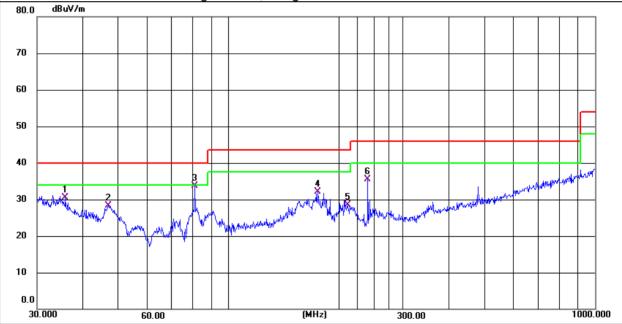
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Digital DAY/NIGHT	SCOPE	Model No.:	COMPACT HD 5 - 20X LRF
Temperature:	20 ℃		Relative Humidity:	48%
Test Mode:	802.11b/g/n(HT20)		Test By:	Gavan Zhang

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

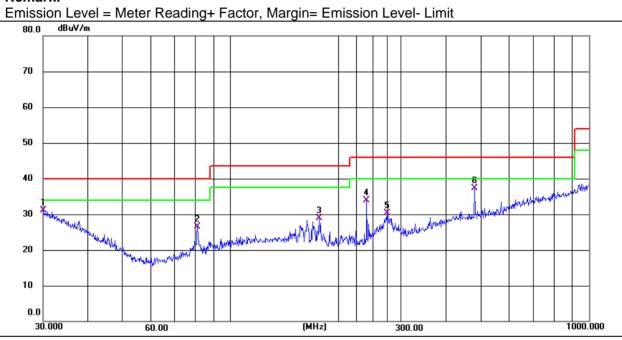
Version.1.3 Page 20 of 74


■ Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the worst result was report as below:

EUT:	Digital DAY/NIGHT SCOPE	Model Name:	COMPACT HD 5 - 20X LRF
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	802.11g CH01
Test Voltage:	DC 3.6V from battery		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	35.8746	7.31	23.23	30.54	40.00	-9.46	QP
V	46.9948	11.29	16.99	28.28	40.00	-11.72	QP
V	80.9275	18.25	15.51	33.76	40.00	-6.24	QP
V	175.0368	14.97	17.22	32.19	43.50	-11.31	QP
V	211.5265	11.92	16.67	28.59	43.50	-14.91	QP
V	239.9874	17.50	18.04	35.54	46.00	-10.46	QP

Remark:


Emission Level = Meter Reading+ Factor, Margin= Emission Level- Limit

Version.1.3 Page 21 of 74

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	30.1054	4.73	26.41	31.14	40.00	-8.86	QP
Н	80.9275	10.98	15.51	26.49	40.00	-13.51	QP
Н	176.8878	11.77	17.11	28.88	43.50	-14.62	QP
Н	239.9874	15.87	18.04	33.91	46.00	-12.09	QP
Н	273.2341	10.40	19.83	30.23	46.00	-15.77	QP
Н	480.5276	12.69	24.65	37.34	46.00	-8.66	QP

Remark:

Page 22 of 74 Version.1.3

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

EUT:	Digital DAY/NIGHT SCOPE	Model No.:	COMPACT HD 5 - 20X LRF
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n(HT20)	Test By:	Gavan Zhang

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Read	Cable	Antenna	Preamp	Emission	Limits	Margin		
	Level	loss	Factor	Factor	Level			Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
			1	•	, ,	g)Above 10			
4824.069	65.72	5.21	35.59	44.30	62.22	74.00	-11.78	Pk	Vertical
4824.069	46.11	5.21	35.59	44.30	42.61	54.00	-11.39	AV	Vertical
7236.154	64.72	6.48	36.27	44.60	62.87	74.00	-11.13	Pk	Vertical
7236.154	50.36	6.48	36.27	44.60	48.51	54.00	-5.49	AV	Vertical
4824.103	67.56	5.21	35.55	44.30	64.02	74.00	-9.98	Pk	Horizontal
4824.103	49.38	5.21	35.55	44.30	45.84	54.00	-8.16	AV	Horizontal
7236.146	67.03	6.48	36.27	44.52	65.26	74.00	-8.74	Pk	Horizontal
7236.146	44.59	6.48	36.27	44.52	42.82	54.00	-11.18	AV	Horizontal
			Mid Char	nel (2437 N	ЛHz)(802.11	g)Above 10	}		
4874.135	64.48	5.21	35.66	44.20	61.15	74.00	-12.85	Pk	Vertical
4874.135	45.86	5.21	35.66	44.20	42.53	54.00	-11.47	AV	Vertical
7311.271	63.96	7.10	36.50	44.43	63.13	74.00	-10.87	Pk	Vertical
7311.271	44.38	7.10	36.50	44.43	43.55	54.00	-10.45	AV	Vertical
4874.089	66.65	5.21	35.66	44.20	63.32	74.00	-10.68	Pk	Horizontal
4874.089	48.50	5.21	35.66	44.20	45.17	54.00	-8.83	AV	Horizontal
7311.192	64.85	7.10	36.50	44.43	64.02	74.00	-9.98	Pk	Horizontal
7311.192	44.07	7.10	36.50	44.43	43.24	54.00	-10.76	AV	Horizontal
			High Cha	nnel (2462	MHz)(802.11	g)Above 10	3		
4924.055	65.28	5.21	35.52	44.21	61.80	74.00	-12.20	Pk	Vertical
4924.055	46.16	5.21	35.52	44.21	42.68	54.00	-11.32	AV	Vertical
7386.215	66.55	7.10	36.53	44.60	65.58	74.00	-8.42	Pk	Vertical
7386.215	44.38	7.10	36.53	44.60	43.41	54.00	-10.59	AV	Vertical
4924.183	64.52	5.21	35.52	44.21	61.04	74.00	-12.96	Pk	Horizontal
4924.183	43.61	5.21	35.52	44.21	40.13	54.00	-13.87	AV	Horizontal
7386.144	64.52	7.10	36.53	44.60	63.55	74.00	-10.45	Pk	Horizontal
7386.144	45.61	7.10	36.53	44.60	44.64	54.00	-9.36	AV	Horizontal

Note:

- (1) Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor
- (2) Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.
- (3)"802.11g" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Version.1.3 Page 23 of 74

■ Spurious Emission in Restricted Band 2310MHz -18000MHz
All the modulation modes have been tested, and the worst result was report as below:

the modula					worst resu	it was repo	rt as belo	ow:	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
802.11b									
2310.00	65.28	2.97	27.21	43.80	51.66	74	-22.34	Pk	Horizontal
2310.00	47.19	2.97	27.21	43.80	33.57	54	-20.43	AV	Horizontal
2310.00	67.73	2.97	27.21	43.80	54.11	74	-19.89	Pk	Vertical
2310.00	50.93	2.97	27.21	43.80	37.31	54	-16.69	AV	Vertical
2390.00	68.00	3.14	27.33	43.80	54.67	74	-19.33	Pk	Vertical
2390.00	49.25	3.14	27.33	43.80	35.92	54	-18.08	AV	Vertical
2390.00	69.23	3.14	27.33	43.80	55.90	74	-18.10	Pk	Horizontal
2390.00	48.32	3.14	27.33	43.80	34.99	54	-19.01	AV	Horizontal
2483.50	68.84	3.58	27.70	44.00	56.12	74	-17.88	Pk	Vertical
2483.50	47.14	3.58	27.70	44.00	34.42	54	-19.58	AV	Vertical
2483.50	71.61	3.58	27.70	44.00	58.89	74	-15.11	Pk	Horizontal
2483.50	52.49	3.58	27.70	44.00	39.77	54	-14.23	AV	Horizontal
				80	02.11g				
2310.00	70.97	2.97	27.21	43.80	57.35	74	-16.65	Pk	Horizontal
2310.00	48.70	2.97	27.21	43.80	35.08	54	-18.92	AV	Horizontal
2310.00	71.06	2.97	27.21	43.80	57.44	74	-16.56	Pk	Vertical
2310.00	48.48	2.97	27.21	43.80	34.86	54	-19.14	AV	Vertical
2390.00	72.84	3.14	27.33	43.80	59.51	74	-14.49	Pk	Vertical
2390.00	48.39	3.14	27.33	43.80	35.06	54	-18.94	AV	Vertical
2390.00	68.60	3.14	27.33	43.80	55.27	74	-18.73	Pk	Horizontal
2390.00	49.77	3.14	27.33	43.80	36.44	54	-17.56	AV	Horizontal
2483.50	70.74	3.58	27.70	44.00	58.02	74	-15.98	Pk	Vertical
2483.50	48.47	3.58	27.70	44.00	35.75	54	-18.25	AV	Vertical
2483.50	66.90	3.58	27.70	44.00	54.18	74	-19.82	Pk	Horizontal
2483.50	49.65	3.58	27.70	44.00	36.93	54	-17.07	AV	Horizontal
				802	2.11n20			•	
2310.00	73.41	2.97	27.21	43.80	59.79	74	-14.21	Pk	Horizontal
2310.00	51.06	2.97	27.21	43.80	37.44	54	-16.56	AV	Horizontal
2310.00	69.05	2.97	27.21	43.80	55.43	74	-18.57	Pk	Vertical
2310.00	48.94	2.97	27.21	43.80	35.32	54	-18.68	AV	Vertical
2390.00	64.88	3.14	27.33	43.80	51.55	74	-22.45	Pk	Vertical
2390.00	46.40	3.14	27.33	43.80	33.07	54	-20.93	AV	Vertical
2390.00	64.01	3.14	27.33	43.80	50.68	74	-23.32	Pk	Horizontal
2390.00	49.60	3.14	27.33	43.80	36.27	54	-17.73	AV	Horizontal
2483.50	68.30	3.58	27.70	44.00	55.58	74	-18.42	Pk	Vertical
2483.50	50.20	3.58	27.70	44.00	37.48	54	-16.52	AV	Vertical
2483.50	65.32	3.58	27.70	44.00	52.60	74	-21.40	Pk	Horizontal
2483.50	46.87	3.58	27.70	44.00	34.15	54	-19.85	AV	Horizontal

Page 24 of 74 Version.1.3

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
3260	65.24	4.04	29.57	44.70	54.15	74	-19.85	Pk	Vertical
3260	52.26	4.04	29.57	44.70	41.17	54	-12.83	AV	Vertical
3260	69.41	4.04	29.57	44.70	58.32	74	-15.68	Pk	Horizontal
3260	50.81	4.04	29.57	44.70	39.72	54	-14.28	AV	Horizontal
3332	66.98	4.26	29.87	44.40	56.71	74	-17.29	Pk	Vertical
3332	44.46	4.26	29.87	44.40	34.19	54	-19.81	AV	Vertical
3332	65.86	4.26	29.87	44.40	55.59	74	-18.41	Pk	Horizontal
3332	48.62	4.26	29.87	44.40	38.35	54	-15.65	AV	Horizontal
17797	50.23	10.99	43.95	43.50	61.67	74	-12.33	Pk	Vertical
17797	35.36	10.99	43.95	43.50	46.80	54	-7.20	AV	Vertical
17788	49.31	11.81	43.69	44.60	60.21	74	-13.79	Pk	Horizontal
17788	33.76	11.81	43.69	44.60	44.66	54	-9.34	AV	Horizontal

[&]quot;802.11g" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

Version.1.3 Page 25 of 74

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100KHz

 $VBW \geq 3^*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Version.1.3 Page 26 of 74

7.3.6 Test Results

EUT:	Digital DAY/NIGHT SCOPE	Model No.:	COMPACT HD 5 - 20X LRF
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Gavan Zhang

Test data reference attachment.

Version.1.3 Page 27 of 74

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

- a) A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.
- b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:
- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW ≥ RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T \leq 16.7 μ s.)

Measure T_{total} and T_{on}

Calculate Duty Cycle = Ton / Ttotal

7.4.6 Test Results

EUT:	Digital DAY/NIGHT SCOPE	Model No.:	COMPACT HD 5 - 20X LRF
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

Note:Not Applicable

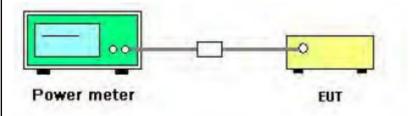
Version.1.3 Page 28 of 74

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	PK

7.5.4 Test Setup

7.5.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.9.1.3 of ANSI C63.10

7.5.6 EUT operation during Test

The EUT was programmed to be in continuously transmitting mode.

Version.1.3 Page 29 of 74

7.5.7 Test Results

EUT:	Digital DAY/NIGHT SCOPE	Model No.:	COMPACT HD 5 - 20X LRF
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Gavan Zhang

Test data reference attachment.

Version.1.3 Page 30 of 74

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3 *RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Version.1.3 Page 31 of 74

7.6.6 Test Results

EUT:	Digital DAY/NIGHT SCOPE	Model No.:	COMPACT HD 5 - 20X LRF
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Gavan Zhang

Test data reference attachment.

Version.1.3 Page 32 of 74

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

Version.1.3 Page 33 of 74

7.7.6 Test Results

EUT:	Digital DAY/NIGHT SCOPE	Model No.:	COMPACT HD 5 - 20X LRF
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20	Test By:	Gavan Zhang

Test data reference attachment.

Version.1.3 Page 34 of 74

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 25GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

Version.1.3 Page 35 of 74

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

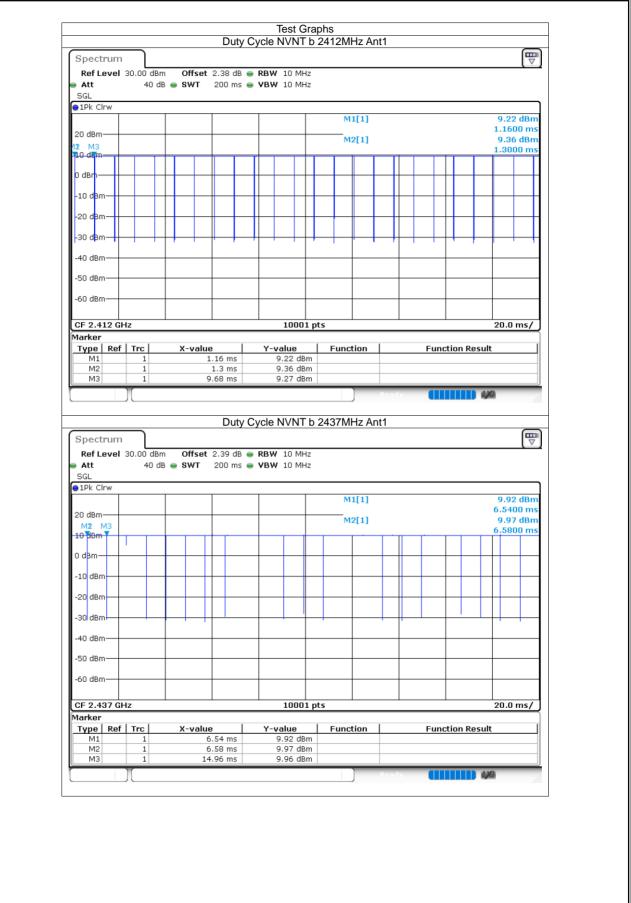
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 **Result**

The EUT antenna is permanent attached PCB antenna ((Gain: -1.43dBi).	It comply with the standa	ırc
requirement.			

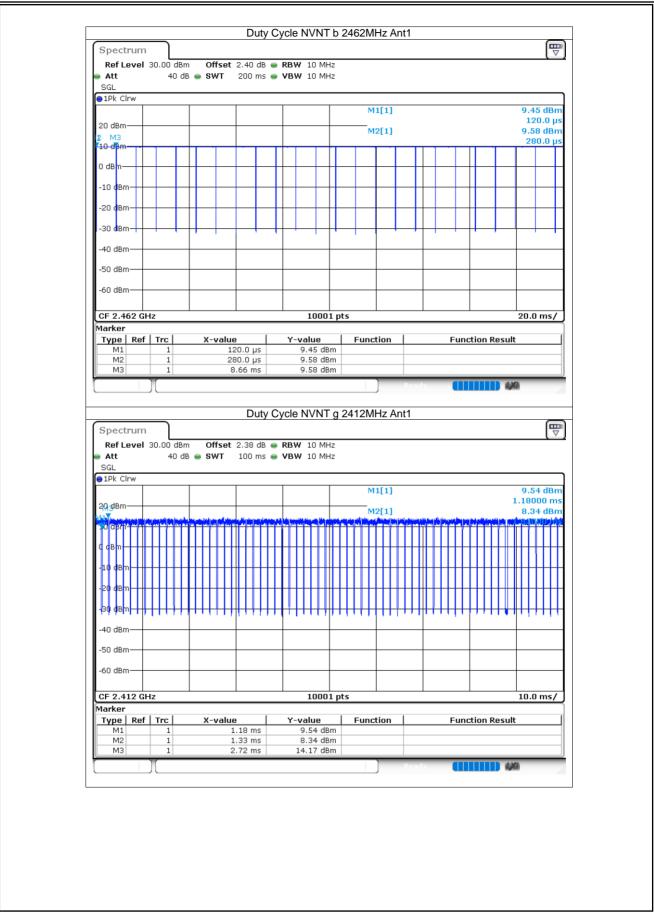
Version.1.3 Page 36 of 74

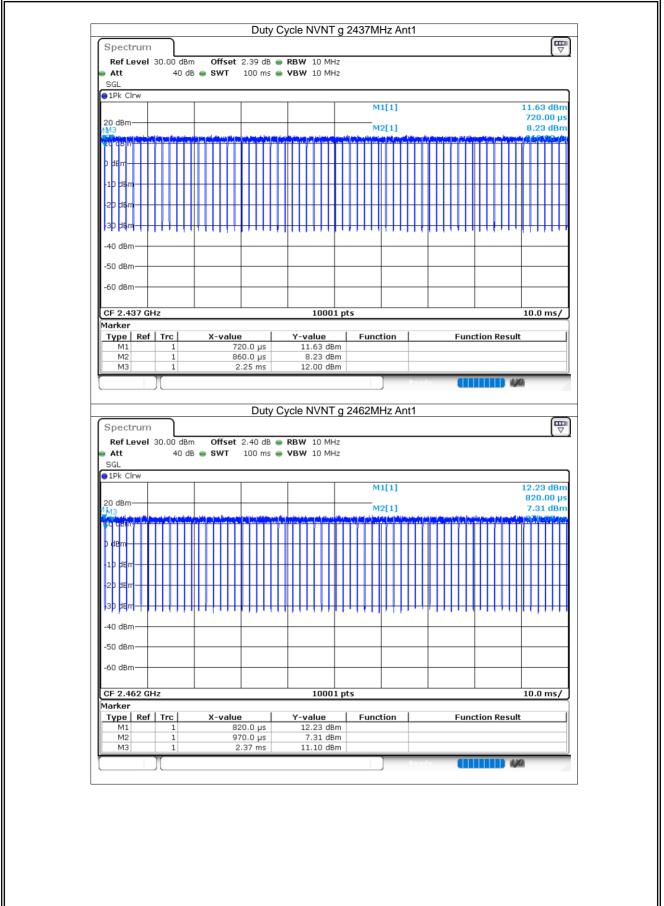
Report No.: S23072005606002


8 TEST RESULTS

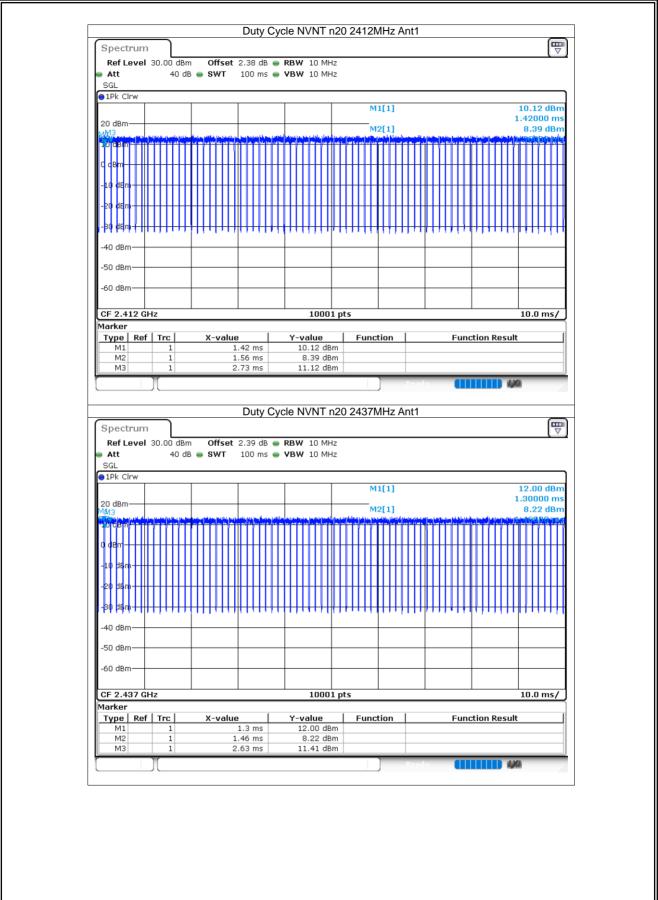
8.1 Duty Cycle

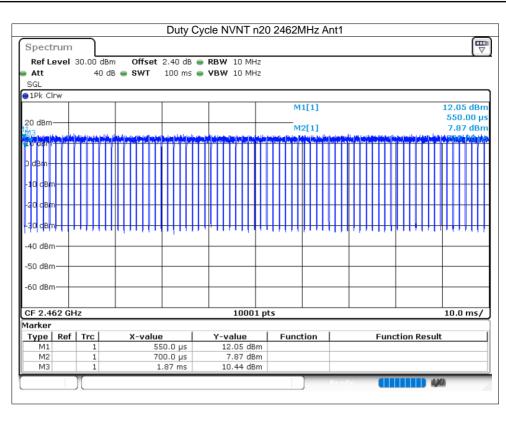
Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	b	2412	Ant1	98.4	0.07	0.12
NVNT	b	2437	Ant1	99.82	0.01	0.12
NVNT	b	2462	Ant1	98.38	0.07	0.12
NVNT	g	2412	Ant1	90.67	0.43	0.72
NVNT	g	2437	Ant1	90.75	0.42	0.72
NVNT	g	2462	Ant1	90.77	0.42	0.71
NVNT	n20	2412	Ant1	89.12	0.5	0.85
NVNT	n20	2437	Ant1	89.1	0.5	0.85
NVNT	n20	2462	Ant1	89.15	0.5	0.85


Version.1.3 Page 37 of 74



Version.1.3 Page 38 of 74



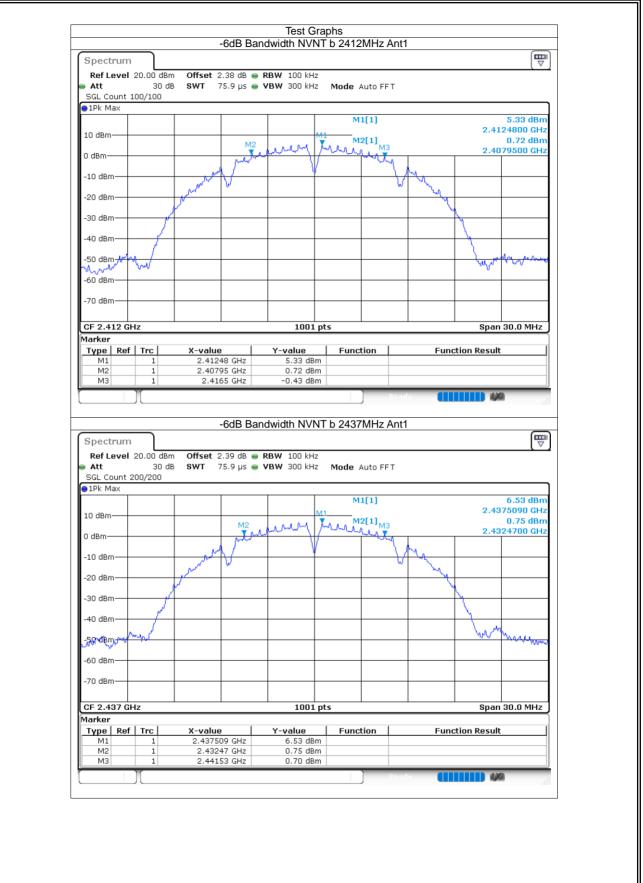

Version.1.3 Page 39 of 74

Version.1.3 Page 40 of 74

Version.1.3 Page 41 of 74

Version.1.3 Page 42 of 74

Report No.: S23072005606002

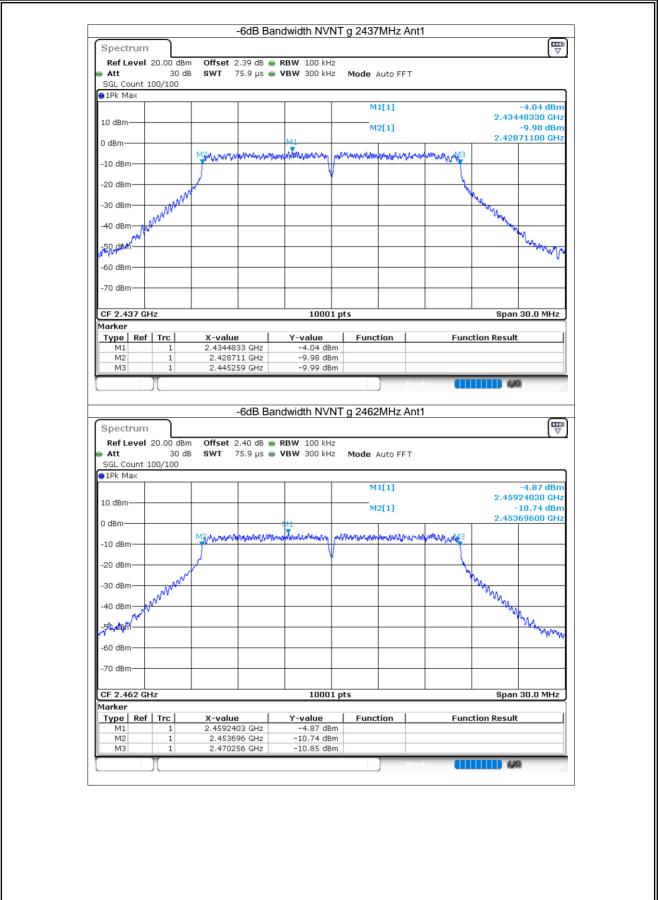

8.2 Maximum Conducted Output Power

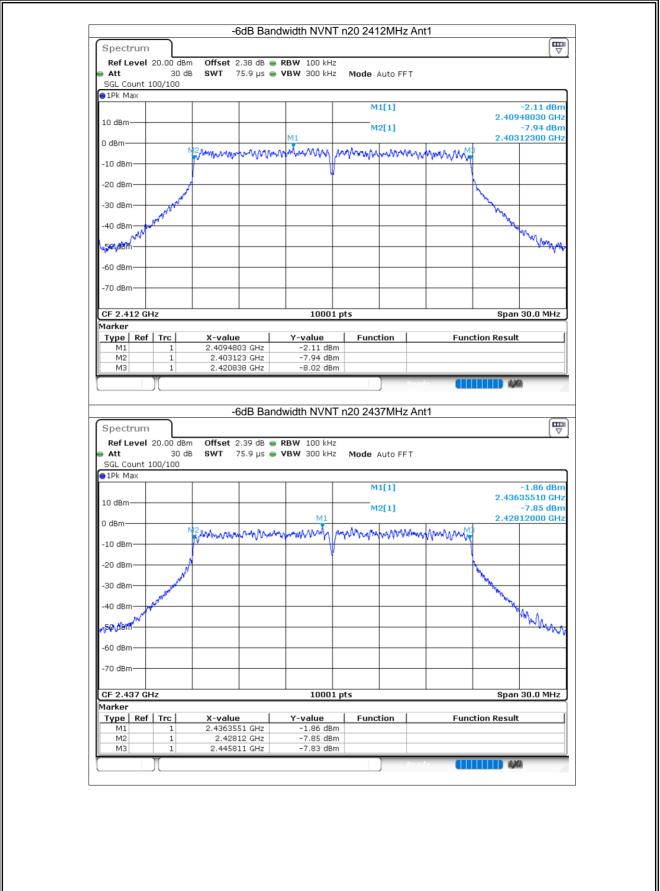
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	7.94	30	Pass
NVNT	b	2437	Ant1	8.32	30	Pass
NVNT	b	2462	Ant1	8.11	30	Pass
NVNT	g	2412	Ant1	8.69	30	Pass
NVNT	g	2437	Ant1	8.33	30	Pass
NVNT	g	2462	Ant1	8.42	30	Pass
NVNT	n20	2412	Ant1	8.68	30	Pass
NVNT	n20	2437	Ant1	8.32	30	Pass
NVNT	n20	2462	Ant1	8.51	30	Pass

8.3 -6dB Bandwidth

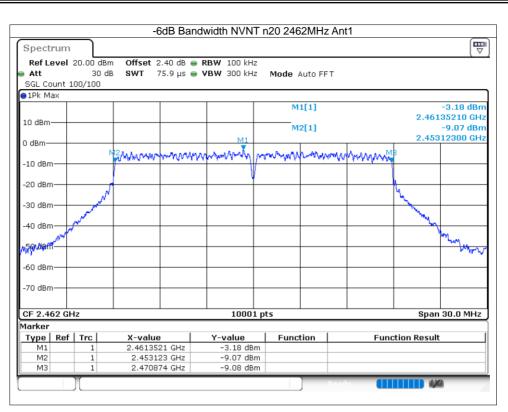
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	b	2412	Ant1	8.55	0.5	Pass
NVNT	b	2437	Ant1	9.06	0.5	Pass
NVNT	b	2462	Ant1	8.583	0.5	Pass
NVNT	g	2412	Ant1	16.557	0.5	Pass
NVNT	g	2437	Ant1	16.548	0.5	Pass
NVNT	g	2462	Ant1	16.56	0.5	Pass
NVNT	n20	2412	Ant1	17.715	0.5	Pass
NVNT	n20	2437	Ant1	17.691	0.5	Pass
NVNT	n20	2462	Ant1	17.751	0.5	Pass

Version.1.3 Page 43 of 74

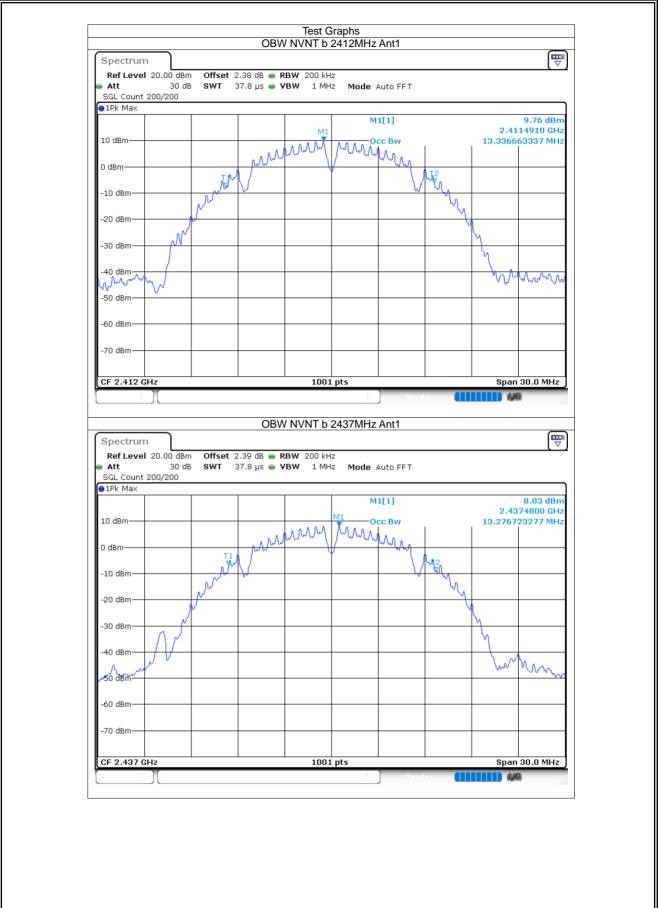

Version.1.3 Page 44 of 74

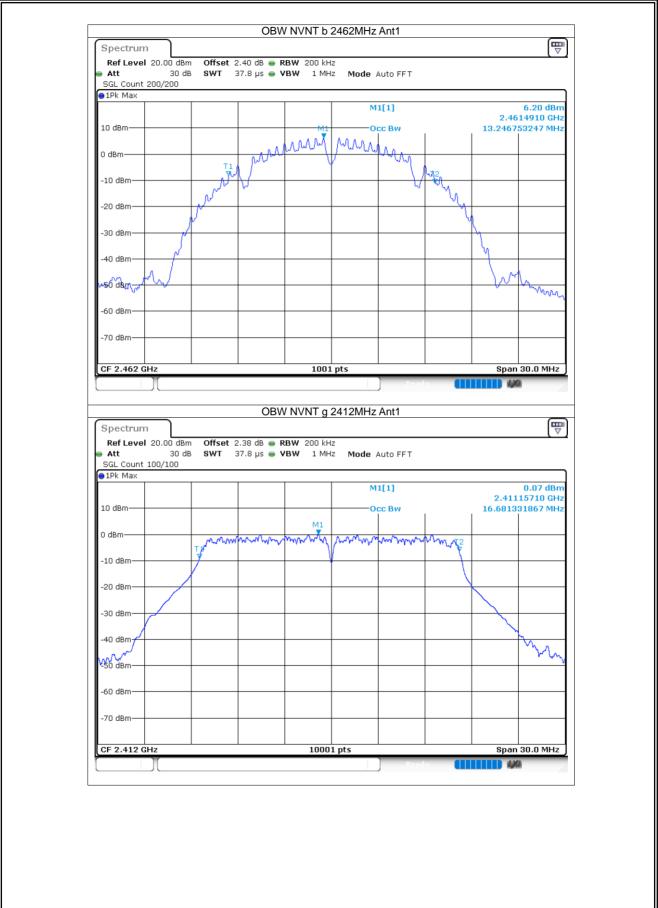


Version.1.3 Page 45 of 74

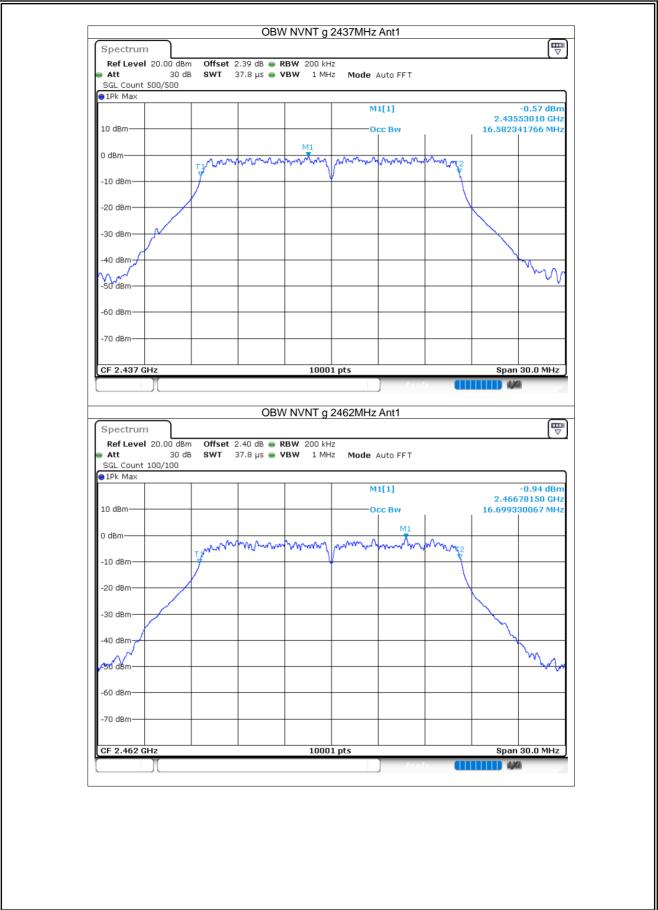


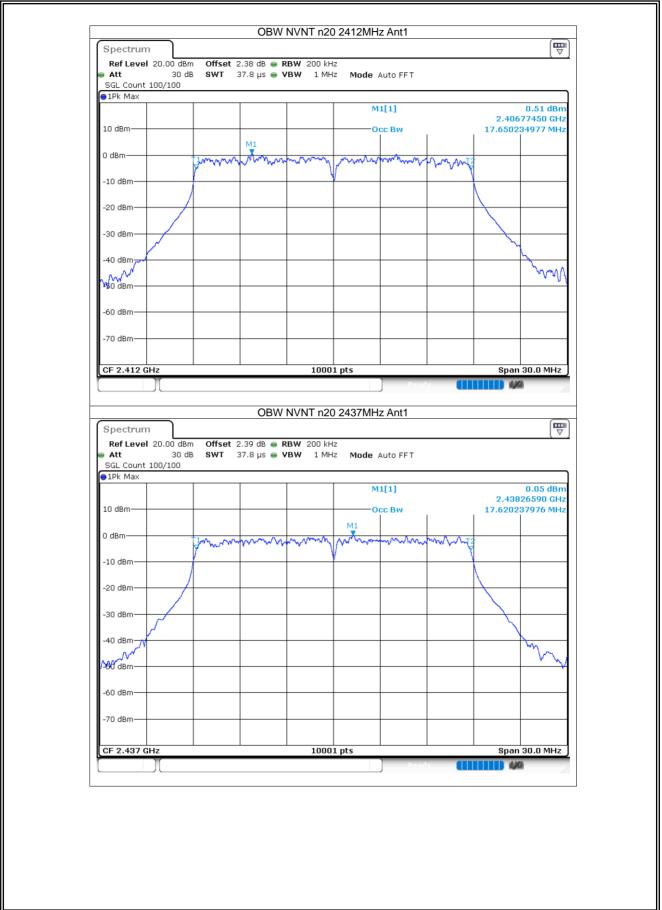
Version.1.3 Page 46 of 74

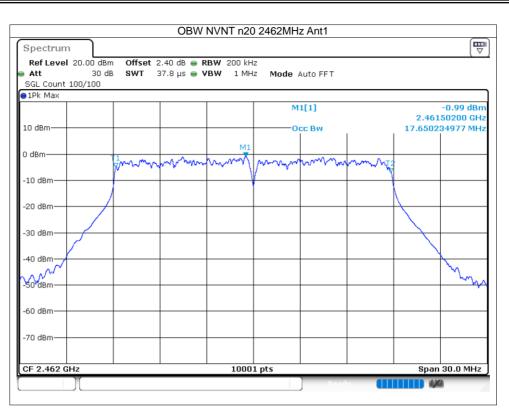

Version.1.3 Page 47 of 74


8.4 Occupied Channel Bandwidth

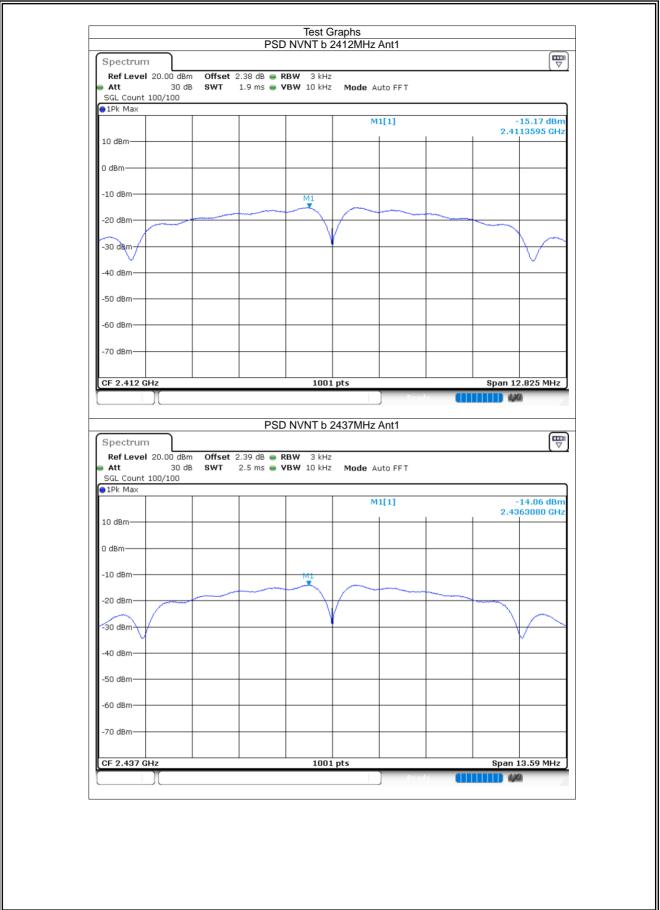
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	b	2412	Ant1	13.337
NVNT	b	2437	Ant1	13.277
NVNT	b	2462	Ant1	13.247
NVNT	g	2412	Ant1	16.681
NVNT	g	2437	Ant1	16.582
NVNT	g	2462	Ant1	16.699
NVNT	n20	2412	Ant1	17.65
NVNT	n20	2437	Ant1	17.62
NVNT	n20	2462	Ant1	17.65


Version.1.3 Page 48 of 74


Version.1.3 Page 49 of 74

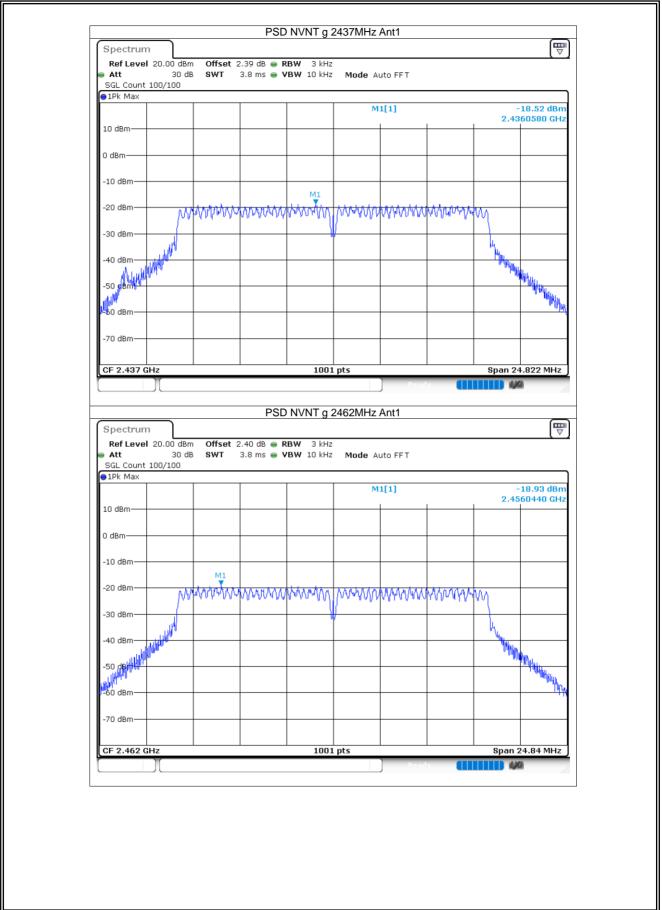

Version.1.3 Page 50 of 74

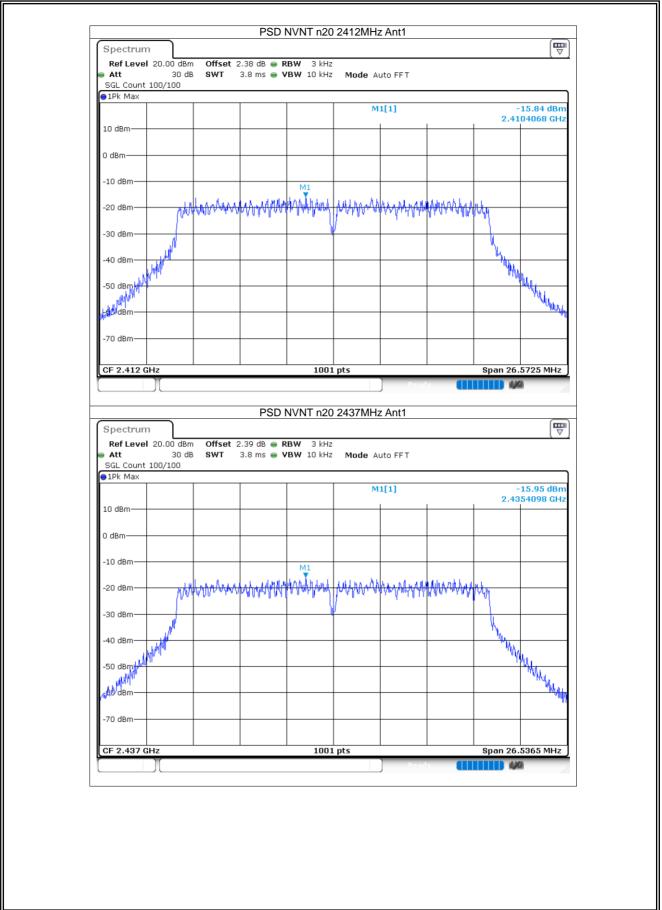
Version.1.3 Page 51 of 74


Version.1.3 Page 52 of 74

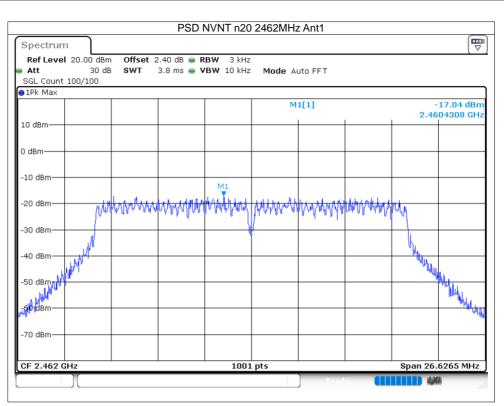
8.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	-15.17	8	Pass
NVNT	b	2437	Ant1	-14.06	8	Pass
NVNT	b	2462	Ant1	-16.01	8	Pass
NVNT	g	2412	Ant1	-17.45	8	Pass
NVNT	g	2437	Ant1	-18.52	8	Pass
NVNT	g	2462	Ant1	-18.93	8	Pass
NVNT	n20	2412	Ant1	-15.84	8	Pass
NVNT	n20	2437	Ant1	-15.95	8	Pass
NVNT	n20	2462	Ant1	-17.04	8	Pass


Version.1.3 Page 53 of 74

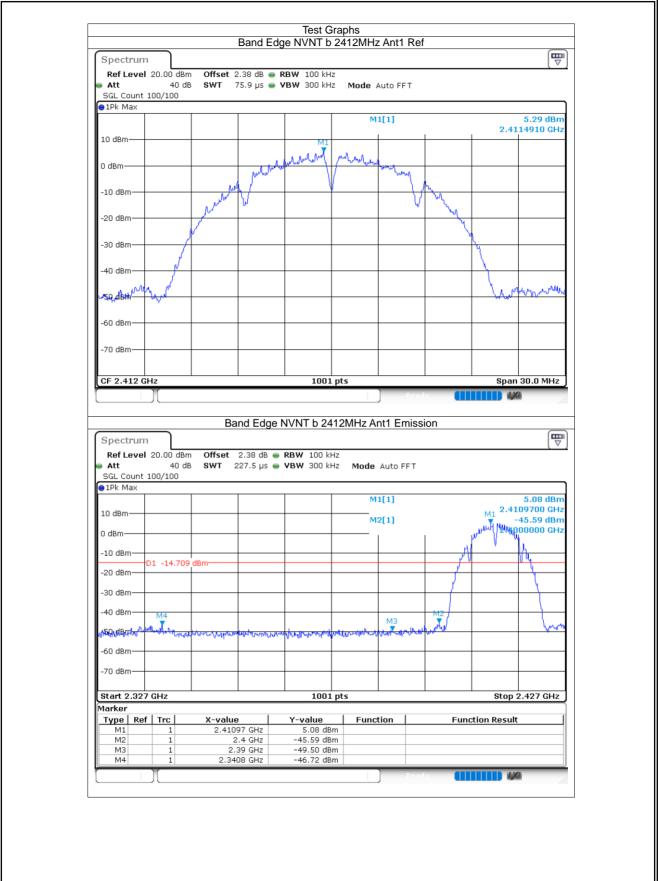

Version.1.3 Page 54 of 74

Version.1.3 Page 55 of 74



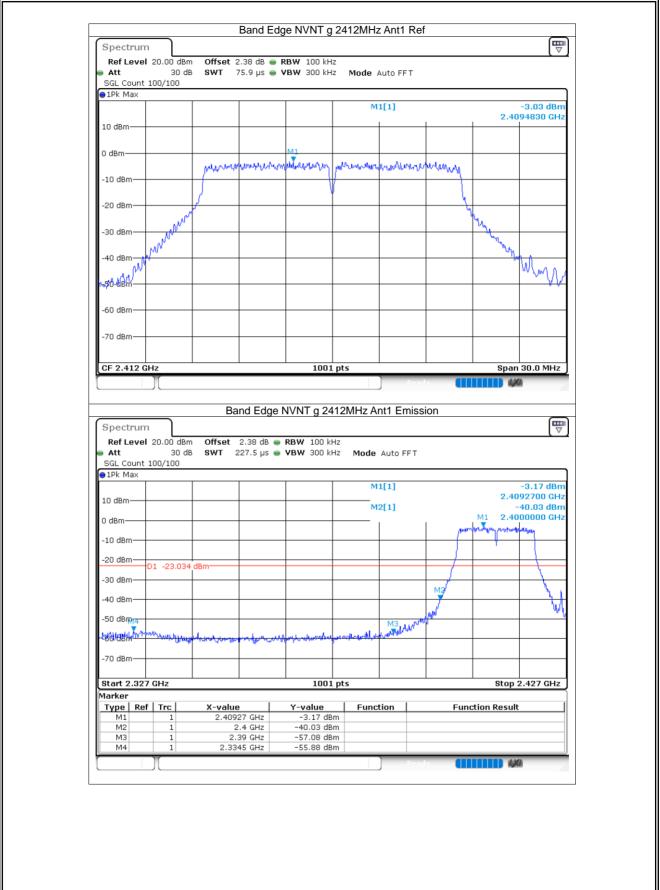
Version.1.3 Page 56 of 74

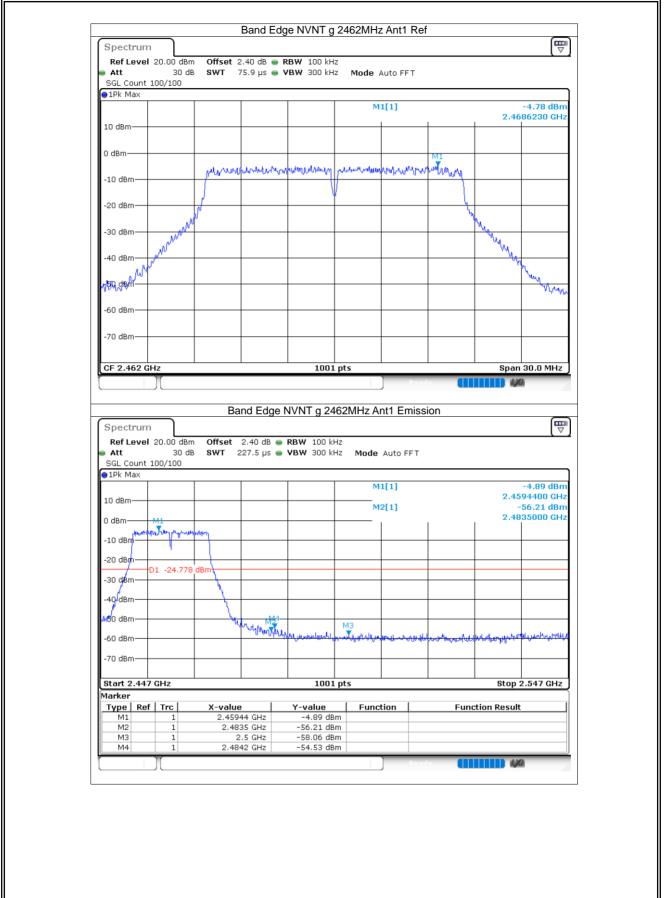
Version.1.3 Page 57 of 74

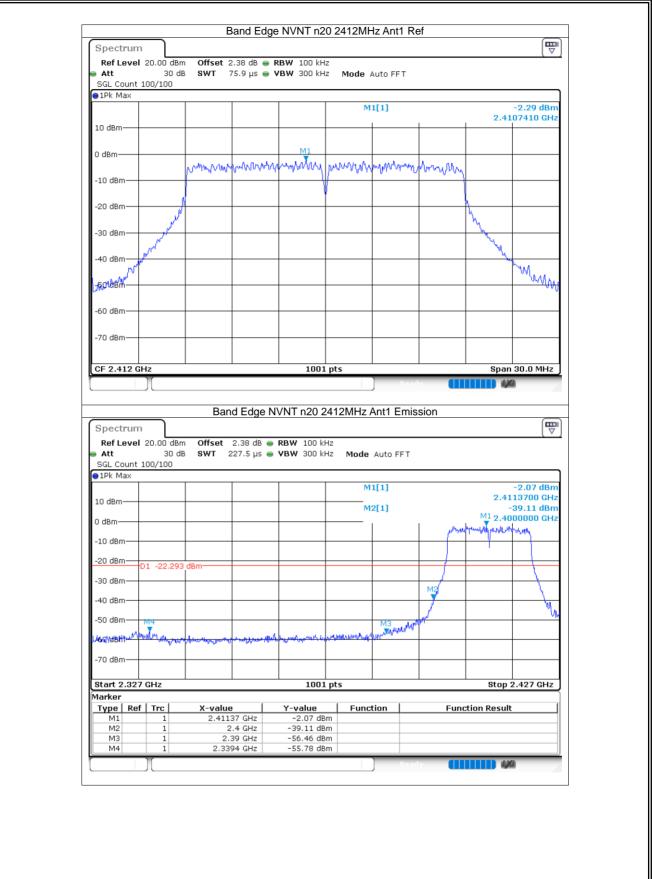


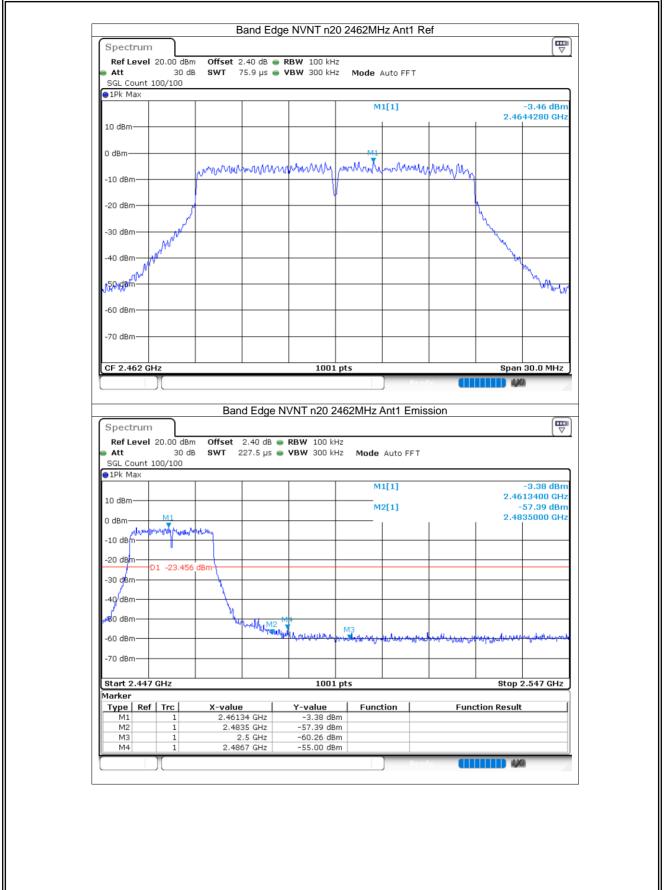
8.6 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-52	-20	Pass
NVNT	b	2462	Ant1	-61.44	-20	Pass
NVNT	g	2412	Ant1	-52.84	-20	Pass
NVNT	g	2462	Ant1	-49.74	-20	Pass
NVNT	n20	2412	Ant1	-53.49	-20	Pass
NVNT	n20	2462	Ant1	-51.54	-20	Pass


Version.1.3 Page 58 of 74


Version.1.3 Page 59 of 74

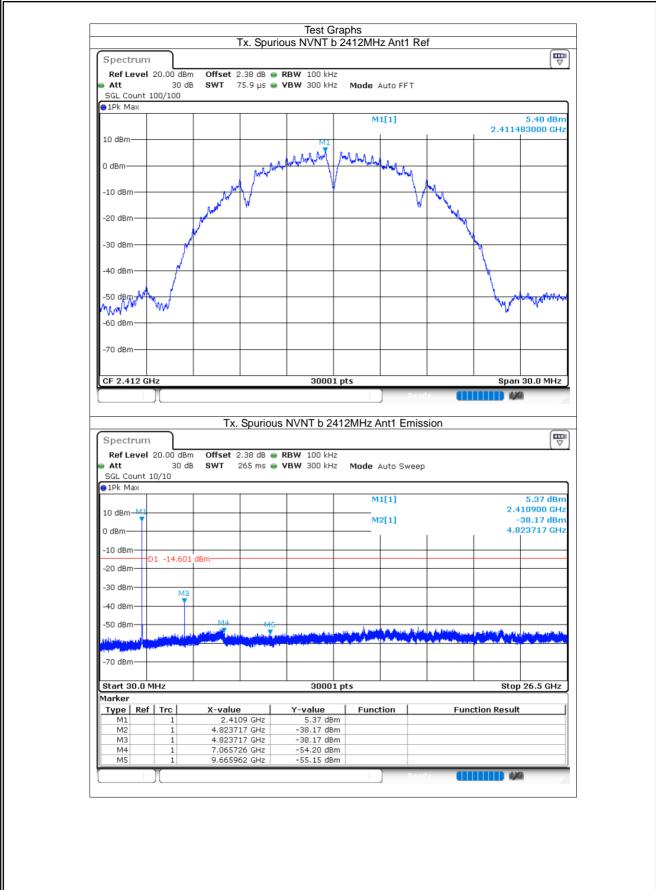

Version.1.3 Page 60 of 74


Version.1.3 Page 61 of 74

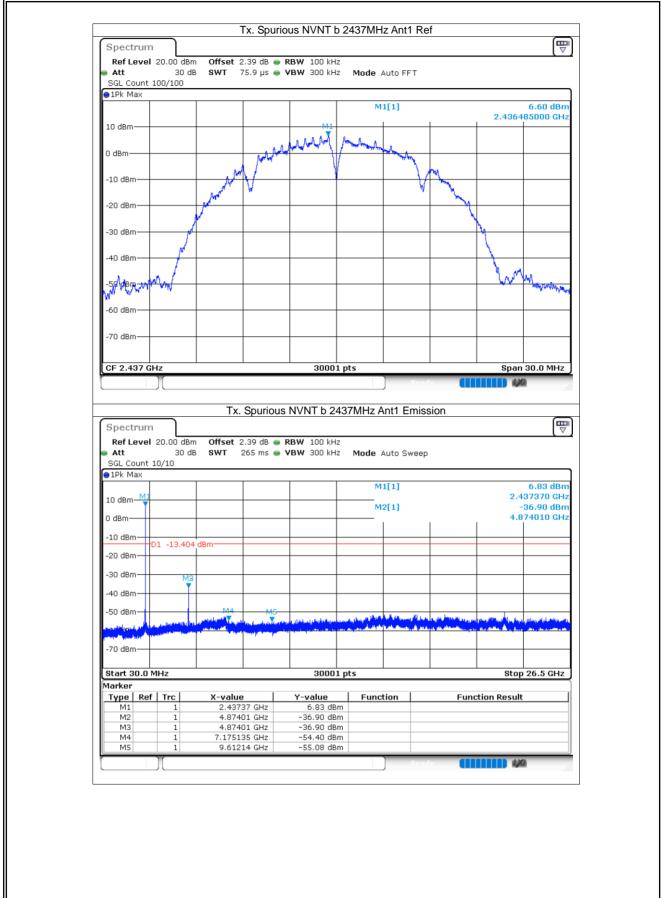
Version.1.3 Page 62 of 74

Version.1.3 Page 63 of 74

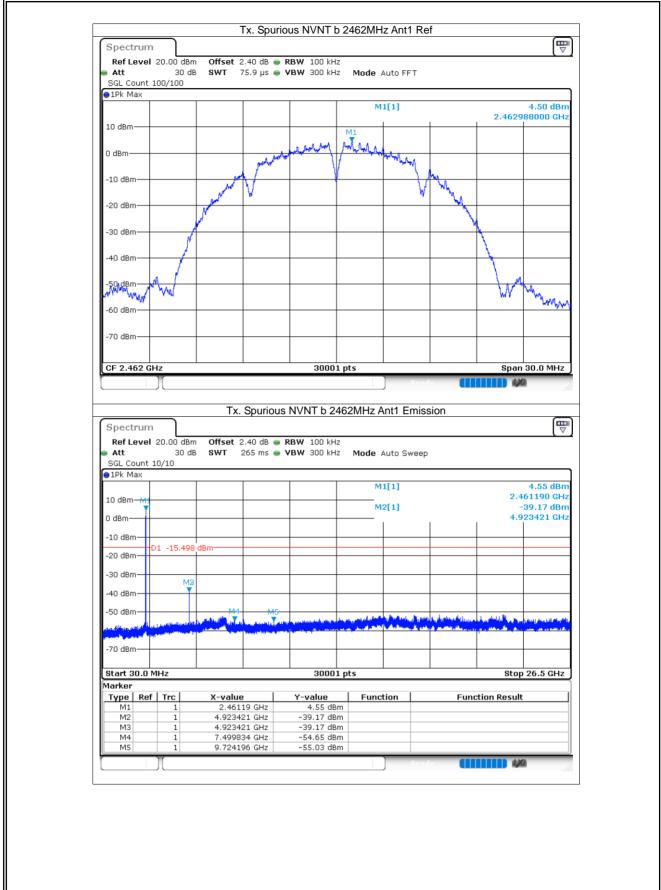
Version.1.3 Page 64 of 74

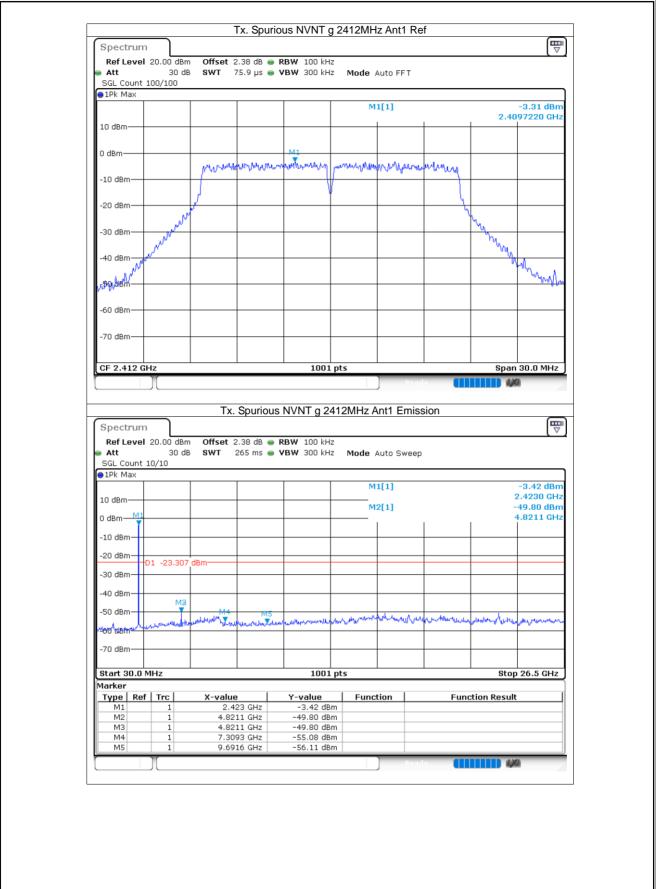


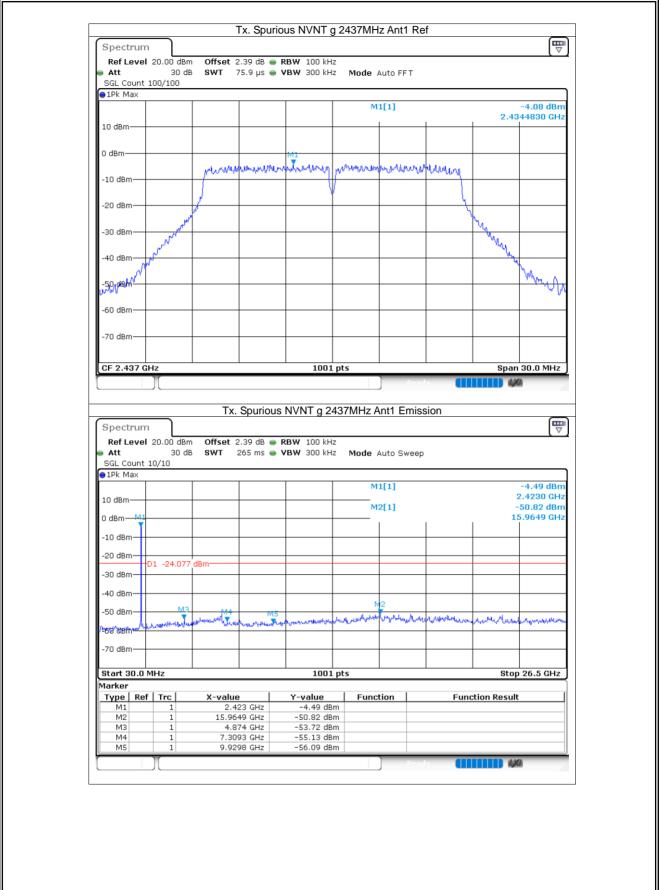
Report No.: S23072005606002

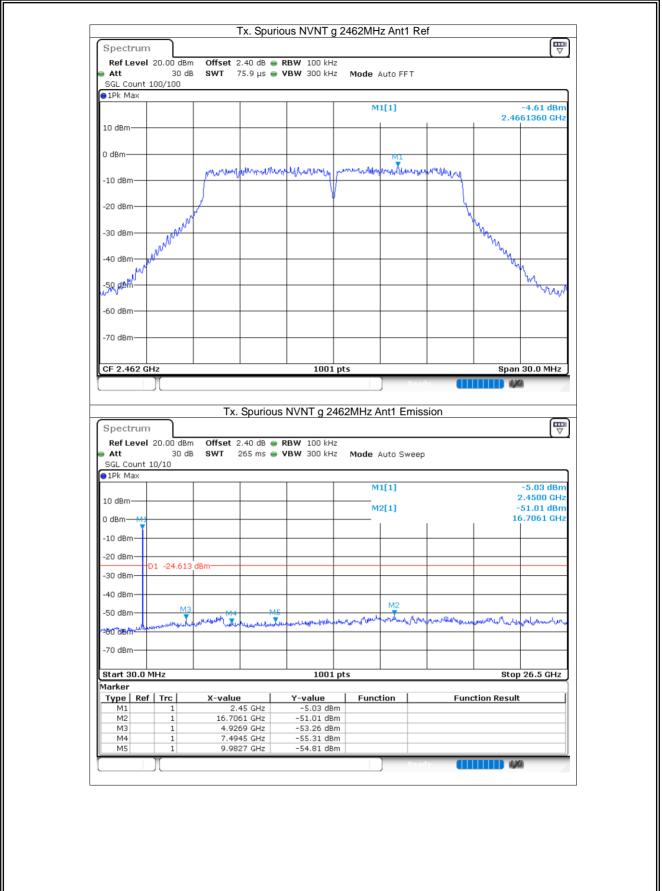

8.7 Conducted RF Spurious Emission

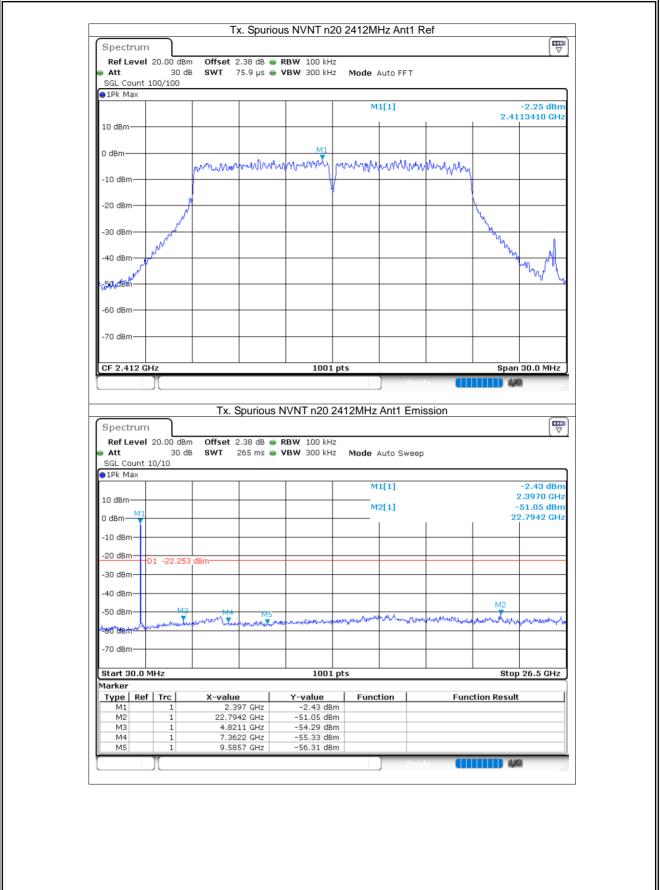
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-43.56	-20	Pass
NVNT	b	2437	Ant1	-43.5	-20	Pass
NVNT	b	2462	Ant1	-43.67	-20	Pass
NVNT	g	2412	Ant1	-46.48	-20	Pass
NVNT	g	2437	Ant1	-46.74	-20	Pass
NVNT	g	2462	Ant1	-46.4	-20	Pass
NVNT	n20	2412	Ant1	-48.8	-20	Pass
NVNT	n20	2437	Ant1	-49.24	-20	Pass
NVNT	n20	2462	Ant1	-48.34	-20	Pass

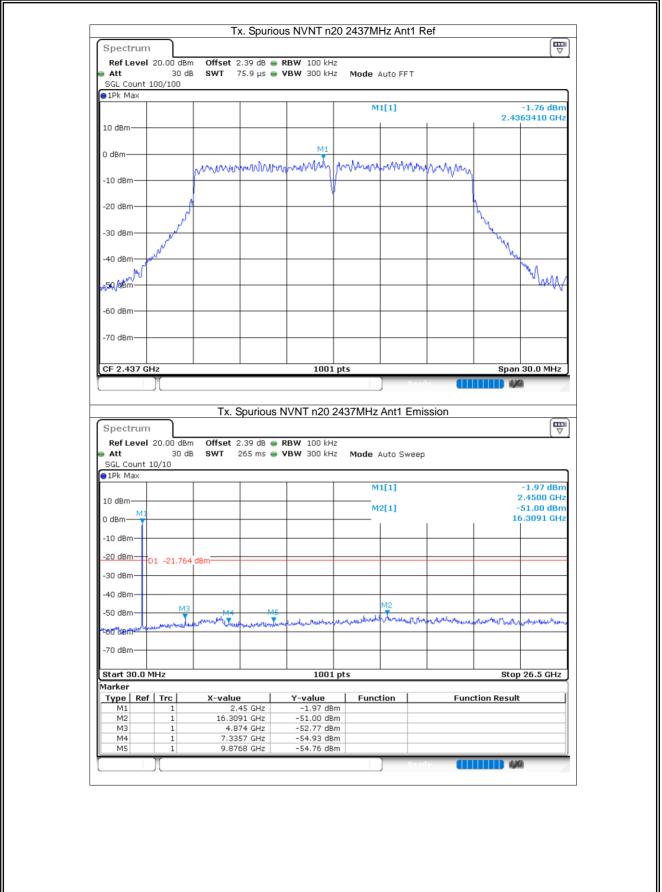

Version.1.3 Page 65 of 74

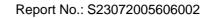

Version.1.3 Page 66 of 74

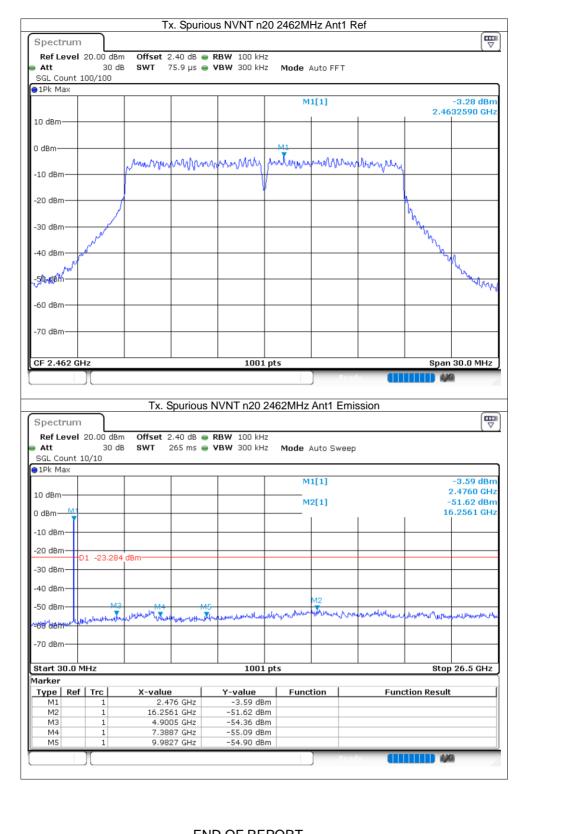

Version.1.3 Page 67 of 74


Version.1.3 Page 68 of 74


Version.1.3 Page 69 of 74


Version.1.3 Page 70 of 74


Version.1.3 Page 71 of 74


Version.1.3 Page 72 of 74

Version.1.3 Page 73 of 74

END OF REPORT

Version.1.3 Page 74 of 74