

TEST REPORT

Applicant Name : Address : Hangzhou AcoSound Technology Co.,Ltd. Room 401,No.2 Building,No.1390 Cangxing Street, Yuhang, Hangzhou, Zhejiang, China RA230718-41569E-RF-00 2AWQLW-RIC-C

Report Number : FCC ID:

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type: Model No.: Multiple Model(s) No.: Trade Mark: Date Received: Report Date: Bluetooth hearing aid W-RIC-C TW-RIC-C, Leya-W-RIC-C, Celesto-W-RIC-C AcoSound 2023/07/18 2023/07/26

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Dave Liang

Dave Liang EMC Engineer

Approved By:

Candry . Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk ^{**}. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503290
 Web: www.atc-lab.com

Version 8: 2023-01-30

Page 1 of 38

FCC-BLE

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE Test Methodology	
MEASUREMENT UNCERTAINTY	
SYSTEM TEST CONFIGURATION	7
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software Duty cycle	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	8
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC§15.247 (I), §1.1307 (B) (1) &§2.1093 – RF EXPOSURE	12
APPLICABLE STANDARD	12
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS	
Applicable Standard	
EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE	
Factor & Margin Calculation Test Data	
FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	
Applicable Standard	
TEST PROCEDURE	
TEST DATA	21
FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER	22
APPLICABLE STANDARD	
Test Procedure Test Data	
FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
Applicable Standard	
Test Procedure	
TEST DATA	23

Version 8: 2023-01-30

FCC §15.247(E) - POWER SPECTRAL DENSITY	24
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
APPENDIX	25
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX E: BAND EDGE MEASUREMENTS	
APPENDIX F: DUTY CYCLE	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA230718-41569E-RF-00	Original Report	2023-07-26

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	Bluetooth hearing aid
Test Model	W-RIC-C
Multiple Model(s)	TW-RIC-C, Leya-W-RIC-C, Celesto-W-RIC-C (model difference see product declaration letter of similarity)
Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Output Power	BLE: 0.72 dBm
Modulation Technique	BLE: GFSK
Antenna Specification*	-0.5dBi (provided by the applicant)
Voltage Range	DC 3.6V from battery
Sample serial number	28G5-1 for Radiated Emissions Test 28G2-1 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Para	meter		Uncertainty		
Harmoni	c Curre	nt	0.512%, k=2		
Occupied Char	nnel Ba	ndwidth	5%		
RF Fre	quency		0.082*10 ⁻⁷		
RF output pov	ver, cor	nducted	0.71dB		
Unwanted Emis	ssion, c	onducted	1.6dB		
			AC Power Lines onducted Emissions 9k-30MHz 2.74dB, k=2		2.74dB, k=2
Audio Freque	ency Re	sponse	0.1dB		
Low Pass Filter Response		ponse	1.2dB		
Modulation Limiting		ting	1%		
	9kH	z - 30MHz	2.06dB		
.	30M	lHz - 1GHz	5.08dB		
Emissions, Radiated	1GF	Iz - 18GHz	4.96dB		
Radiated	18GE	lz - 26.5GHz	5.16dB		
	26.5GHz - 40GHz		4.64dB		
Tempe	Temperature		1°C		
Humidity			6%		
Supply	voltage	s	0.4%		

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the Floor 1, KuMaKe Building, Dongzhou Community, Guangming Street, Guangming District, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 30241.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE 1M mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"HciHelper_v2.0.exe "* software was used to test and power level as below:

Mada	Data vata	Power Level*		
Mode Data rat	Data rate	Low Channel	Middle Channel	High Channel
BLE	1Mbps	default	default	default

Note: The software and power level was provided by the applicant.

Duty cycle

Test Result: Compliant. Please refer to the Appendix.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions:

	EUT	
		1.0 Meter
		T
Non-Conductive Table		
80/150 cm above Ground Plane		
←─────	1.5 Meters	⇒'

Note: the support table edge was flush with the center of turntable

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1) &§2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Not Applicable: This device is battery powered only.

Note: the left ear and right ear are electrical identical, pre-scan the two ears, the worst case left ear was selected to test.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		Radiated emissi	on test		
Rohde& Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2022/11/08	2023/11/07
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	837	2023/02/22	2026/02/21
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25
	Radiated E	mission Test Softw	ware:e3 191218 (V9)	
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24
Wainwright	High Pass Filter	WHKX3.6/18G- 10SS	5	2022/11/25	2023/11/24
		RF conducted	test		
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/11/25	2023/11/24
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/10/24	2023/10/23
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power* (dBm)	Max tune-up conducted power [*] (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BLE	2402-2480	1.0	1.26	5	0.4	3.0	Yes

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

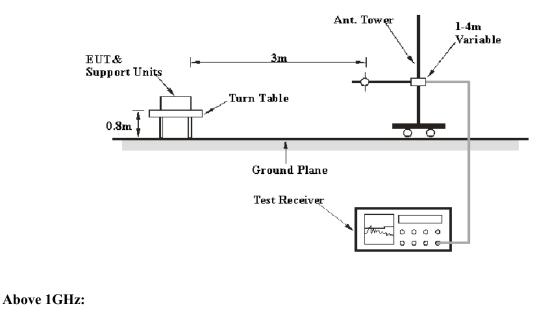
Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

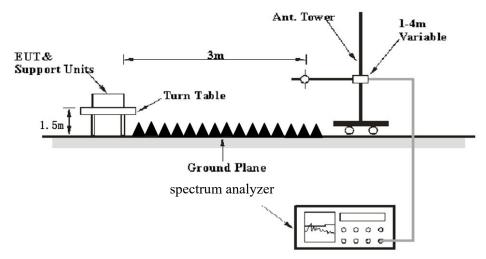
And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one integral antenna which was permanently attached, and the maximum antenna gain is -0.5dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS


Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	$10 \text{ Hz}^{\text{Note 1}}$	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

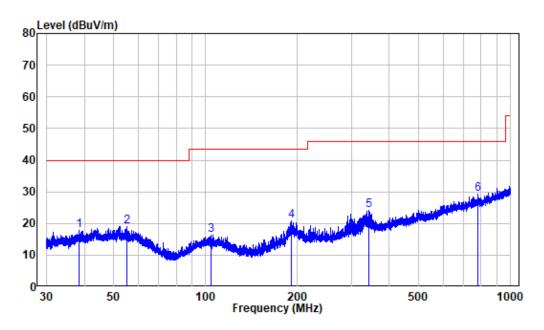
Over Limit/Margin = Corrected Amplitude / Absolute Level – Limit Absolute Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	22 ~27°C		
Relative Humidity:	51~52 %		
ATM Pressure:	100.19~101.3 kPa		

The testing was performed by Jason Liu on 2023-07-21 for below 1GHz and Jimi Zheng on 2023-07-22 for above 1GHz

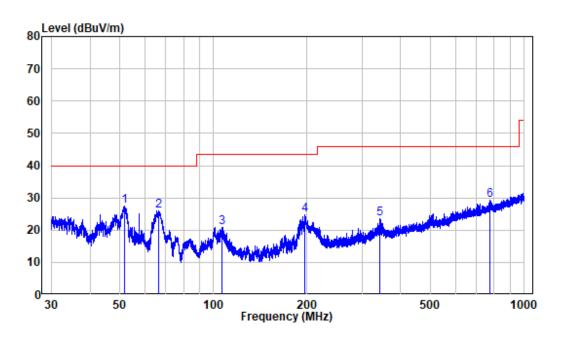

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axis of orientation, the worst case X-axis of orientation was recorded)

Version 8: 2023-01-30

30MHz-1GHz: (Worst case is Low channel)

Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.

Horizontal:



Site :	chamber
Condition:	3m HORIZONTAL
Job No. :	RA230718-41569E-RF
Test Mode:	Charging+BLE Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	38.565	-10.69	28.48	17.79	40.00	-22.21	Peak
2	55.245	-10.26	29.36	19.10	40.00	-20.90	Peak
3	103.760	-11.73	28.13	16.40	43.50	-27.10	Peak
4	190.656	-11.47	32.28	20.81	43.50	-22.69	Peak
5	342.429	-7.33	31.55	24.22	46.00	-21.78	Peak
6	779.265	0.08	29.11	29.19	46.00	-16.81	Peak

Report No.: RA230718-41569E-RF-00

Site : chamber Condition: 3m Vertical Job No. : RA230718-41569E-RF Test Mode: Charging+BLE Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	51.571	-9.96	37.36	27.40	40.00	-12.60	Peak
2	66.703	-13.22	39.24	26.02	40.00	-13.98	Peak
3	106.572	-11.94	32.91	20.97	43.50	-22.53	Peak
4	196.252	-11.57	36.30	24.73	43.50	-18.77	Peak
5	342.279	-7.34	30.96	23.62	46.00	-22.38	Peak
6	772.802	-0.06	29.26	29.20	46.00	-16.80	Peak

1-25 GHz:

BLE 1M

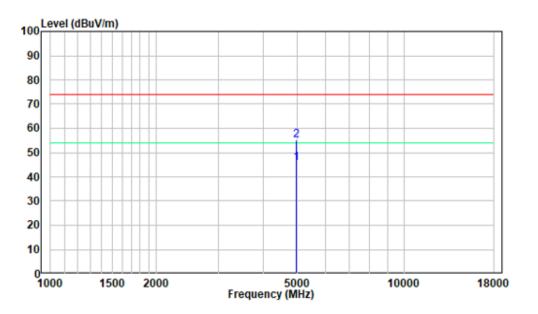
Evenuerau	Re	ceiver	Turntable	Rx An	tenna	Factor	Absolute	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBµV/m)	(dBµV/m)	
			Low Chann	el(2402	MHz)				
2363.8	67.47	РК	171	1.5	Н	-10.71	56.76	74	-17.24
2363.8	55.29	AV	171	1.5	Н	-10.71	44.58	54	-9.42
2375.6	68.07	РК	151	1.3	V	-10.67	57.40	74	-16.60
2375.6	55.51	AV	151	1.3	V	-10.67	44.84	54	-9.16
2390	65.68	РК	111	1.2	Н	-10.62	55.06	74	-18.94
2390	54.16	AV	111	1.2	Н	-10.62	43.54	54	-10.46
2390	66.82	РК	25	2.2	V	-10.62	56.20	74	-17.80
2390	54.14	AV	25	2.2	V	-10.62	43.52	54	-10.48
4804	59.51	РК	301	1.7	Н	-5.57	53.94	74	-20.06
4804	59.24	РК	349	1.7	V	-5.57	53.67	74	-20.33
		Ν	/liddle Char	mel(244	0MHz)				
4880	59.68	РК	170	1.8	Н	-5.24	54.44	74	-19.56
4880	47.33	AV	170	1.8	Н	-5.24	42.09	54	-11.91
4880	60.27	РК	94	1.6	V	-5.24	55.03	74	-18.97
4880	47.54	AV	94	1.6	V	-5.24	42.3	54	-11.70
]	High Chann	el(2480	MHz)				
2483.5	68.76	РК	152	1.9	Н	-10.46	58.3	74	-15.70
2483.5	55.11	AV	152	1.9	Н	-10.46	44.65	54	-9.35
2483.5	71.50	РК	212	2.1	V	-10.46	61.04	74	-12.96
2483.5	57.08	AV	212	2.1	V	-10.46	46.62	54	-7.38
2483.62	68.61	РК	32	1.9	Н	-10.46	58.15	74	-15.85
2483.62	55.24	AV	32	1.9	Н	-10.46	44.78	54	-9.22
2483.59	71.41	РК	217	2	V	-10.46	60.95	74	-13.05
2483.59	57.14	AV	217	2	V	-10.46	46.68	54	-7.32
4960	59.93	РК	5	2.2	Н	-4.90	55.03	74	-18.97
4960	50.46	AV	5	2.2	Н	-4.90	45.56	54	-8.44
4960	60.09	РК	166	1.9	V	-4.90	55.19	74	-18.81
4960	51.09	AV	166	1.9	V	-4.90	46.19	54	-7.81

Note:

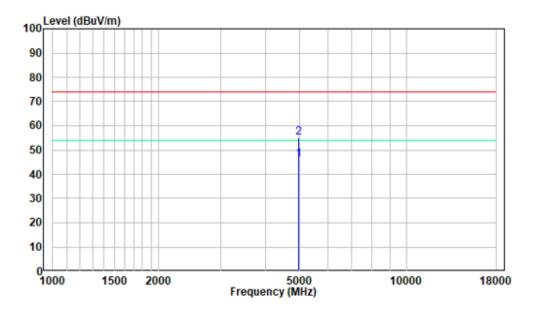
Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level = Corrected Factor + Reading

Margin = Absolute Level - Limit

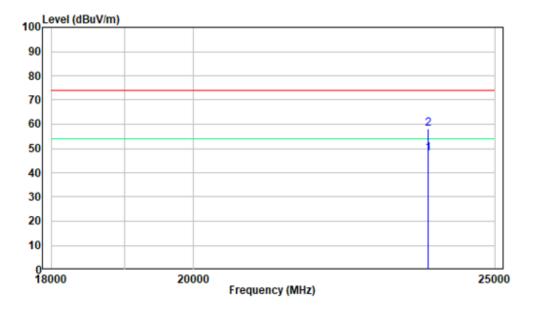

The other spurious emission which is in the noise floor level was not recorded.

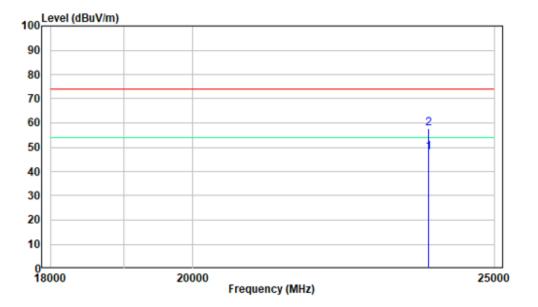
The test result of peak was less than the limit of average, so just peak value were recorded.


1-18 GHz:

Pre-scan for BLE 1M, High Channel

Horizontal




18 -25GHz:

Pre-scan for BLE 1M, High Channel

Horizontal

FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Attenuator

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-07-21.

EUT operation mode: Transmitting

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Attenuator

Test Data

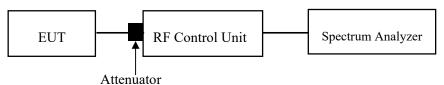
Environmental Conditions

Temperature:	23°C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-07-21.

EUT operation mode: Transmitting

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE


Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-07-21.

EUT operation mode: Transmitting

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW \geq 3×RBW.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- $6. \quad Sweep time = auto couple.$
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Attenuator

Test Data

Environmental Conditions

Temperature:	23°C
Relative Humidity:	60 %
ATM Pressure:	101.0 kPa

The testing was performed by Roger Ling on 2023-07-21.

EUT operation mode: Transmitting

APPENDIX

Appendix A: DTS Bandwidth

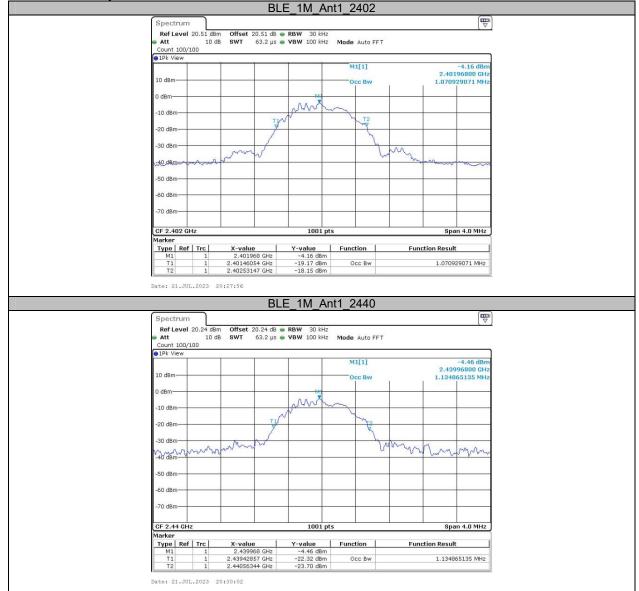
Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.728	0.5	PASS
BLE_1M	Ant1	2440	0.728	0.5	PASS
_		2480	0.728	0.5	PASS

Test Graphs

	BL	.E_1M_Ant1	2402		
Spectrum			-		
Ref Level 20.51 d			- 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199		(v)
Att 10 Count 100/100	dB SWT 18.9 µs (VBW 300 kHz M	Iode Auto FFT		
100/100	10 W		No. of Concession, Name		
			M1[1]	9.4	-5.87 dBm 0162000 GHz
10 dBm			M2[1]		0.06 dBm
0 dBm		M2		2.4	0200400 GHz
D1 -5.94	0 dBm	MI/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V 3		
-10 dBm	1				
-20 dBm					_
-30 dBm				~	
-30 0811	~			~	\sim
-40 dBm					
-50 dBm					
-60 dBm					
-70 dBm		+			
05.0.400.0115		1001			1 0 MU
CF 2.402 GHz Marker		1001 pts		S	pan 4.0 MHz
Type Ref Trc	X-value	Y-value	unction	Function Res	ult
M1 1 M2 1	2.40162 GHz 2.402004 GHz	-5.87 dBm 0.06 dBm			
D3 M1 1	728.0 kHz	0.08 dB			
Date: 21.JUL.2023	20:27:44				
	BI	F 1M Ant1	2440		
	BL	E_1M_Ant1	_2440		
Spectrum			_2440		
RefLevel 20.24 d Att 10	IBm Offset 20.24 dB				
Ref Level 20.24 d Att 10 Count 100/100	IBm Offset 20.24 dB	RBW 100 kHz			
RefLevel 20.24 d Att 10	IBm Offset 20.24 dB	RBW 100 kHz			-6.27 dBm
Ref Level 20.24 d Att 10 Count 100/100	IBm Offset 20.24 dB	RBW 100 kHz	Node Auto FFT	2,4	-6.27 dBm 3962000 GHz
Ref Level 20.24 d Att 10 Count 100/100 P1Pk View 10 dBm	IBm Offset 20.24 dB	RBW 100 kHz	lode Auto FFT		-6.27 dBm
Ref Level 20.24 d Att 10 Count 100/100 IV View 10 dBm 0 0 dBm 0	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att 10 Count 100/100 P1Pk View 10 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att 10 Count 100/100 IPk View 10 dBm 0 dBm -10 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 1Pk View 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att 10 Count 100/100 IPk View 10 dBm 0 dBm -10 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 1Pk View 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 ID dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 ●1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 ID dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 IPk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 ID dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT		-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 d Att Count 100/100 IPk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm	iBm Offset 20.24 dB (dB SWT 18.9 µs (RBW 100 kHz	Node Auto FFT	2.4	-6.27 dBm 3962000 GHz -0.35 dBm
Ref Level 20.24 dt Att Count 100/100 ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm CF 2.44 GHz Marker	Bm Offset 20.24 dB dB SWT 18.9 µs 4	RBW 100 kHz N VBW 300 kHz N N2 N1 1001 pts	M1[1] M2[1] 03 24 15 15 15 15 15 15 15 15 15 15	2.4	-6.27 dBm 3962000 CHz -0.35 dBm 4000400 GHz
Ref Level 20.24 d Att Count 100/100 ID dBm ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -6.35 -60 dBm -70 dBm -70 dBm CF 2.44 GHz Marter Type Ref M1 1	Bm Offset 20.24 dB dB SWT 18.9 µs (0 dBm 0 dBm 2.43962 GHz	RBW 100 kHz v VBW 300 kHz v N1 N1 1001 pts 7-value 1 -6.27 dBm	Node Auto FFT	2.4	-6.27 dBm 3962000 CHz -0.35 dBm 4000400 GHz
Ref Level 20.24 d Att Count 100/100 0 IPk View 10 dBm 0 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 RBM -70 RBM Type Ref [Trc]	Bm Offset 20.24 dB dB SWT 18.9 µs 4	RBW 100 kHz W VBW 300 kHz M M2 M1 1001 pts Y-volue	M1[1] M2[1] 03 24 15 15 15 15 15 15 15 15 15 15	2.4	-6.27 dBm 3962000 CHz -0.35 dBm 4000400 GHz
Ref Level 20.24 d Att 10 Count 100/100 10 O dBm 0 0 dBm 0 -10 dBm 0 -20 dBm -20 dBm -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm CF 2.44 GHz Marker Type Ref Trc. M1 1 1 1 M2 1 M2 1	Bm Offset 20.24 dB dB SWT 18.9 µs 4	RBW 100 kHz N VBW 300 kHz N M2 M2 N M1	M1[1] M2[1] 03 24 15 15 15 15 15 15 15 15 15 15	2.4	-6.27 dBm 3962000 CHz -0.35 dBm 4000400 GHz

Report No.: RA230718-41569E-RF-00



Appendix B: Occupied Channel Bandwidth

Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.071	2401.461	2402.531		
BLE_1M	Ant1	2440	1.135	2439.429	2440.563		
		2480	1.071	2479.461	2480.531		

Test Graphs

Report No.: RA230718-41569E-RF-00

Appendix C: Maximum conducted output power

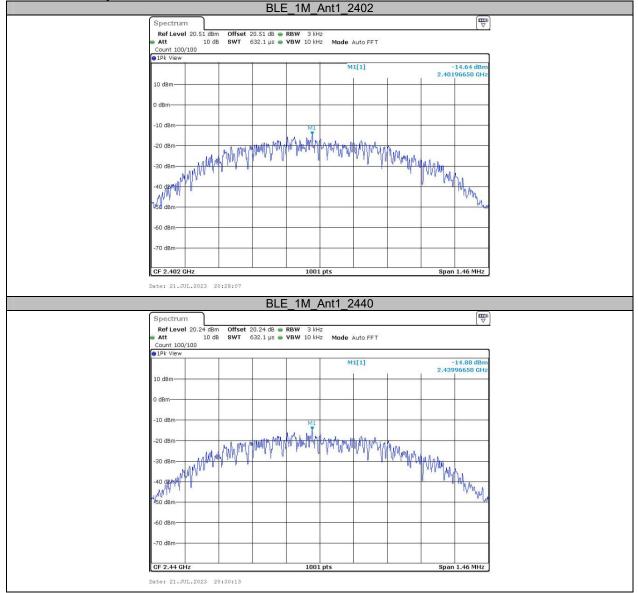
Test Result

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power [dBm]	Conducted Limit [dBm]	Verdict
		2402	0.72	≤30	PASS
BLE_1M	Ant1	2440	0.44	≤30	PASS
		2480	0.16	≤30	PASS

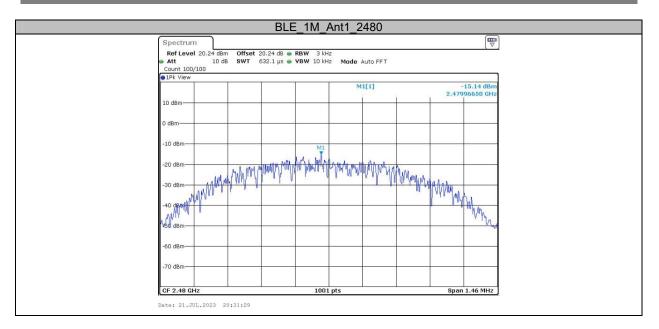
Test Graphs Peak

	E_1M_Ant1_2402		
Spectrum			
Ref Level 20.51 dBm Offset 20.51 dB			
Att 10 dB SWT 1 ms (Count 100/100	VBW 10 MHz Mode Auto Sweep		
• 1Pk View	a a a a a a a a a a a a a a a a a a a		
	M1[1]	0.72 dBm 2.40193610 GHz	
10 dBm		2.40193010 042	
	MI		
0 dBm			
-10 dBm		and the second se	
-20 dBm			
-30 dBm-			
-40 dBm			
-50 dBm			
-60 dBm			
-70 dBm			
-70 dbin			
CF 2.402 GHz	1001 pts	Span 8.0 MHz	
	1001 pr3	Span 0.0 Milz	
Date: 21.JUL.2023 20:28:02			
BL	E 1M Ant1 2440		
	E_1M_Ant1_2440		
Spectrum Ref Level 20.24 dBm Offset 20.24 dB			
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms		(m)	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB	RBW 3 MHz		
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Count 100/100 Count 100/100 Count 100/100	RBW 3 MHz	0.44 dBm	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Image: Count 100/100 Image: Count 100/100 Image: Count 100/100	RBW 3 MHz VBW 10 MHz Mode Auto Sweep		
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Count 100/100 Count 100/100 Count 100/100	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Image: Count 100/100 Image: Count 100/100 Image: Count 100/100	RBW 3 MHz VBW 10 MHz Mode Auto Sweep	0.44 dBm	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 1 ms 1 ms 1 ms I D dBm 1 0 dBm 1 0 dBm 1 0 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 1 ms 1 ms 1 ms I D dBm 1 0 dBm 1 0 dBm 1 0 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Image: Count 100/100 Image: Count 100/100 Image: Count 100/100 Index Image: Count 100/100 Image: Count 100/100 <tht< td=""><td>RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]</td><td>0.44 dBm</td><td></td></tht<>	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 1 Pk View 10 dBm 10 dBm 0 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 IPk View 10 dBm 10 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Image: Count 100/100 Image: Count 100/100 Image: Count 100/100 Index Image: Count 100/100 Image: Count 100/100 <tht< td=""><td>RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]</td><td>0.44 dBm 2.43976820 GHz</td><td></td></tht<>	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 IPk View 10 dBm 10 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Image: Count 100/100 Image: Count 100/100 Image: Count 100/100 ID dBm Image: Count 100/100 Image: Count 100/100 <th< td=""><td>RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]</td><td>0.44 dBm 2.43976820 GHz</td><td></td></th<>	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Image: Count 100/100 Image: Count 100/100 Image: Count 100/100 ID dBm Image: Count 100/100 Image: Count 100/100 <th< td=""><td>RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]</td><td>0.44 dBm 2.43976820 GHz</td><td></td></th<>	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB (Bm) Att 10 dB SWT 1 ms Count 100/100 91Pk View 910 dBm 910 dBm 10 dBm 90 dBm 910 dBm 910 dBm 910 dBm -10 dBm 910 dBm 9	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 IPk View 10 dBm 10 dBm 10 dBm 0 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 IPk View 10 dBm 10 dBm 10 dBm 0 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB (Bm) Att 10 dB SWT 1 ms Count 100/100 91Pk View 910 dBm 910 dBm 10 dBm 90 dBm 910 dBm 910 dBm 910 dBm -10 dBm 910 dBm 9	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 Image: Count 100/100 Image: Count 100/100 Image: Count 100/100 ID dBm 0 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1] M1	0.44 dBm 2.43976820 GHz	
Spectrum Ref Level 20.24 dBm Offset 20.24 dB Att 10 dB SWT 1 ms Count 100/100 IPk View 10 dBm 10 dBm 10 dBm 0 dBm	RBW 3 MHz VBW 10 MHz Mode Auto Sweep M1[1]	0.44 dBm 2.43976820 GHz	

Report No.: RA230718-41569E-RF-00

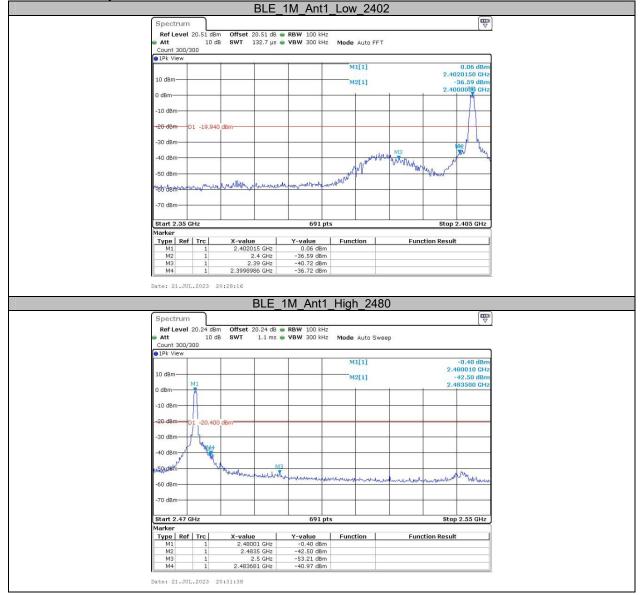

Spectr	um						
Ref Le	vel 20.24 dBm Offse	t 20.24 dB 🖷 RBW	3 MHz				
Att	10 dB SWT	1 ms 🖷 VBW	10 MHz Mode	Auto Sweep			
Count 1							
TEK TIG			M	1[1]	0.1	L6 dBm	
					2.480415		
10 dBm-	-						
			M1				
0 dBm	-		¥ -				
-10 dBm;						and the second sec	
Bankarman					40	margan the	
-20 dBm-							
-30 dBm-							
-40 dBm-					-		
-50 dBm-					_		
-60 dBm-							
-70 dBm-							
70 db//							
CF 2.48	GHz	10 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	1001 pts		Span 8.	D MHz	

Appendix D: Maximum power spectral density


Test Result

Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-14.64	≤8.00	PASS
BLE_1M	Ant1	2440	-14.88	≤8.00	PASS
		2480	-15.14	≤8.00	PASS

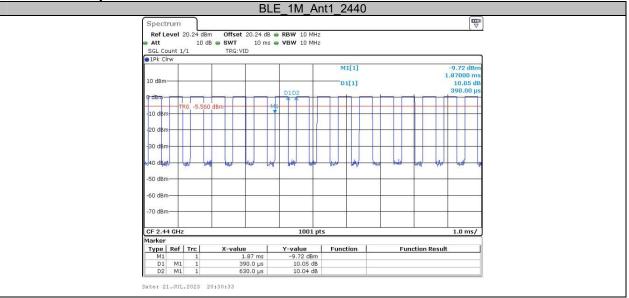
Test Graphs



Report No.: RA230718-41569E-RF-00

Appendix E: Band edge measurements

Test Graphs



Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency[MHz]	ON Time [ms]	Period [ms]	Duty Cycle [%]	Duty Cycle Factor[dB]	1/T Minimum VBW[kHz]
BLE_1M	Ant1	2440	0.39	0.63	61.90	2.08	2.56

Test Graphs

***** END OF REPORT *****