Report No.: FR6D2013-01A # FCC RADIO TEST REPORT FCC ID : PY7-61352Q Equipment : Observer Brand Name : Sony Mobile Applicant : Sony Mobile Communications Inc. 4-12-3 Higashi-shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan Manufacturer : Sony Mobile Communications Inc. 4-12-3 Higashi-shinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan Standard : FCC Part 15 Subpart C §15.247 The product was received on Jan. 08, 2018 and testing was started from Jan. 17, 2018 and completed on Jun. 01, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full. Approved by: Jones Tsai TEL: 886-3-327-3456 (Ince/sai) SPORTON INTERTIONAL INC. EMC & Wireless Communications Laboratory Page Number : 1 of 36 No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # **Table of Contents** Report No.: FR6D2013-01A | His | tory o | of this test report | 3 | |-----|--------|--|----| | Sur | nmary | y of Test Result | 4 | | 1 | Gene | eral Description | 5 | | | 1.1 | Product Feature of Equipment Under Test | 5 | | | 1.2 | Modification of EUT | 5 | | | 1.3 | Testing Location | 6 | | | 1.4 | Applicable Standards | 6 | | 2 | Test | Configuration of Equipment Under Test | 7 | | | 2.1 | Carrier Frequency Channel | 7 | | | 2.2 | Test Mode | 8 | | | 2.3 | Connection Diagram of Test System | 9 | | | 2.4 | Support Unit used in test configuration and system | 9 | | | 2.5 | EUT Operation Test Setup | 10 | | | 2.6 | Measurement Results Explanation Example | 10 | | 3 | Test | Result | 11 | | | 3.1 | 6dB and 99% Bandwidth Measurement | 11 | | | 3.2 | Output Power Measurement | 16 | | | 3.3 | Power Spectral Density Measurement | 17 | | | 3.4 | Conducted Band Edges and Spurious Emission Measurement | 22 | | | 3.5 | Radiated Band Edges and Spurious Emission Measurement | 27 | | | 3.6 | AC Conducted Emission Measurement | 31 | | | 3.7 | Antenna Requirements | 33 | | 4 | List | of Measuring Equipment | 34 | | 5 | Unce | ertainty of Evaluation | 36 | | Apı | pendi | x A. Conducted Test Results | | | Apı | pendi | x B. AC Conducted Emission Test Result | | | Apı | pendi | x C. Radiated Spurious Emission | | | Apı | pendi | x D. Radiated Spurious Emission Plots | | | Apı | pendi | x E. Duty Cycle Plots | | TEL: 886-3-327-3456 Page Number : 2 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 Report Version : 03 Report Template No.: BU5-FR15CBT4.0 Version 2.1 # History of this test report Report No.: FR6D2013-01A | Report No. | Version | Description | Issued Date | |--------------|---------|---|---------------| | FR6D2013-01A | 01 | Initial issue of report | Jun. 21, 2018 | | FR6D2013-01A | 02 | Revising the description in section 2.2. Revising the connection diagram in 2.3. Revising the measuring equipment in section 4. | Aug. 03, 2018 | | FR6D2013-01A | 03 | Revising test data in this report. Revising the connection diagram in 2.3. | Aug. 08, 2018 | TEL: 886-3-327-3456 Page Number : 3 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # **Summary of Test Result** Report No.: FR6D2013-01A | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |------------------|-----------------------|---|-----------------------|---| | 3.1 | 15.247(a)(2) | 6dB Bandwidth | Pass | - | | 3.1 | 2.1049 | 99% Occupied Bandwidth | Reporting only | - | | 3.2 | 15.247(b)(3) | Peak Output Power | Pass | - | | 3.3 | 15.247(e) | Power Spectral Density | Pass | - | | 3.4 | 15.247(d) | Conducted Band Edges and Spurious
Emission | Pass | - | | 3.5 | 15.247(d) | Radiated Band Edges and Spurious
Emission | Pass | Under limit
3.38 dB at
45.660 MHz | | 3.6 | 15.207 | AC Conducted Emission | Pass | Under limit
18.30 dB at
0.150 MHz | | 3.7 | 15.203 &
15.247(b) | Antenna Requirement | Pass | - | Reviewed by: Joseph Lin **Report Producer: Nancy Yang** TEL: 886-3-327-3456 Page Number : 4 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 1 General Description # 1.1 Product Feature of Equipment Under Test Bluetooth, and DTS/UNII b/g/n | · | t Specification | | |---------------------|-----------------|---------------------------| | Antenna Type / Gain | Chip Anten | na type with gain 2.5 dBi | Report No.: FR6D2013-01A | EUT Information List | | | | |----------------------|------------|----------------------------|--| | HW Version | SW Version | Performed Test Item | | | | | RF conducted measurement | | | А | 1.0 | Radiated Spurious Emission | | | | | Conducted Emission | | | Accessory Information List | | | | | | |----------------------------|-----------|---------------|---|--|--| | | Model No. | S/N | Performed Test Item | | | | AC adapter | UH20 | 3515W34406073 | Radiated Spurious Emission Conducted Emission | | | #### Note: - 1. Above EUT list used are electrically identical per declared by manufacturer. - 2. Above the accessories list are used to exercise the EUT during test, and the serial number of each type of accessories is listed in each section of this report. - 3. For other wireless features of this EUT, test report will be issued separately. #### 1.2 Modification of EUT No modifications are made to the EUT during all test items. TEL: 886-3-327-3456 Page Number : 5 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 ## 1.3 Testing Location Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test. Report No.: FR6D2013-01A | Test Site | SPORTON INTERNATIONAL INC. | | | |--------------------|---|----------|--| | Test Site Location | No.52, Huaya 1st Rd., Guishan Dist.,
Taoyuan City, Taiwan (R.O.C.)
TEL: +886-3-327-3456
FAX: +886-3-328-4978 | | | | Test Site No. | Sporton | Site No. | | | rest site NO. | TH05-HY | CO05-HY | | Note: The test site complies with ANSI C63.4 2014 requirement. | Test Site | SPORTON INTERNATIONAL INC. | | | |--------------------|---|--|--| | Test Site Location | No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist.,
Taoyuan City, Taiwan (R.O.C.)
TEL: +886-3-327-0868
FAX: +886-3-327-0855 | | | | Test Site No. | Sporton Site No. 03CH11-HY | | | Note: The test site complies with ANSI C63.4 2014 requirement. # 1.4 Applicable Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: - FCC Part 15 Subpart C §15.247 - FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04 - + ANSI C63.10-2013 #### Remark: - 1. All test items were verified and recorded according to the standards and without any deviation during the test. - 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report. TEL: 886-3-327-3456 Page Number : 6 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### **Test Configuration of Equipment Under Test** 2 # 2.1 Carrier Frequency Channel | Frequency Band | Channel | Freq.
(MHz) | Channel | Freq.
(MHz) | |-----------------|---------|----------------|---------|----------------| | | 0 | 2402 | 21 | 2444 | | | 1 | 2404 | 22 | 2446 | | | 2 | 2406 | 23 | 2448 | | | 3 | 2408 | 24 | 2450 | | | 4 | 2410 | 25 | 2452 | | | 5 | 2412 | 26 | 2454 | | | 6 | 2414 | 27 | 2456 | | | 7 | 2416 | 28 | 2458 | | | 8 | 2418 | 29 | 2460 | | | 9 | 2420 | 30 | 2462 | | 2400-2483.5 MHz | 10 | 2422 | 31 | 2464 | | | 11 | 2424 | 32 | 2466 | | | 12 | 2426 | 33 | 2468 | | | 13 | 2428 | 34 | 2470 | | | 14 | 2430 | 35 | 2472 | | | 15 | 2432 | 36 | 2474 | | | 16 | 2434 | 37 | 2476 | | | 17 | 2436 | 38 | 2478 | | | 18 | 2438 | 39 | 2480 | | | 19 | 2440 | - | - | | | 20 | 2442 | - | - | Report No.: FR6D2013-01A TEL: 886-3-327-3456 Page Number : 7 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 : 03 #### 2.2 Test Mode a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report. Report No.: FR6D2013-01A b. AC power line Conducted Emission was tested under maximum output power. The following summary table is showing all test modes to demonstrate in compliance with the standard. | | Summary table of Test Cases | |------------|---| | Test Item | Data Rate / Modulation | | rest item | Bluetooth – LE / GFSK | | Conducted |
Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps | | Test Cases | Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps | | lest Cases | Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps | | Radiated | Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps | | Test Cases | Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps | | rest Cases | Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps | | AC | | | Conducted | Mode 1: EUT Charging + WLAN Idle + Bluetooth On | | Emission | | TEL: 886-3-327-3456 Page Number : 8 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 2.3 Connection Diagram of Test System #### < Bluetooth - LE Tx Mode> Report No.: FR6D2013-01A #### <AC Conducted Emissions Mode> # 2.4 Support Unit used in test configuration and system | Item | Equipment | Trade Name | Model Name | FCC ID | Data Cable | Power Cord | |------|---------------|------------|------------|-------------|------------|-----------------| | 1. | WLAN AP | ASUS | RT-AC66U | MSQ-RTAC66U | N/A | Unshielded,1.8m | | 2. | Bluetooth Tag | Sony | D52.1 | PY7-32042C | N/A | N/A | TEL: 886-3-327-3456 Page Number : 9 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 ## 2.5 EUT Operation Test Setup The RF test items, utility "Putty" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals. Report No.: FR6D2013-01A ## 2.6 Measurement Results Explanation Example #### For all conducted test items: The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level. #### Example: The spectrum analyzer offset is derived from RF cable loss and attenuator factor. Offset = RF cable loss + attenuator factor. Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator. Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = $$4.2 + 10 = 14.2$$ (dB) TEL: 886-3-327-3456 Page Number : 10 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### 3 Test Result #### 3.1 6dB and 99% Bandwidth Measurement #### 3.1.1 Limit of 6dB and 99% Bandwidth The minimum 6 dB bandwidth shall be at least 500 kHz. #### 3.1.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.1.3 Test Procedures - 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04. - 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Report No.: FR6D2013-01A - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz. - 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz. - 6. Measure and record the results in the test report. #### 3.1.4 Test Setup TEL: 886-3-327-3456 Page Number : 11 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### 3.1.5 Test Result of 6dB Bandwidth Please refer to Appendix A. #### 6 dB Bandwidth Plot on Channel 00 Report No.: FR6D2013-01A Date: 7.JUN.2018 00:45:25 #### 6 dB Bandwidth Plot on Channel 19 Date: 7.JUN.2018 01:07:22 #### 6 dB Bandwidth Plot on Channel 39 Date: 7.JUN.2018 01:13:21 TEL: 886-3-327-3456 Page Number : 13 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 Report Template No.: BU5-FR15CBT4.0 Version 2.1 Report Version : Aug. 08, Report No.: FR6D2013-01A # 3.1.6 Test Result of 99% Occupied Bandwidth Please refer to Appendix A. #### 99% Bandwidth Plot on Channel 00 Report No.: FR6D2013-01A Date: 7.JUN.2018 01:05:40 #### 99% Occupied Bandwidth Plot on Channel 19 Date: 7.JUN.2018 01:11:48 TEL: 886-3-327-3456 Page Number : 14 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### 99% Occupied Bandwidth Plot on Channel 39 Report No.: FR6D2013-01A Date: 7.JUN.2018 01:15:28 Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations. ### 3.2 Output Power Measurement #### 3.2.1 Limit of Output Power For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. Report No.: FR6D2013-01A #### 3.2.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.2.3 Test Procedures - For Peak Power, the testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04 section 9.1.3 PKPM1 Peak power meter method. - For Average Power, the testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04 section 9.2.3.2 Method AVGPM-G. - 3. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 4. Set to the maximum power setting and enable the EUT transmit continuously. - Measure the conducted output power and record the results in the test report. #### 3.2.4 Test Setup #### 3.2.5 Test Result of Peak Output Power Please refer to Appendix A. #### 3.2.6 Test Result of Average Output Power (Reporting Only) Please refer to Appendix A. TEL: 886-3-327-3456 Page Number : 16 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 ### 3.3 Power Spectral Density Measurement #### 3.3.1 Limit of Power Spectral Density The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission. Report No.: FR6D2013-01A ### 3.3.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.3.3 Test Procedures - The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04 - 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) - 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. - 6. Measure and record the results in the test report. - 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission. #### 3.3.4 Test Setup #### 3.3.5 Test Result of Power Spectral Density Please refer to Appendix A. TEL: 886-3-327-3456 Page Number : 17 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 3.3.6 Test Result of Power Spectral Density Plots (100kHz) #### PSD 100kHz Plot on Channel 00 Report No.: FR6D2013-01A Date: 7.JUN.2018 00:55:33 #### PSD 100kHz Plot on Channel 19 Date: 7.JUN.2018 01:08:07 TEL: 886-3-327-3456 Page Number : 18 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 : 03 #### PSD 100kHz Plot on Channel 39 Report No.: FR6D2013-01A Date: 7.JUN.2018 01:14:17 TEL: 886-3-327-3456 Page Number : 19 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 3.3.7 Test Result of Power Spectral Density Plots (3kHz) #### PSD 3kHz Plot on Channel 00 Report No.: FR6D2013-01A Date: 7.JUN.2018 00:54:52 #### **PSD 3kHz Plot on Channel 19** Date: 7.JUN.2018 01:07:53 TEL: 886-3-327-3456 Page Number : 20 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### **PSD 3kHz Plot on Channel 39** Report No.: FR6D2013-01A Date: 7.JUN.2018 01:14:00 TEL: 886-3-327-3456 Page Number : 21 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 ### 3.4 Conducted Band Edges and Spurious Emission Measurement #### 3.4.1 Limit of Conducted Band Edges and Spurious Emission All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band. Report No.: FR6D2013-01A #### 3.4.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.4.3 Test Procedure - 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04 - 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. - 3. Set to the maximum power setting and enable the EUT transmit continuously. - 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. - 5. Measure and record the results in the test report. - 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. #### 3.4.4 Test Setup TEL: 886-3-327-3456 Page Number : 22 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 3.4.5 Test Result of Conducted Band Edges Plots #### Low Band Edge Plot on Channel 00 Report No.: FR6D2013-01A Date: 7.JUN.2018 00:55:59
High Band Edge Plot on Channel 39 Date: 7.JUN.2018 01:14:43 TEL: 886-3-327-3456 Page Number : 23 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 : 03 ## 3.4.6 Test Result of Conducted Spurious Emission Plots # Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00 Report No.: FR6D2013-01A Date: 7.JUN.2018 00:56:37 ## Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00 Date: 7.JUN.2018 00:56:54 TEL: 886-3-327-3456 Page Number : 24 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Report No.: FR6D2013-01A Date: 7.JUN.2018 01:08:31 # Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Date: 7.JUN.2018 01:11:34 # Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39 Report No.: FR6D2013-01A Date: 7.JUN.2018 01:14:59 ## Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39 Date: 7.JUN.2018 01:15:14 TEL: 886-3-327-3456 Page Number : 26 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 3.5 Radiated Band Edges and Spurious Emission Measurement #### 3.5.1 Limit of Radiated Band Edges and Spurious Emission In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below. Report No.: FR6D2013-01A | Frequency | Field Strength | Measurement Distance | |---------------|--------------------|----------------------| | (MHz) | (microvolts/meter) | (meters) | | 0.009 - 0.490 | 2400/F(kHz) | 300 | | 0.490 - 1.705 | 24000/F(kHz) | 30 | | 1.705 – 30.0 | 30 | 30 | | 30 – 88 | 100 | 3 | | 88 – 216 | 150 | 3 | | 216 - 960 | 200 | 3 | | Above 960 | 500 | 3 | #### 3.5.2 Measuring Instruments See list of measuring equipment of this test report. TEL: 886-3-327-3456 Page Number : 27 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### 3.5.3 Test Procedures - 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v04 - 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Report No.: FR6D2013-01A - 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground. - 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower. - 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level - 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported. - 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. - 8. Use the following spectrum analyzer settings: - (1) Span shall wide enough to fully capture the emission being measured; - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement: - VBW = 10 Hz, when duty cycle is no less than 98 percent. - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. TEL: 886-3-327-3456 Page Number : 28 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 3.5.4 Test Setup #### For radiated emissions below 30MHz Report No.: FR6D2013-01A For radiated emissions from 30MHz to 1GHz TEL: 886-3-327-3456 Page Number : 29 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### For radiated emissions above 1GHz Report No.: FR6D2013-01A #### 3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz) The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported. There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar. #### 3.5.6 Test Result of Radiated Spurious at Band Edges Please refer to Appendix C and D. #### 3.5.7 Duty Cycle Please refer to Appendix E. #### 3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic) Please refer to Appendix C and D. TEL: 886-3-327-3456 Page Number : 30 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 #### 3.6 AC Conducted Emission Measurement #### 3.6.1 Limit of AC Conducted Emission For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table. Report No.: FR6D2013-01A | Fraguency of omission (MHz) | Conducted limit (dBµV) | | | | |-----------------------------|------------------------|-----------|--|--| | Frequency of emission (MHz) | Quasi-peak | Average | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | 0.5-5 | 56 | 46 | | | | 5-30 | 60 | 50 | | | ^{*}Decreases with the logarithm of the frequency. #### 3.6.2 Measuring Instruments See list of measuring equipment of this test report. #### 3.6.3 Test Procedures - 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface. - 2. Connect EUT to the power mains through a line impedance stabilization network (LISN). - 3. All the support units are connecting to the other LISN. - 4. The LISN provides 50 ohm coupling impedance for the measuring instrument. - 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used. - 6. Both sides of AC line were checked for maximum conducted interference. - 7. The frequency range from 150 kHz to 30 MHz was searched. - Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively. TEL: 886-3-327-3456 Page Number : 31 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 ## 3.6.4 Test Setup Report No.: FR6D2013-01A AMN = Artificial mains network (LISN) AE = Associated equipment EUT = Equipment under test ISN = Impedance stabilization network #### 3.6.5 Test Result of AC Conducted Emission Please refer to Appendix B. TEL: 886-3-327-3456 Page Number : 32 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 : 03 # 3.7 Antenna Requirements #### 3.7.1 Standard Applicable If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule. Report No.: FR6D2013-01A #### 3.7.2 Antenna Anti-Replacement Construction An embedded-in antenna design is used. #### 3.7.3 Antenna Gain The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit. TEL: 886-3-327-3456 Page Number : 33 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 4 List of Measuring Equipment | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Test Date | Due Date | Remark | |--------------------------|--------------------|----------------------------|----------------------|-----------------|---------------------|----------------------------------|---------------|--------------------------| | Power Meter | Agilent | E4416A | GB412923
44 | N/A | Dec. 20, 2017 | Mar. 01, 2018~
May 24, 2018 | Dec. 19, 2018 | Conducted
(TH05-HY) | | Power Sensor | Agilent | E9327A | US404415
48 | 50MHz~18GHz | Dec. 20, 2017 | Mar. 01, 2018~
May 24, 2018 | Dec. 19, 2018 | Conducted
(TH05-HY) | | Spectrum
Analyzer | Rohde &
Schwarz | FSP40 | 100055 | 9kHz~40GHz | Jun. 20, 2017 | Mar. 01, 2018~
May 24, 2018 | Jun. 19, 2018 | Conducted
(TH05-HY) | | Switch Box & RF
Cable | Burgeon | ETF-058 | EC130048
4 | N/A | Mar. 01, 2018 | Mar. 01, 2018~
May 24, 2018 | Feb. 28, 2019 | Conducted
(TH05-HY) | | Hygrometer | TECPEL | DTM-303B | TP157151 | N/A | Mar. 20, 2017 | Mar. 01, 2018~
Mar. 18, 2018 | Mar. 19, 2018 | Conducted
(TH05-HY) | | Hygrometer | Testo | DTM-303A | TP157075 | N/A | Mar. 06, 2018 | Mar. 19, 2018~
May 24, 2018 | Mar. 05, 2019 | Conducted
(TH05-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY842095
21 | 1GHz~26GHz | Dec. 01, 2017 | Mar. 01, 2018~
May 24, 2018 | Nov. 30, 2018 | Conducted
(TH05-HY) | | AC Power Source | ChainTek | APC-1000W | N/A | N/A | N/A | Jan. 19, 2018 | N/A | Conduction
(CO05-HY) | | EMI Test Receiver | Rohde &
Schwarz | ESCI 7 | 100724 | 9kHz~7GHz | Sep. 20, 2017 | Jan. 19, 2018 | Sep. 19, 2018 | Conduction
(CO05-HY) | | Hygrometer | Testo | 608-H1 | 34913912 | N/A | Mar. 20, 2017 | Jan. 19, 2018 | Mar. 19, 2018 | Conduction
(CO05-HY) | | LISN | Rohde &
Schwarz | ENV216 | 100080 | 9kHz~30MHz | Nov. 30, 2017 | Jan. 19, 2018 | Nov. 29, 2018 | Conduction
(CO05-HY) | | LF
Cable | HUBER +
SUHNER | RG-214/U | LF01 | N/A | Jan. 05, 2018 | Jan. 19, 2018 | Jan. 04, 2019 | Conduction
(CO05-HY) | | Pulse Limiter | Rohde &
Schwarz | ESH3-Z2 | 100851 | N/A | Jan. 05, 2018 | Jan. 19, 2018 | Jan. 04, 2019 | Conduction
(CO05-HY) | | Test Software | Rohde &
Schwarz | EMC32
V10.30 | N/A | N/A | N/A | Jan. 19, 2018 | N/A | Conduction
(CO05-HY) | | Loop Antenna | Rohde &
Schwarz | HFH2-Z2 | 100488 | 9 kHz~30 MHz | Nov. 23, 2017 | Jan. 17, 2018~
Jun. 01, 2018 | Nov. 22, 2019 | Radiation
(03CH11-HY) | | Bilog Antenna | TESEQ | CBL
6111D&N-6-0
6 | 35414&AT-
N0602 | 30MHz~1GHz | Oct. 14, 2017 | Jan. 17, 2018~
Jun. 01, 2018 | Oct. 13, 2018 | Radiation
(03CH11-HY) | | Horn Antenna | SCHWARZBE
CK | BBHA 9120 D | 9120D-132
6 | 1GHz ~ 18GHz | Oct. 16, 2017 | Jan. 17, 2018~
Jun. 01, 2018 | Oct. 15, 2018 | Radiation
(03CH11-HY) | | SHF-EHF Horn
Antenna | SCHWARZBE
CK | BBHA 9170 | BBHA9170
584 | 18GHz- 40GHz | Nov. 27, 2017 | Jan. 17, 2018~
Jun. 01, 2018 | Nov. 26, 2018 | Radiation
(03CH11-HY) | | Spectrum
Analyzer | Keysight | N9010A | MY542004
86 | 10Hz ~ 44GHz | Oct. 19, 2017 | Jan. 17, 2018~
Jun. 01, 2018 | Oct. 18, 2018 | Radiation
(03CH11-HY) | | Amplifier | SONOMA | 310N | 187312 | 9kHz~1GHz | Jan. 16, 2018 | Jan. 17, 2018~
Jun. 01, 2018 | Jan. 15, 2019 | Radiation (03CH11-HY) | | Preamplifier | MITEQ | AMF-7D-0010
1800-30-10P | 1590074 | 1GHz~18GHz | May 22, 2017 | Jan. 17, 2018~
May 20, 2018 | May 21, 2018 | Radiation (03CH11-HY) | | Preamplifier | Jet-Power | JPA0118-55-3
03K | 171000180
0054002 | 1GHz~18GHz | Apr. 17, 2018 | May 21, 2018~
Jun. 01, 2018 | Apr. 16, 2019 | Radiation (03CH11-HY) | | Preamplifier | Keysight | 83017A | MY532700
80 | 1GHz~26.5GHz | Nov. 10, 2017 | Jan. 17, 2018 ~
Jun. 01, 2018 | Nov. 09, 2018 | Radiation (03CH11-HY) | Report No.: FR6D2013-01A | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration | Test Date | Due Date | Remark | |---------------|-------------------|-------------------------------------|--|-------------------------------------|---------------------------|----------------------------------|---------------|--------------------------| | Amplifier | MITEQ | TTA1840-35-
HG | 1871923 | 18GHz~40GHz,
VSWR : 2.5:1
max | Date Jul. 18, 2017 | Jan. 17, 2018~
Jun. 01, 2018 | Jul. 17, 2018 | Radiation
(03CH11-HY) | | Hygrometer | TECPEL | DTN-303B | TP140325 | N/A | Oct. 12, 2017 | Jan. 17, 2018 ~
Jun. 01, 2018 | Oct. 11, 2018 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY335041
/4MY9840/
4
MY9838/4 | 9k~30MHz | Jan. 27, 2017 | Jan. 17, 2018 ~
Jan. 23, 2018 | Jan. 26, 2018 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY9837/4 | 9K-30M | Mar. 20, 2018 | Mar. 20, 2018~
Jun. 01, 2018 | Mar. 19, 2019 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY15539/
4 | 30M-18G | Mar. 17, 2017 | Jan. 17, 2018 ~
Jan. 23, 2018 | Mar. 16, 2018 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
104 | MY9837/4 | 30M-18G | Mar. 15, 2018 | May 31, 2018 ~
Jun. 01, 2018 | Mar. 14, 2019 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | MY2589/2 | 30M-18G | Mar. 15, 2018 | May 31, 2018 ~
Jun. 01, 2018 | Mar. 14, 2019 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | 505134/2 | 30M~40GHz | Oct. 17, 2017 | Jan. 17, 2018 ~
Jun. 01, 2018 | Oct. 16, 2018 | Radiation
(03CH11-HY) | | RF Cable | HUBER +
SUHNER | SUCOFLEX
102 | 800740/2 | 30M~40GHz | Oct. 17, 2017 | Jan. 17, 2018 ~
Jun. 01, 2018 | Oct. 16, 2018 | Radiation
(03CH11-HY) | | Filter | Wainwright | WLKS1200-1
2SS | SN2 | 1.2G Low Pass | Jul. 17, 2017 | Jan. 17, 2018 ~
Jun. 01, 2018 | Jul. 16, 2018 | Radiation
(03CH11-HY) | | Filter | Wainwright | WHKX12-270
0-3000-18000
-60SS | SN3 | 2.7G High Pass | Sep. 18, 2017 | Jan. 17, 2018 ~
Jun. 01, 2018 | Sep. 17, 2018 | Radiation
(03CH11-HY) | | Antenna Mast | EMEC | AM-BS-4500-
B | N/A | 1~4m | N/A | Jan. 17, 2018 ~
Jun. 01, 2018 | N/A | Radiation
(03CH11-HY) | | Turn Table | EMEC | TT 2000 | N/A | 0~360 Degree | N/A | Jan. 17, 2018 ~
Jun. 01, 2018 | N/A | Radiation
(03CH11-HY) | | Test Software | Audix | E3
6.2009-8-24 | RK-00104
2 | N/A | N/A | Jan. 17, 2018 ~
Jun. 01, 2018 | N/A | Radiation
(03CH11-HY) | Report No.: FR6D2013-01A TEL: 886-3-327-3456 Page Number : 35 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 # 5 Uncertainty of Evaluation #### **Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)** | Measuring Uncertainty for a Level of Confidence | 0.70 | |---|------| | of 95% (U = 2Uc(y)) | 2.70 | Report No.: FR6D2013-01A #### Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz) | Measuring Uncertainty for a Level of Confidence | 5.20 | |---|------| | of 95% (U = 2Uc(y)) | 5.20 | #### Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz) | Measuring Uncertainty for a Level of Confidence | E E0 | |---|------| | of 95% (U = 2Uc(y)) | 5.50 | #### Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz) | Measuring Uncertainty for a Level of Confidence | 5.20 | | |---|------|--| | of 95% (U = 2Uc(y)) | 5.20 | | TEL: 886-3-327-3456 Page Number : 36 of 36 FAX: 886-3-328-4978 Issued Date : Aug. 08, 2018 Report Number : FR6D2013-01A ### Appendix A. Test Result of Conducted Test Items | Test Engineer: | Lena Lo/Shiang Wang | Temperature: | 21~25 | °C | |----------------|---------------------|--------------------|-------|----| | Test Date: | 2018/3/1~2018/06/07 | Relative Humidity: | 51~54 | % | #### TEST RESULTS DATA 6dB and 99% Occupied Bandwidth | М | od. | Data
Rate | N⊤x | CH. | Freq. Occupied
(MHz) BW
(MHz) | | 6dB BW
(MHz) | l limit | | |----|-----|--------------------|-----|------------|-------------------------------------|-------|-----------------|---------|------| | BI | LE | 1Mbps | 1 | 0 | 2402 | 1.016 | 0.640 | 0.50 | Pass | | ВІ | LE | 1Mbps 1 | | 1Mbps 1 19 | | 1.010 | 0.636 | 0.50 | Pass | | ВІ | LE | 1Mbps 1
1Mbps 1 | | 39 | 2480 | 1.014 | 0.632 | 0.50 | Pass | # TEST RESULTS DATA Peak Power Table | Mod. | Data
Rate | NTX | CH. | Freq.
(MHz) | Peak
Conducte
d
Power
(dBm) | Conducte
d
Power
Limit
(dBm) | DG
(dBi) | EIRP
Power
(dBm) | EIRP
Power
Limit
(dBm) | Pass
/Fail | |------|--------------|-----|-----|----------------|---|--|-------------|------------------------|---------------------------------|---------------| | BLE | 1Mbps | 1 | 0 | 2402 | 1.32 | 30.00 | 2.50 | 3.82 | 36.00 | Pass | | BLE | 1Mbps | 1 | 19 | 2440 | 1.86 | 30.00 | 2.50 | 4.36 | 36.00 | Pass | | BLE | 1Mbps | 1 | 39 | 2480 | 1.41 | 30.00 | 2.50 | 3.91 | 36.00 | Pass | # TEST RESULTS DATA Average Power Table (Reporting Only) | Mod. | Data
Rate | N⊤× | CH. | Freq.
(MHz) | Duty
Factor
(dB) | Average
Conducte
d
Power
(dBm) | |------|--------------|-----|-----|----------------|------------------------|--| | BLE | 1Mbps | 1 | 0 | 2402 | 0.80 | 0.01 | | BLE | 1Mbps | 1 | 19 | 2440 | 0.80 | 0.46 | | BLE | 1Mbps | 1 | 39 | 2480 | 0.80 | 0.03 | # TEST RESULTS DATA Peak Power Density | Mod. | Data
Rate | N⊤× | CH. | Freq.
(MHz) | Peak PSD
(dBm
/100kHz) | Peak PSD
(dBm
/3kHz) | DG
(dBi) | Peak PSD
Limit
(dBm
/3kHz) | Pass/Fail | |------|--------------|-----|-----|----------------|------------------------------|----------------------------|-------------|-------------------------------------|-----------| | BLE | 1Mbps | 1 | 0 | 2402 | 0.98 | -12.77 | 2.50 | 8.00 | Pass | | BLE | 1Mbps | 1 | 19 | 2440 | 1.67 | -12.51 | 2.50 | 8.00 | Pass | | BLE | 1Mbps | 1 | 39 | 2480 | 1.16 | -13.22 | 2.50 | 8.00 | Pass | Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 20dBc limit. # **Appendix B. AC Conducted Emission Test Results** | Took Frainces. | Divo Lon | Temperature : | 25~26 ℃ | |-----------------|----------|---------------------|----------------| | Test Engineer : | Blue Lan | Relative Humidity : | 51~53% | Report No.: FR6D2013-01A TEL: 886-3-327-3456 Page Number: B1 of B # **EUT Information** Report NO: 6d2013-01 Test Mode: Mode 1 Test Voltage: 120Vac/60Hz Phase: Line #### ENV216 Auto Test FCC Power Bar - L ## **Final Result 1** | Frequency | QuasiPeak | Filter | Line | Corr. | Margin | Limit | |-----------|-----------|--------|------|-------|--------|--------| | (MHz) | (dBµV) | | | (dB) | (dB) | (dBµV) | | 0.150000 | 43.7 | Off | L1 | 19.5 | 22.3 | 66.0 | | 0.262000 | 23.5 | Off | L1 | 19.5 | 37.9 | 61.4 | | 0.646000 | 32.9 | Off | L1 | 19.5 | 23.1 | 56.0 | | 1.006000 | 22.2 | Off | L1 | 19.5 | 33.8 | 56.0 | | 1.182000 | 23.4 | Off | L1 | 19.6 | 32.6 | 56.0 | | 1.726000 | 22.9 | Off | L1 | 19.6 | 33.1 | 56.0 | | 3.094000 | 23.0 | Off | L1 | 19.6 | 33.0 | 56.0 | ### **Final Result 2** | Frequency | Average | Filter | Line | Corr. | Margin | Limit | |-----------|---------|--------|------|-------|--------|--------| | (MHz) | (dBµV) | | | (dB) | (dB) | (dBµV) | | 0.150000 | 22.9 | Off | L1 | 19.5 | 33.1 | 56.0 | | 0.262000 | 18.8 | Off | L1 | 19.5 | 32.6 | 51.4 | | 0.646000 | 26.7 | Off | L1 | 19.5 | 19.3 | 46.0 | | 1.006000 | 18.1 | Off | L1 | 19.5 | 27.9 | 46.0 | | 1.182000 | 18.6 | Off | L1 | 19.6 | 27.4 | 46.0 | | 1.726000 | 18.2 | Off | L1 | 19.6 | 27.8 | 46.0 | | 3.094000 | 17.5 | Off | L1 | 19.6 | 28.5 | 46.0
| # **EUT Information** Report NO: 6d2013-01 Test Mode: Mode 1 Test Voltage: 120Vac/60Hz Phase: Neutral #### ENV216 Auto Test FCC Power Bar - N ## **Final Result 1** | Frequency | QuasiPeak | Filter | Line | Corr. | Margin | Limit | |-----------|-----------|--------|------|-------|--------|--------| | (MHz) | (dBµV) | | | (dB) | (dB) | (dBµV) | | 0.150000 | 47.7 | Off | N | 19.5 | 18.3 | 66.0 | | 0.646000 | 31.1 | Off | N | 19.5 | 24.9 | 56.0 | | 0.814000 | 22.2 | Off | N | 19.5 | 33.8 | 56.0 | | 1.014000 | 21.4 | Off | N | 19.5 | 34.6 | 56.0 | | 1.150000 | 25.2 | Off | N | 19.5 | 30.8 | 56.0 | | 1.246000 | 23.5 | Off | N | 19.5 | 32.5 | 56.0 | | 1.526000 | 20.2 | Off | N | 19.6 | 35.8 | 56.0 | ### **Final Result 2** | Frequency | Average | Filter | Line | Corr. | Margin | Limit | |-----------|---------|--------|------|-------|--------|--------| | (MHz) | (dBµV) | | | (dB) | (dB) | (dBµV) | | 0.150000 | 24.2 | Off | N | 19.5 | 31.8 | 56.0 | | 0.646000 | 26.4 | Off | N | 19.5 | 19.6 | 46.0 | | 0.814000 | 18.2 | Off | N | 19.5 | 27.8 | 46.0 | | 1.014000 | 18.0 | Off | N | 19.5 | 28.0 | 46.0 | | 1.150000 | 21.0 | Off | N | 19.5 | 25.0 | 46.0 | | 1.246000 | 19.4 | Off | N | 19.5 | 26.6 | 46.0 | | 1.526000 | 16.9 | Off | N | 19.6 | 29.1 | 46.0 | # **Appendix C. Radiated Spurious Emission** | Toot Engineer | Hao Hsu, Jacky Hung, and Ken Wu | Temperature : | 23~25°C | |----------------|------------------------------------|---------------------|---------| | rest Engineer. | riao risu, Jacky riung, and Ken Wu | Relative Humidity : | 54~59% | Report No.: FR6D2013-01A #### 2.4GHz 2400~2483.5MHz ### BLE (Band Edge @ 3m) | BLE | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |------------------|------|-----------|------------|--------|------------|--------|----------|------|--------|--------|-------|-------|-------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | (dBµV) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V) | | | | 2363.13 | 51.74 | -22.26 | 74 | 42.08 | 27.04 | 6.29 | 33.6 | 288 | 75 | Р | Н | | | | 2380.98 | 41.98 | -12.02 | 54 | 32.2 | 27.09 | 6.36 | 33.6 | 288 | 75 | Α | Н | | | * | 2402 | 95.04 | - | - | 85.21 | 27.13 | 6.36 | 33.59 | 288 | 75 | Р | Н | | DI E | * | 2402 | 94.4 | - | - | 84.57 | 27.13 | 6.36 | 33.59 | 288 | 75 | Α | Н | | BLE
CH 00 | | | | | | | | | | | | | Н | | 2402MHz | | 2373.735 | 51.52 | -22.48 | 74 | 41.81 | 27.09 | 6.29 | 33.6 | 400 | 99 | Р | V | | 2402WII 12 | | 2386.23 | 41.79 | -12.21 | 54 | 31.97 | 27.13 | 6.36 | 33.6 | 400 | 99 | Α | V | | | * | 2402 | 91.71 | - | - | 81.88 | 27.13 | 6.36 | 33.59 | 400 | 99 | Р | ٧ | | | * | 2402 | 90.82 | - | - | 80.99 | 27.13 | 6.36 | 33.59 | 400 | 99 | Α | V | | | | | | | | | | | | | | | ٧ | | | | 2380.4 | 51.85 | -22.15 | 74 | 42.07 | 27.09 | 6.36 | 33.6 | 305 | 113 | Р | Н | | | | 2381.36 | 41.77 | -12.23 | 54 | 31.99 | 27.09 | 6.36 | 33.6 | 305 | 113 | Α | Н | | | * | 2440 | 92.76 | - | - | 82.77 | 27.27 | 6.38 | 33.59 | 305 | 113 | Р | Н | | | * | 2440 | 92.13 | - | - | 82.14 | 27.27 | 6.38 | 33.59 | 305 | 113 | Α | Н | | | | 2484.32 | 51.67 | -22.33 | 74 | 41.57 | 27.36 | 6.39 | 33.58 | 305 | 113 | Р | Н | | BLE | | 2488.8 | 42.08 | -11.92 | 54 | 31.94 | 27.4 | 6.39 | 33.58 | 305 | 113 | Α | Н | | CH 19
2440MHz | | 2355.6 | 51.88 | -22.12 | 74 | 42.22 | 27.04 | 6.29 | 33.6 | 394 | 103 | Р | V | | 2440101112 | | 2378.16 | 41.71 | -12.29 | 54 | 32 | 27.09 | 6.29 | 33.6 | 394 | 103 | Α | ٧ | | | * | 2440 | 91.38 | - | - | 81.39 | 27.27 | 6.38 | 33.59 | 394 | 103 | Р | ٧ | | | * | 2440 | 90.78 | - | - | 80.79 | 27.27 | 6.38 | 33.59 | 394 | 103 | Α | ٧ | | | | 2487.44 | 51.3 | -22.7 | 74 | 41.2 | 27.36 | 6.39 | 33.58 | 394 | 103 | Р | V | | | | 2498.4 | 42.13 | -11.87 | 54 | 31.98 | 27.4 | 6.39 | 33.57 | 394 | 103 | Α | ٧ | TEL: 886-3-327-3456 Page Number : C1 of C6 * 2480 91.41 81.32 27.36 6.38 33.58 299 149 Ρ Н 27.36 2480 90.75 80.66 6.38 33.58 299 149 Α Н Ρ 2498.76 51.9 -22.1 41.75 27.4 6.39 33.57 299 149 Н 74 2483.52 42.5 32.41 27.36 6.38 33.58 299 149 Ρ -11.5 54 Н Н BLE Н **CH 39** ٧ 2480 88.55 78.46 27.36 6.38 33.58 379 102 2480MHz 77.82 ٧ 2480 87.91 27.36 6.38 33.58 379 102 Α ٧ 2494 52.66 -21.34 74 42.51 27.4 6.39 33.57 379 102 379 102 Α ٧ 2483.64 42.37 -11.63 54 32.28 27.36 6.38 33.58 ٧ V No other spurious found. Remark All results are PASS against Peak and Average limit line. TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : C2 of C6 Report No.: FR6D2013-01A #### 2.4GHz 2400~2483.5MHz ## BLE (Harmonic @ 3m) | BLE | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |------------------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|---------|-------|-------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | (dBµV) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V) | | | | 4804 | 43.2 | -30.8 | 74 | 58.49 | 31.26 | 9.6 | 56.58 | 100 | 0 | Р | Н | | | | | | | | | | | | | | | Н | | | | | | | | | | | | | | | Н | | BLE | | | | | | | | | | | | | Н | | CH 00 | | 4804 | 42.35 | -31.65 | 74 | 57.64 | 31.26 | 9.6 | 56.58 | 100 | 0 | Р | V | | 2402MHz | | | | | | | | | | | | | V | | | | | | | | | | | | | | | ٧ | | | | | | | | | | | | | | | V | | | | 4880 | 43.91 | -30.09 | 74 | 59.09 | 31.38 | 9.56 | 56.55 | 100 | 0 | Р | Н | | | | 7320 | 42.85 | -31.15 | 74 | 50.97 | 36.32 | 11.31 | 56.21 | 100 | 0 | Р | Н | | | | | | | | | | | | | | | Н | | BLE | | | | | | | | | | | | | Н | | CH 19
2440MHz | | 4880 | 43.36 | -30.64 | 74 | 58.54 | 31.38 | 9.56 | 56.55 | 100 | 0 | Р | V | | 2440WINZ | | 7320 | 42.58 | -31.42 | 74 | 50.7 | 36.32 | 11.31 | 56.21 | 100 | 0 | Р | ٧ | | | | | | | | | | | | | | | ٧ | | | | | | | | | | | | | | | ٧ | | | | 4960 | 49.73 | -24.27 | 74 | 64.73 | 31.54 | 9.53 | 56.51 | 100 | 0 | Р | Н | | | | 7440 | 48.49 | -25.51 | 74 | 56.24 | 36.59 | 11.34 | 56.06 | 100 | 0 | Р | Н | | DI E | | | | | | | | | | | | | Н | | BLE | | | | | | | | | | | | | Н | | CH 39
2480MHz | | 4960 | 46.63 | -27.37 | 74 | 61.63 | 31.54 | 9.53 | 56.51 | 100 | 0 | Р | ٧ | | 246UIVIN2 | | 7440 | 44.53 | -29.47 | 74 | 52.28 | 36.59 | 11.34 | 56.06 | 100 | 0 | Р | V | | | | | | | | | | | | | | | ٧ | | | | · | | | | | | · | | | | | V | TEL: 886-3-327-3456 FAX: 886-3-328-4978 Page Number : C3 of C6 Report No.: FR6D2013-01A # **Emission below 1GHz** Report No.: FR6D2013-01A # 2.4GHz BLE (LF) | BLE | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |---------------|------|-----------|------------|--------|------------|--------|----------|--------|--------|--------|-------|-------|------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | (dBµV) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V | | | | 93.45 | 29.49 | -14.01 | 43.5 | 45.8 | 14.93 | 1.22 | 32.48 | - | - | Р | Н | | | | 153.12 | 27.74 | -15.76 | 43.5 | 41.83 | 16.64 | 1.61 | 32.43 | - | - | Р | Н | | | | 200.37 | 22.98 | -20.52 | 43.5 | 38.71 | 14.88 | 1.72 | 32.39 | - | - | Р | Н | | | | 479.9 | 28.8 | -17.2 | 46 | 34.9 | 23.45 | 2.77 | 32.37 | - | - | Р | Н | | | | 640.2 | 32.78 | -13.22 | 46 | 35.65 | 26.34 | 3.15 | 32.46 | 100 | 0 | Р | Н | | | | 880.3 | 32.76 | -13.24 | 46 | 31.53 | 29.1 | 3.73 | 31.76 | - | - | Р | Н | | | | | | | | | | | | | | | Н | | | | | | | | | | | | | | | Н | | | | | | | | | | | | | | | Н | | | | | | | | | | | | | | | Н | | 0.4011 | | | | | | | | | | | | | Н | | 2.4GHz
BLE | | | | | | | | | | | | | Н | | LF | | 45.66 | 36.62 | -3.38 | 40 | 51.95 | 16.14 | 1.02 | 32.49 | 100 | 0 | Р | V | | LF | | 54.84 | 35.05 | -4.95 | 40 | 54.26 | 12.25 | 1.02 | 32.49 | - | - | Р | V | | | | 58.62 | 28.61 | -11.39 | 40 | 48.41 | 11.65 | 1.02 | 32.49 | - | - | Р | V | | | | 479.9 | 27.21 | -18.79 | 46 | 33.31 | 23.45 | 2.77 | 32.37 | - | - | Р | V | | | | 640.2 | 32.39 | -13.61 | 46 | 35.26 | 26.34 | 3.15 | 32.46 | - | - | Р | V | | | | 938.4 | 32.54 | -13.46 | 46 | 29.88 | 29.98 | 3.82 | 31.31 | - | - | Р | V | | | | | | | | | | | | | | | V | | | | | | | | | | | | | | | V | | | | | | | | | | | | | | | V | | | | | | | | | | | | | | | V | | | | | | | | | | | | | | | V | | | | | | | | | | | | | | | V | TEL: 886-3-327-3456 Page Number : C4 of C6 # Note symbol Report No.: FR6D2013-01A | * | Fundamental Frequency which can be ignored. However, the level of any | |-----|---| | | unwanted emissions shall not exceed the level of the fundamental frequency. | | ! | Test result is over limit line. | | P/A | Peak or Average | | H/V | Horizontal or Vertical | TEL: 886-3-327-3456 Page Number : C5 of C6 #### A calculation example for radiated spurious emission is shown as below: Report No.: FR6D2013-01A | BLE | Note | Frequency | Level | Over | Limit | Read | Antenna | Path | Preamp | Ant | Table | Peak | Pol. | |---------|------|-----------|------------|--------|------------|--------|----------|------|--------|--------|-------|-------|-------| | | | | | Limit | Line | Level | Factor | Loss | Factor | Pos | Pos | Avg. | | | | | (MHz) | (dBµV/m) | (dB) | (dBµV/m) | (dBµV) | (dB/m) | (dB) | (dB) | (cm) | (deg) | (P/A) | (H/V) | | BLE | | 2390 | 55.45 | -18.55 | 74 | 54.51 | 32.22 | 4.58 | 35.86 | 103 | 308 | Р | Н | | CH 00 | | | | | | | | | | | | | | | 2402MHz | | 2390 | 43.54 | -10.46 | 54 | 42.6 | 32.22 | 4.58 | 35.86 | 103 | 308 | Α | Н | - 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB) - 2. Level($dB\mu V/m$) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB) 3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m) #### For Peak Limit @ 2390MHz: - 1.
Level(dBµV/m) - = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) Preamp Factor(dB) - $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$ - $= 55.45 (dB\mu V/m)$ - 2. Over Limit(dB) - = Level($dB\mu V/m$) Limit Line($dB\mu V/m$) - $= 55.45(dB\mu V/m) 74(dB\mu V/m)$ - = -18.55(dB) #### For Average Limit @ 2390MHz: - 1. Level(dBµV/m) - = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB) - $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$ - $= 43.54 (dB\mu V/m)$ - 2. Over Limit(dB) - = Level(dBµV/m) Limit Line(dBµV/m) - $= 43.54(dB\mu V/m) 54(dB\mu V/m)$ - = -10.46(dB) Both peak and average measured complies with the limit line, so test result is "PASS". TEL: 886-3-327-3456 Page Number : C6 of C6 # Appendix D. Radiated Spurious Emission Plots | Toot Engineer | Hao Hau Jacky Hung, and Kan Wu | Temperature : | 23~25°C | |----------------|---------------------------------|---------------------|---------| | rest Engineer: | Hao Hsu, Jacky Hung, and Ken Wu | Relative Humidity : | 54~59% | Report No.: FR6D2013-01A # Note symbol | -L | Low channel location | |----|-----------------------| | -R | High channel location | TEL: 886-3-327-3456 Page Number : D1 of D13 #### 2.4GHz 2400~2483.5MHz ### BLE (Band Edge @ 3m) Report No.: FR6D2013-01A TEL: 886-3-327-3456 Page Number : D2 of D13 Report No.: FR6D2013-01A TEL: 886-3-327-3456 Page Number : D3 of D13 Report No. : FR6D2013-01A TEL: 886-3-327-3456 Page Number : D4 of D13 CC RADIO TEST REPORT Report No. : FR6D2013-01A TEL: 886-3-327-3456 Page Number : D5 of D13 TEL: 886-3-327-3456 Page Number : D6 of D13 O TEST REPORT Report No. : FR6D2013-01A TEL: 886-3-327-3456 Page Number : D7 of D13 FCC RADIO TEST REPORT TEL: 886-3-327-3456 Page Number : D8 of D13 FCC RADIO TEST REPORT TEL: 886-3-327-3456 Page Number : D9 of D13 #### 2.4GHz 2400~2483.5MHz Report No.: FR6D2013-01A ### BLE (Harmonic @ 3m) TEL: 886-3-327-3456 Page Number : D10 of D13 TEL: 886-3-327-3456 Page Number : D11 of D13 Report No.: FR6D2013-01A TEL: 886-3-327-3456 Page Number : D12 of D13 # Emission below 1GHz 2.4GHz BLE (LF) Report No.: FR6D2013-01A TEL: 886-3-327-3456 Page Number : D13 of D13 Report No. : FR6D2013-01A # Appendix E. Duty Cycle Plots | Band | Duty
Cycle(%) | T(us) | 1/T(kHz) | VBW
Setting | Duty
Factor(dB) | |----------------|------------------|-------|----------|----------------|--------------------| | Bluetooth – LE | 83.20 | 2080 | 0.48 | 1kHz | 0.80 | #### Bluetooth - LE Date: 30.MAY.2018 04:45:52 ———THE END——— TEL: 886-3-327-3456 Page Number : E-1 of 1