IESI REPORT	TEST REPO	DRT
-------------	------------------	-----

	DT&C Co., Ltd.			
Dt&C	42, Yurim-ro, 154Beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea, 17042 Tel : 031-321-2664, Fax : 031-321-1664			
1. Report No: DRTFCC2110-012	22			
2. Customer				
• Name (FCC) : MERCURY Corp	oration			
• Address (FCC) : 90, Gajaeul-ro,	Seo-gu Incheon South Korea			
3. Use of Report : FCC Original Gr	ant			
4. Product Name / Model Name : V FCC ID : 2AVW5MCRWMDBEC	ViFi BT Combo Module / MCR-WMDBE-CWP			
5. FCC Regulation(s): Part 15.247 Test Method used: KDB558074	D01v05r02, ANSI C63.10-2013			
6. Date of Test : 2021.08.09 ~ 202	1.10.05			
7. Location of Test : 🛛 Permanen	t Testing Lab 🔲 On Site Testing			
8. Testing Environment : See appe	nded test report.			
9. Test Result : Refer to the attache	ed test result.			
The results shown in this test report This test report is not related to KO	t refer only to the sample(s) tested unless otherwise stated. LAS accreditation.			
Affirmation	Reviewed by			
Name : JaeHyeok Bang	Name : JaeJin Lee			
2021.10.08.				
DT&C Co., Ltd.				
If this report is required to c	onfirmation of authenticity, please contact to report@dtnc.net			

Test Report Version

Test Report No.	Date	Description	Revised by	Reviewed by
DRTFCC2110-0122	Oct, 08. 2021	Initial issue	JaeHyeok Bang	JaeJin Lee

Table of Contents

1. General Information	
1.1. Description of EUT	
1.2. Declaration by the applicant / manufacturer	
1.3. Testing Laboratory	
1.4. Testing Environment	
1.5. Measurement Uncertainty	5
1.6. Test Equipment List	6
2. Test Methodology	. 7
2.1. EUT Configuration	
2.1. EUT Comiguration	
2.3. General Test Procedures	
2.3. General Test Procedures	
2.4. Instrument Calibration	
•	
3. Antenna Requirements	
4. Summary of Test Result	10
5. Test Result	
5.1. Maximum Peak Conducted Output Power	
5.1.1. Test Setup	
5.1.2. Test Procedures	
5.1.3. Test Results	11
5.2. 6 dB Bandwidth	13
5.2.1. Test Setup	
5.2.2. Test Procedures	13
5.2.3. Test Results	13
5.3. Power Spectral Density	20
5.3.1. Test Setup	20
5.3.2. Test Procedures	20
5.3.3. Test Results	20
5.4. Unwanted Emissions (Conducted)	27
5.4.1. Test Setup	27
5.4.2. Test Procedures	27
5.4.3. Test Results	28
5.5. Unwanted Emissions (Radiated)	52
5.5.1. Test Setup	
5.5.2. Test Procedures	
5.5.3. Test Results	
5.6. AC Power-Line Conducted Emissions	
3.6.1. Test Setup	
3.6.2. Test Procedures	57
3.6.3. Test Results	
	-
	63

1. General Information

1.1. Description of EUT

Equipment Class	Digital Transmission System (DTS)	
Product Name	WiFi BT Combo Module	
Model Name	MCR-WMDBE-CWP	
Add Model Name	-	
Firmware Version Identification Number	002	
EUT Serial Number	Conducted/Radiated :000C96	
Power Supply	DC 5 V	
Frequency Range	• 802.11b/g/n(20 MHz) : 2 412 MHz ~ 2 462 MHz	
Max. RF Output Power	2.4 GHz Band • 802.11b : 17.61 dBm • 802.11g : 20.16 dBm • 802.11n (HT20) : 19.93 dBm	
Modulation Technique	• 802.11b: CCK, DSSS • 802.11g/n: OFDM	

Antenna Specification

Model No	Manufacturer	Antenna Type	Gain(PK)
INNO-APC-0321	INNO-LINK	PCB Antenna	4.56 dBi
CWA-01	Coway	PCB Antenna	4.09 dBi
W5I-BO-07	WINIZEN	PCB Antenna	2.87 dBi
MW25DEC130PT-V	K-Maru	PCB Antenna	3.30 dBi

1.2. Declaration by the applicant / manufacturer

N/A

1.3. Testing Laboratory

DT&C Co., Ltd.

The 3 m test site and conducted measurement facility used to collect the radiated data are located at the 42, Yurim-ro, 154beon-gil, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea 17042.

The test site complies with the requirements of Part 2.948 according to ANSI C63.4-2014.

- FCC & IC MRA Designation No. : KR0034

- ISED#: 5740A

www.dtnc.net		
Telephone	:	+ 82-31-321-2664
FAX	:	+ 82-31-321-1664

1.4. Testing Environment

Ambient Condition	
 Temperature 	+20 °C ~ +25 °C
 Relative Humidity 	+40 % ~ +45 %

1.5. Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with requirements of ANSI C63.4-2014 and ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

Parameter	Measurement uncertainty
Antenna-port conducted emission	1.0 dB (The confidence level is about 95 %, $k = 2$)
AC power-line conducted emission	3.4 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz Below)	4.9 dB (The confidence level is about 95 %, $k = 2$)
Radiated emission (1 GHz ~ 18 GHz)	5.0 dB (The confidence level is about 95 %, k = 2)
Radiated emission (18 GHz Above)	5.3 dB (The confidence level is about 95 %, k = 2)

1.6. Test Equipment List

Туре	Manufacturer	Model	Cal.Date (yy/mm/dd)	Next.Cal.Date (yy/mm/dd)	S/N
Spectrum Analyzer	Agilent Technologies	N9020A	21/06/24	22/06/24	US47360812
Spectrum Analyzer	Agilent Technologies	N9020A	20/12/16	21/12/16	MY50410399
Spectrum Analyzer	Agilent Technologies	N9020A	20/12/16	21/12/16	MY48011700
Multimeter	FLUKE	17B+	20/12/16	21/12/16	36390701WS
Signal Generator	Rohde Schwarz	SMBV100A	20/12/16	21/12/16	255571
Signal Generator	ANRITSU	MG3695C	20/12/16	21/12/16	173501
Thermohygrometer	XIAOMI	MHO-C201	20/12/16	21/12/16	00089675
Thermohygrometer	BODYCOM	BJ5478	20/12/16	21/12/16	120612-2
Thermohygrometer	BODYCOM	BJ5478	21/06/24	22/06/24	N/A
HYGROMETER	TESTO	608-H1	21/01/19	22/01/19	34862883
Loop Antenna	ETS-Lindgren	6502	21/01/28	23/01/28	00226186
BILOG ANTENNA	Schwarzbeck	VULB 9160	20/12/16	21/12/16	3362
Horn Antenna	ETS-Lindgren	3117	21/06/21	22/06/21	00143278
Horn Antenna	A.H.Systems Inc.	SAS-574	21/06/24	22/06/24	155
PreAmplifier	tsj	MLA-0118-B01-40	20/12/16	21/12/16	1852267
PreAmplifier	H.P	8447D	20/12/16	21/12/16	2944A07774
PreAmplifier	tsj	MLA-1840-J02-45	21/06/24	22/06/24	16966-10728
High Pass Filter	Wainwright Instruments	WHKX12-935- 1000-15000-40SS	21/06/24	22/06/24	8
High Pass Filter	Wainwright Instruments	WHKX10-2838- 3300-18000-60SS	21/06/24	22/06/24	1
High Pass Filter	Wainwright Instruments	WHNX8.0/26.5- 6SS	21/06/24	22/06/24	3
Attenuator	Hefei Shunze	SS5T2.92-10-40	21/06/24	22/06/24	16012202
Attenuator	SRTechnology	F01-B0606-01	21/06/24	22/06/24	13092403
Attenuator	Aeroflex/Weinschel	56-3	21/06/24	22/06/24	Y2370
Attenuator	SMAJK	SMAJK-2-3	21/06/24	22/06/24	2
Power Meter Wide Bandwidth Sensor	Anritsu	ML2495A MA2490A	21/06/24	22/06/24	1306007 1249001
EMI Receiver	ROHDE&SCHWARZ	ESU	21/01/19	22/01/19	100538
PULSE LIMITER	Rohde Schwarz	ESH3-Z2	21/08/23	22/08/23	101333
LISN	SCHWARZBECK	NSLK 8128 RC	20/10/23	21/10/23	8128 RC-387
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-1
Cable	HUBER+SUHNER	SUCOFLEX100	21/01/08	22/01/08	M-2
Cable	JUNFLON	MWX241/B	21/01/08	22/01/08	M-3
Cable	JUNFLON	J12J101757-00	21/01/08	22/01/08	M-7
Cable	HUBER+SUHNER	SUCOFLEX106	21/01/08	22/01/08	M-9
Cable	DTNC	Cable	21/01/08	22/01/08	G-1
Cable	DTNC	Cable	21/01/08	22/01/08	G-2
Cable	HUBER+SUHNER	SUCOFLEX 100	21/01/08	22/01/08	G-3
Cable	DTNC	Cable	21/01/08	22/01/08	G-4
Cable	RADIALL	TESTPRO3	21/01/05	22/01/05	RFC-03
Cable	DTNC	Cable	21/01/05	22/01/05	RFC-69
Test Software	tsj	Radiated Emission Measurement	NA	NA	Version 2.00.0177
Test Software	tsj	Noise Terminal Measurement	NA	NA	Version 2.00.0170

Note1: The measurement antennas were calibrated in accordance to the requirements of ANSI C63.5-2017.

Note2: The cable is not a regular calibration item, so it has been calibrated by DT & C itself.

2. Test Methodology

The measurement procedures described in the ANSI C63.10-2013 and the guidance provided in KDB558074 D01v05r02 were used in measurement of the EUT.

The EUT was tested per the guidance of KDB558074 D01v05r02. And ANSI C63.10-2013 was used to reference appropriate EUT setup and maximizing procedures of radiated spurious emission and AC line conducted emission testing.

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2. EUT Exercise

The EUT was operated in the test mode to fix the TX frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

2.3. General Test Procedures

Conducted Emissions

The power-line conducted emission test procedure is not described on the KDB558074 D01v05r02.

So this test was fulfilled with the requirements in Section 6.2 of ANSI C63.10-2013.

The EUT is placed on the wooden table, which is 0.8 m above ground plane and the conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and Average detector.

Radiated Emissions

Basically the radiated tests were performed with KDB558074 D01v05r02. But some requirements and procedures like test site requirements, EUT setup and maximizing procedure were fulfilled with the requirements in Section 5 and 6 of the ANSI C63.10-2013 as stated on section 12.1 of the KDB558074 D01v05r02.

The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

2.4. Instrument Calibration

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.5. Description of Test Modes

The EUT has been tested with the operating condition for maximizing the emission characteristics. A test program is used to control the EUT for staying in continuous transmitting.

Transmitting Configuration of EUT

Mode	Data rate
802.11b	1 Mbps ~ 11 Mbps
802.11g	6 Mbps ~ 54 Mbps
802.11n(HT20)	MCS 0 ~ MCS 7

EUT Operation test setup

- Test Software: QRCT / V3.0-00277
- Power setting: Refer to the table below.

Mode	Frequency (MHz)	Power Setting
	Data Rate	1 ~ 11 Mbps
802.11b	2 412	1C
002.110	2 437	1C
	2 462	1D
	Data Rate	6 ~ 54 Mbps
902 11 a	2 412	18
802.11g	2 437	18
	2 462	14
	Data Rate	MCS0 ~ MCS7
802.11n	2 412	18
(HT20)	2 437	18
	2 462	14

Test Mode

Test mode	Worst case data rate	Teste	d Frequency (I	MHz)
TM 1	802.11b 1 Mbps	2 412	2 437	2 462
TM 2	802.11g 6 Mbps	2 412	2 437	2 462
ТМ 3	802.11n(HT20) MCS 0	2 412	2 437	2 462

Note1: The worst case data rate was determined according to the power measurements. Note2: The power measurement results for all modes and data rate were reported.

3. Antenna Requirements

According to Part 15.203

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

The External antenna employs a unique antenna connector. (Refer to Internal Photo file.) Therefore this E.U.T complies with the requirement of Part 15.203

4. Summary of Test Result

FCC part section(s)	Test Description	Limit	Test Condition	Status Note 1			
15.247(a)	6 dB Bandwidth	> 500 kHz		С			
15.247(b)	Maximum Peak Conducted Output Power	< 1 Watt		с			
15.247(d)	Out of Band Emissions / Band Edge	20 dBc in any 100 kHz BW	Conducted	С			
15.247(e)	Power Spectral Density	< 8 dBm/3 kHz		с			
15.247(d) 15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Part 15.209 limits (Refer to section 5.5)	Radiated	C Note 3, 4			
15.207	AC Power-Line Conducted Emissions	Part 15.207 limits (Refer to section 5.6)	AC Line Conducted	С			
15.203	-	С					
Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable Note 2: For radiated emission tests below 30 MHz were performed on semi-anechoic chamber which is correlated with OATS. Note 3: This test item was performed in three orthogonal EUT positions and the worst case data was reported.							

Note 4: This test item was performed with the highest gain antenna.

5. Test Result

5.1. Maximum Peak Conducted Output Power

Test Requirements and limit, Part 15.247(b)

The maximum permissible conducted output power is 1 Watt.

5.1.1. Test Setup

Power	r Meter					
			Power Sensor	-[EUT]

5.1.2. Test Procedures

- KDB558074 D01v05r02 Section 8.3.1.3
- ANSI C63.10-2013 Section 11.9.1.3

RBW ≥ DTSPKPM1 Peak-reading power meter method

The maximum conducted output powers were measured using a broadband peak RF power meter which has greater video bandwidth than DUT's DTS bandwidth and utilize a fast-responding diode detector.

- KDB558074 D01v05r02 Section 8.3.2.3
- ANSI C63.10-2013 Section 11.9.2.3

Method AVGPM-G

The average conducted output powers were measured using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

5.1.3. Test Results

- Refer to the next page

_	_				Maximum P	eak Conduc	ted Output F	ower (dBm)				
Mode	Freq. (MHz)	Det.	Data Rate (Mbps)									
	(1	2	5.5	11	-	-	-	-		
	2 412	PK	17.14	17.33	16.92	16.93	-	-	-	-		
	2412	2412	2412	AV	15.43	15.59	15.36	15.28	-	-	-	-
802.11b	2 437	PK	17.25	17.13	17.03	17.01	-	-	-	-		
002.110	2 437	AV	15.51	15.38	15.23	15.16	-	-	-	-		
	0.400	PK	17.61	17.55	17.11	17.26	-	-	-	-		
	2 462	AV	15.89	15.85	15.79	15.72	-	-	-	-		

-					Maximum P	eak Conduc	ted Output F	ower (dBm)			
Mode	Freq. (MHz)	Det.				Data Rat	e (Mbps)				
	(11112)		6	9	12	18	24	36	48	54	
	2 412 -	PK	20.16	20.12	19.86	19.75	19.41	18.83	18.60	17.94	
		2412	2412	AV	13.44	13.42	13.01	13.16	12.16	12.04	11.34
902 11a	2 437	PK	20.08	19.97	19.59	19.61	19.38	18.87	18.31	18.64	
802.11g	2 437	AV	13.26	13.28	12.94	12.98	12.11	12.12	11.37	10.92	
	2 462	PK	19.01	18.69	18.80	18.48	18.25	17.83	16.99	17.15	
	2 402	AV	11.89	11.85	11.43	11.49	10.41	10.61	9.81	9.12	

	_				Maximum P	eak Conduc	ted Output F	ower (dBm)			
Mode	Freq. (MHz)	Det.				Data Ra	te (MCS)				
	(11112)		0	1	2	3	4	5	6	7	
	2 412	PK	19.93	19.38	19.11	18.54	18.79	18.70	18.56	18.21	
		2412	2412	AV	12.52	11.93	12.09	11.73	11.75	11.79	11.32
802.11n	2 437	PK	19.22	19.13	19.42	18.46	18.93	18.78	18.54	18.25	
(HT20)	2 431	AV	12.41	11.98	11.92	11.50	11.59	11.58	11.20	10.80	
	2 462	PK	18.86	18.02	18.28	17.26	17.05	16.90	17.28	16.78	
	2 402	AV	10.88	10.12	10.26	10.22	9.98	10.02	9.56	9.15	

5.2.6 dB Bandwidth

Test Requirements and limit, Part 15.247(a)

The bandwidth at 6 dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the EUT's antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The minimum permissible 6 dB bandwidth is 500 kHz.

5.2.1. Test Setup

Refer to the APPENDIX I.

5.2.2. Test Procedures

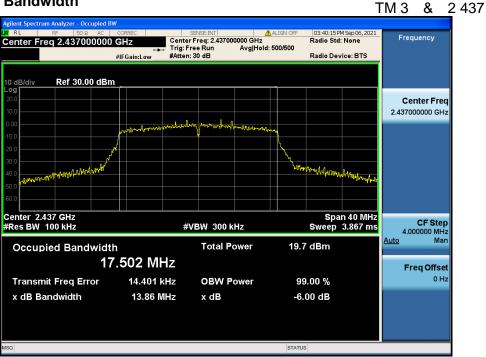
- KDB558074 D01v05r02 Section 8.2
- ANSI C63.10-2013 Section 11.8.2
- 1. Set resolution bandwidth (RBW) = 100 kHz
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = **Peak**.
- 4. Trace mode = **max hold**.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Option 1 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Option 2 - The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3 × RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

5.2.3. Test Results

Test Mode	Frequency	Test Results (MHz)
	2 412	10.07
TM 1	2 437	10.03
	2 462	10.04
	2 412	15.15
TM 2	2 437	14.45
	2 462	14.81
	2 412	15.08
ТМ 3	2 437	13.86
	2 462	15.33

TM 1 & 2412



TM 2 & 2437 SENSE:INT ALIGN OFF Center Freq: 2.437000000 GHz Trig: Free Run Avg|Hold: 500/500 #Atten: 30 dB 02:33:28 PM Sep 06, 2021 Radio Std: None RI Frequency Center Freq 2.437000000 GHz #IFGain:Low Radio Device: BTS Ref 30.00 dBm **Center Freq** 2 437000000 GHz and the second and the second where the second CF Step 4.000000 MHz Man Center 2.437 GHz #Res BW 100 kHz Span 40 MHz Sweep 3.867 ms #VBW 300 kHz <u>Auto</u> Total Power 20.8 dBm **Occupied Bandwidth** 16.335 MHz Freq Offset 7.995 kHz 0 Hz Transmit Freq Error **OBW Power** 99.00 % 14.45 MHz x dB Bandwidth x dB -6.00 dB STATUS

Test requirements and limit, Part 15.247(e)

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

Minimum Standard

The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.3.1. Test Setup

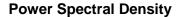
Refer to the APPENDIX I.

5.3.2. Test Procedures

- KDB558074 D01v05r02 Section 8.4
- ANSI C63.10-2013 Section 11.10.2

Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \ge 3 x RBW.
- 5. Detector = **peak.**
- 6. Sweep time = **auto couple.**
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the **peak marker function** to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.


5.3.3. Test Results

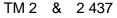
Test Mode	Frequency	RBW	PKPSD (dBm)	Limit (dBm)	
	2 412	3 kHz	6.77	8.00	
TM 1	2 437	3 kHz	6.98	8.00	
	2 462	3 kHz	7.55	8.00	
	2 412	3 kHz	-11.88	8.00	
TM 2	2 437	3 kHz	-11.84	8.00	
	2 462	3 kHz	-12.43	8.00	
	2 412	3 kHz	-11.49	8.00	
ТМ 3	2 437	3 kHz	-11.21	8.00	
	2 462	3 kHz	-14.22	8.00	

TM 1 & 2412

TM 1 & 2437

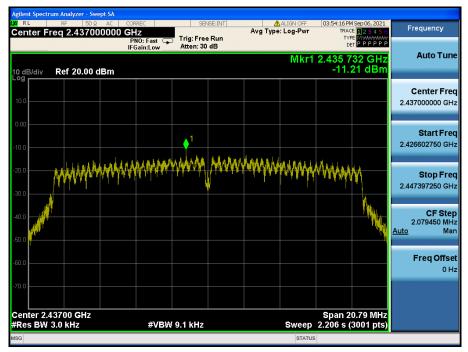


TM 1 & 2462




Power Spectral Density

TM 2 & 2462



TM 3 & 2412

Power Spectral Density

TM 3 & 2437

TM 3 & 2462

5.4. Unwanted Emissions (Conducted)

Test requirements and limit, Part 15.247(d)

In any 100 kHz bandwidth outside of the authorized frequency band, the power shall be attenuated according to the following conditions :

If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level. If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to 15.247(b)(3) requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured inband average PSD level. In either case, attenuation to levels below the general emission limits specified in §15.209(a) is not required.

5.4.1. Test Setup

Refer to the APPENDIX I including path loss

5.4.2. Test Procedures

- KDB558074 D01v05r02 Section 8.5
- ANSI C63.10-2013 Section 11.11

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to \geq 1.5 times the DTS bandwidth.
- 3. Set the RBW = 100 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum PSD level LIMIT LINE = 20 dB below of the reference level.

Emission level measurement

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.(Actual 1 MHz, See below note)
- 3. Set the VBW \ge 3 x RBW.(Actual 3 MHz, See below note)
- 4. Detector = peak.
- 5. Ensure that the number of measurement points ≥ span / RBW
- 6. Sweep time = auto couple.

10 GHz ~ 25 GHz

- 7. Trace mode = max hold.
- 8. Allow the trace to stabilize (this may take some time, depending on the extent of the span).
- 9. Use the peak marker function to determine the maximum amplitude level.

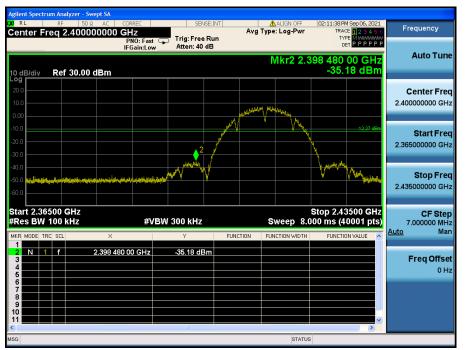
Frequency range RBW VBW Detector Trace Sweep Point 9 kHz ~ 30 MHz 100 kHz 300 kHz Max Hold 40 001 30 MHz ~ 10 GHz 1 MHz 3 MHz Peak

3 MHz

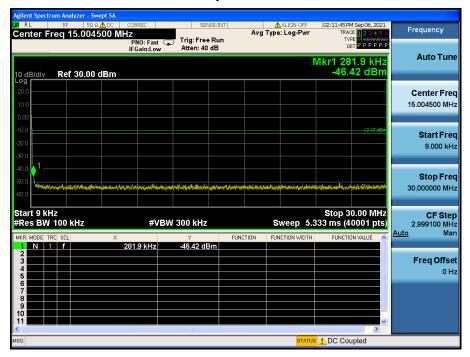
Note: The conducted spurious emission was tested with below settings.

1 MHz

If the emission level with above setting was close to the limit (ie, less than 3 dB margin) then zoom scan is required using RBW = 100 kHz, VBW = 300 kHz, SPAN = 100 MHz and BINS = 2 001 to get accurate emission level within 100 kHz BW.


5.4.3. Test Results

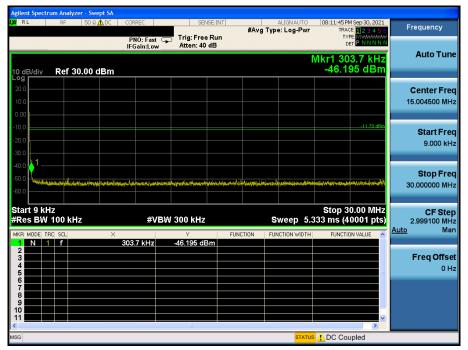
& 2412 TM 1

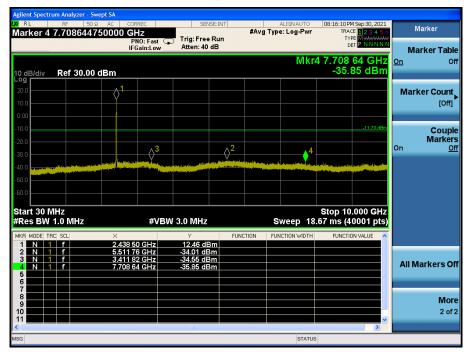

Center Freq 2.412000000 GHz PRO: Fast IFGain:Low Trig: Free Run Atten: 40 dB Avg Type: Log-Pwr Frequency TRACE 1 2 3 4 5 6 TYPE MWWWWWWW DET P P P P P P Auto Tune Mkr1 2.412 977 GHz 7.73 dBm Ref 30.00 dBm 10 dB/div **Center Freq** 2.412000000 GHz mann Ann Start Freq 1 a Ar 2.404449000 GHz Stop Freq 2.419551000 GHz **CF Step** 1.510200 MHz Man <u>Auto</u> Freq Offset 0 Hz Center 2.412000 GHz #Res BW 100 kHz Span 15.10 MHz Sweep 1.600 ms (3001 pts) #VBW 300 kHz

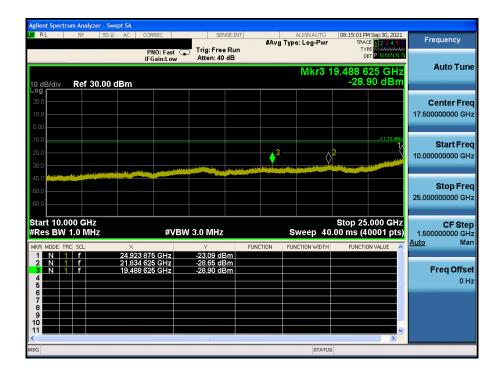
Reference

Low Band-edge

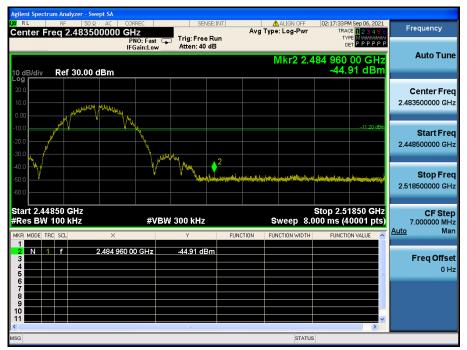
Agilent Spectrum Analyz WRL RF Center Freq 5.0	50 Ω AC CORREC	SENSE:INT	ALIGN OFF	02:11:53PM Sep 06, 2021 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 3	PNO: Fast IFGain:Low	Atten: 40 dB	Mkr	5 5.326 06 GHz -35.04 dBm	Auto Tune
20.0					Center Free 5.015000000 GH
-10.0	 	5 ∰	2	12.27 dBm	Start Free 30.000000 MH
-40.0 -50.0 -60.0					Stop Fre 10.000000000 GH
Start 30 MHz #Res BW 1.0 MH MKR MODE TRC SCL	Iz #VE × 2.413 33 GHz	3W 3.0 MHz Y FUN 11.93 dBm	Sweep 18 CTION FUNCTION WIDTH	Stop 10.000 GHz .67 ms (40001 pts)	CF Ste 997.000000 M⊢ <u>Auto</u> Ma
2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f 6 7 8	5.784 93 GHz 3.155 35 GHz 5.722 12 GHz 5.326 06 GHz	-34.08 dBm -34.80 dBm -34.83 dBm -35.04 dBm			Freq Offse 0 H
9 10 11 11		III	STATUS	×	



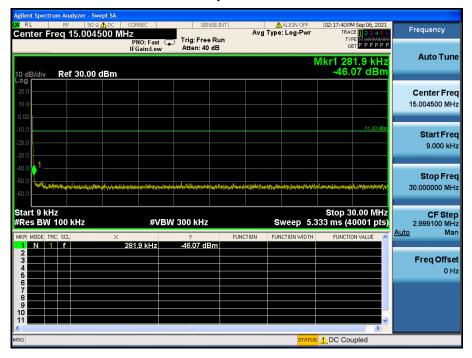



TM 1 & 2437

Reference

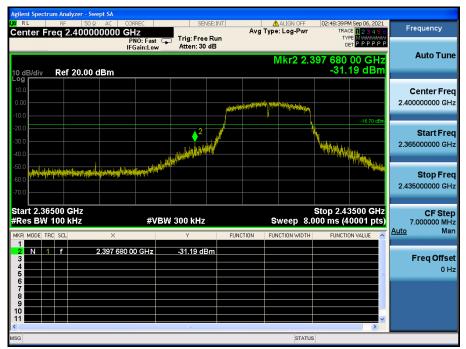


TM 1 & 2462

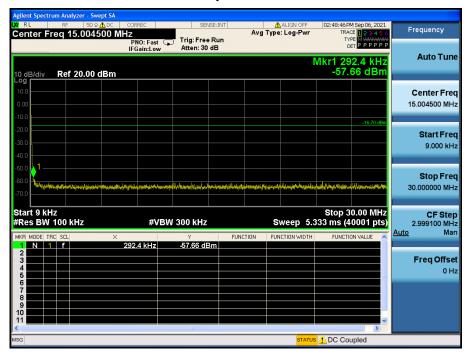

Reference

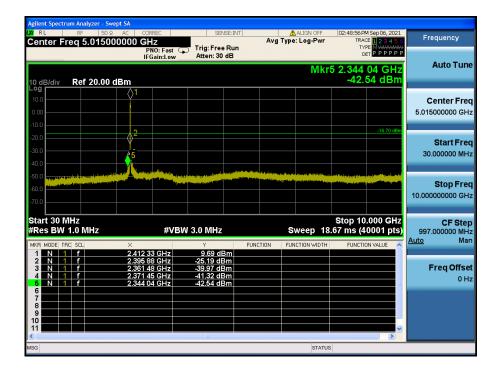
High Band-edge

Agilent Spectrum Analyzer - Sw					
RL RF 50 Ω Center Freq 5.01500	AC CORREC	SENSE:INT	ALIGN OFF Avg Type: Log-Pwr	02:17:49 PM Sep 06, 2021 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast G	Trig: Free Run Atten: 40 dB			
			Mkr	5 3.153 60 GHz	Auto Tune
10 dB/div Ref 30.00 d	dBm			-35.15 dBm	
20.0	1				Center Freq
10.0	Y				5.015000000 GHz
0.00					
-10.0				-11.20 dBm	Start Freq
-20.0					30.000000 MHz
-30.0	<u></u> 5		8 ³⁴		00.000000 11112
-40.0	Landstein Medicale all Medican Landstein				
-50.0					Stop Freq 10.00000000 GHz
-60.0					10.00000000 GH2
Start 30 MHz				Stop 10.000 GHz	OF Otem
#Res BW 1.0 MHz	#VBI	V 3.0 MHz	Sweep 18	6.67 ms (40001 pts)	CF Step 997.000000 MHz
MKR MODE TRC SCL	X	Y F	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
1 N 1 f	2.463 43 GHz 5.750 29 GHz	13.01 dBm -34.37 dBm			
3 N 1 F	5.831 79 GHz 5.782 44 GHz	-34.66 dBm -34.94 dBm			Freq Offset
4 N 1 F	3.153 60 GHz	-34.94 dBm -35.15 dBm		=	0 Hz
6					
8					
10					
<				>	
MSG			STATU	s	

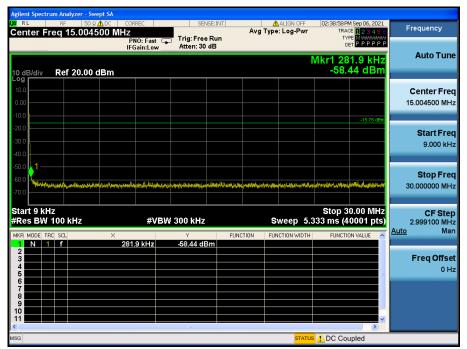

Agilent Spectrum Analyzer - Swept SA				
M RL RF 50Ω AC Center Freq 17.500000000		ISE:INT AL Avg Type: L	IGN OFF 02:17:57 PM Sep 06, og-Pwr TRACE 123	456 Frequency
10 dB/div Ref 30.00 dBm	PNO: Fast Free IFGain:Low Atten: 40	Run dB	түре рет Р Р Р /lkr3 24.170 500 С -27.11 d	Auto Tune
				Center Freq 17.500000000 GHz
-10.0	and the second		and the second se	Start Freq 10.000000000 GHz
-40.0 444 (a.e. 1 and a set (b. 14) 444 (a.e. 1 and a set (b. 14) 444 (b. 14)				Stop Freq 25.000000000 GHz
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz		Stop 25.000 (eep 40.00 ms (40001	pts) 1.50000000 GHz
2 N 1 F 24.737 3 N 1 F 24.170 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 000 GHz 7 875 GHz 25.75 dB 2 500 GHz -27.11 dB	Sm	ON WIDTH FUNCTION VALUE	Freq Offset
6 7 8 9 10 11				×
MSG			STATUS	

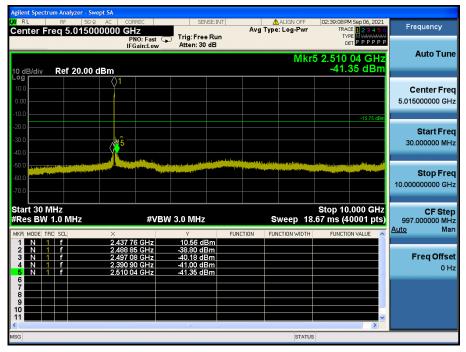
TM 2 & 2412

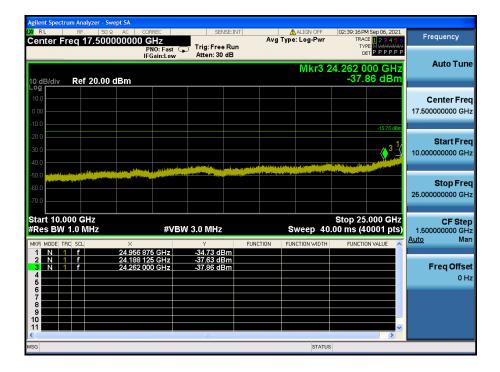

Reference



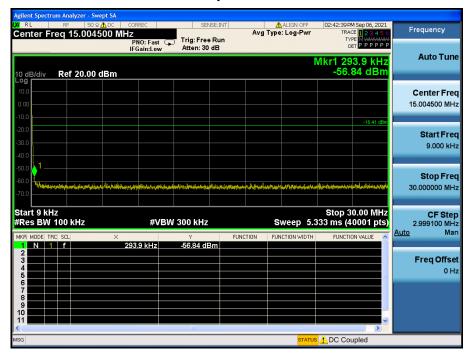
Low Band-edge

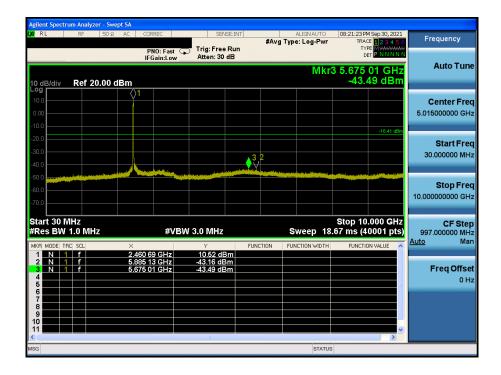



TM 2 & 2437


Reference

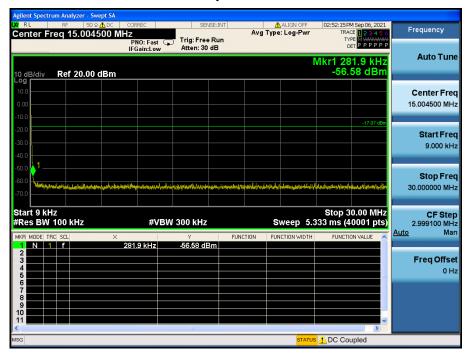
TM 2 & 2462


Reference



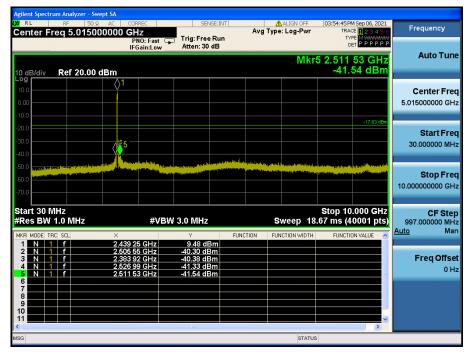
High Band-edge

TM 3 & 2412


Reference

Low Band-edge

Agilent Spectrum Anal						
Center Freq 5	50 Ω AC CORF .015000000 GH	Z D: Fast	e Run	ALIGN OFF	02:52:23 PM Sep 06, 2021 TRACE 1 2 3 4 5 6 TYPE M WWWWWW DET P P P P P P	Frequency
10 dB/div Ref	1FG 20.00 dBm	ain:Low Atten: 3	0 dB	Mkr	5 2.388 65 GHz -39.52 dBm	Auto Tune
10.0 0.00 -10.0						Center Fred 5.015000000 GH;
-20.0	2		L		-17.07 dBm	Start Free 30.000000 MH:
-50.0 9120 00 000 000 000 000 000 000 000 000 0				i fan ei heften en ei heften ei heften ei heften ei Min Groud af die ei heften ei heften ei heften ei heften ei Min Groud af die ei heften ei heften ei heften ei heften ei Heften ei heften ei heften ei heften ei heften ei heften ei Heften ei heften ei heften ei heften ei heften ei heften ei heften ei Heften ei heften ei heften ei heften ei heften ei heften ei heften ei Heften ei heften ei heften ei heften ei heften ei heften ei heften ei Heften ei heften ei Heften ei heften ei Heften ei heften ei heft		Stop Fred 10.000000000 GH
Start 30 MHz #Res BW 1.0 M		#VBW 3.0 MH;			Stop 10.000 GHz .67 ms (40001 pts)	CF Step 997.000000 MH Auto Mar
MKR MODE TRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 N 1 f 5 N 1 f 6	× 2.413 58 2.397 38 2.392 14 2.390 65 2.388 65	GHz -28.47 d GHz -35.06 d GHz -38.20 d	Bm Bm Bm	FUNCTION WIDTH	FUNCTION VALUE	Freq Offse
7 8 9 10 11					~	
MSG				STATUS		



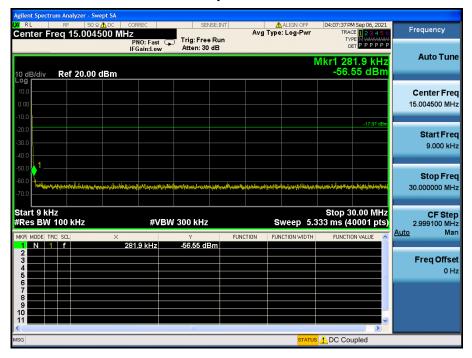
TM 3 & 2437

Reference

	um Analyzer - Sv	vept SA								
(XIRL			RREC	SEN	BE:INT		ALIGN OFF		4 Sep 06, 2021 E 1 2 3 4 5 6	Frequency
Center Fr	eq 15.004		PNO: Fast 🗔	Trig: Free		Argin	e. Log-r wi	TY	PE M WARMAN	
			Gain:Low	Atten: 30	dB			DI	T P P P P P P	Auto Tomo
									1.9 kHz	Auto Tune
10 dB/div	Ref 20.00	dBm						-56.3	25 dBm	
Log										
10.0										Center Freq
0.00										15.004500 MHz
-10.0									-17.63 dBm	
-20.0									-17.53 dBm	Otort From
-30.0										Start Freq 9.000 kHz
-40.0										9.000 KHZ
-50.0 🔶 '										Stop Freq
-60.0	Himblesonand	الطر فسالتهم بطاهف		الفأطار سيادية أستحص أشباك	millionstation	and the state of the second	مديدة بالمرمنية الم	hunchennik	ل بر مدر السبه ال	30.000000 MHz
-70.0				a a such a farmer				and her dealers		00.000000 11112
Start 9 kH #Res BW			#\/D\	V 300 kHz			Sweep 5.3	Stop 3	0.00 MHz	CF Step
			#VDV				-			2.999100 MHz Auto Man
MKR MODE TR		X	1.9 kHz	۲ -56.25 dB		CTION FI	JNCTION WIDTH	FUNCTIO	IN VALUE	<u>rato</u> mari
2		28	I.9 KHZ	-56.25 dB	m					
3										Freq Offset
4 5					_				-	0 Hz
6										
8										
9										
10					_				~	
<				111					>	
MSG							STATUS	DC Cou	upled	
					-					

RL RF 50	wept SA Ω AC CORREC	SENSE:INT	ALIGN OFF	03:54:53 PM Sep 06, 2021	_
Center Freq 17.50	PNO: Fast	Trig: Free Run Atten: 30 dB	Avg Type: Log-Pwr		Frequency
10 dB/div Ref 20.00	IFGain:Low_	Atten: 30 dB	Mkr3	24.398 875 GHz -36.99 dBm	Auto Tune
-og 10.0 0.00 					Center Free 17.500000000 GH
20.0 30.0 40.0			يې رو مېلې ور د د د د د د د د د د د د د د د د د د	-17.63 dBm	Start Fre 10.000000000 GH
50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0					Stop Fre 25.000000000 GH
Start 10.000 GHz Res BW 1.0 MHz	#VB	W 3.0 MHz	Sweep 4	Stop 25.000 GHz 0.00 ms (40001 pts)	CF Ste 1.50000000 G⊢
IN 1 F	× 24.856 000 GHz	, -35.07 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
2 N 1 f 3 N 1 f 4 5	24.462 250 GHz 24.398 875 GHz	-36.21 dBm -36.99 dBm			FreqOffse 0 ⊦
6 6 7					
		10		×	

TM 3 & 2462


Reference

High Band-edge



Agilent Spectrum Analyzer - Swept SA									
M RL RF 50Ω AC Center Freq 5.015000000 C				6 PM Sep 06, 2021 RACE 1 2 3 4 5 6	Frequency				
	PNO: Fast 😱 Trig: Free	Run							
1	IFGain:Low Atten: 30	ab			Auto Tune				
10 dB/div Ref 20.00 dBm	Mkr5 2.494 58 GHz -42.49 dBm -42.49 dBm								
10.0					Center Freq				
0.00					5.015000000 GHz				
-10.0									
-20.0				-17.97 dBm	Start Freq				
-30.0					30.000000 MHz				
-40.0					30.000000 WIH2				
-50.0	In the second	and the second state of the property of the	والمتعادية ومشاوية والتقارين	and the second second					
-60.0 And a state of the state		and the second	فيستنظفنا وتخافلا أشكفا	ألأته فتكتنا أأتعمد وعتد	Stop Freq				
-70.0					10.00000000 GHz				
-70.0									
Start 30 MHz				10.000 GHz	CF Step				
#Res BW 1.0 MHz	#VBW 3.0 MHz	S	weep 18.67 ms		997.000000 MHz				
MKR MODE TRC SCL X	Y		ICTION WIDTH FUN	CTION VALUE	<u>Auto</u> Man				
	0 19 GHz 7.37 dE 3 87 GHz -40.39 dE	3m Im							
3 N 1 f 2.522	2 75 GHz -41.86 dE	3m			Freq Offset				
	7 79 GHz -42.17 dE 4 58 GHz -42.49 dE			=	0 Hz				
6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7									
8									
9									
11				~					
KING NISG	III.		STATUS						
nou			STATUS						

5.5. Unwanted Emissions (Radiated)

Test Requirements and limit,

Part 15.247(d), Part 15.205, Part 15.209

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of Part 15.247 the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

- Part 15.209: Radiated emission limits; general requirement.

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)		
0.009 - 0.490	2 400 / F (kHz)	300		
0.490 - 1.705	2 4000 / F (kHz)	30		
1.705 – 30.0	30	30		

Frequency (MHz)	FCC Limit (uV/m)	Measurement Distance (m)
30 ~ 88	100 **	3
88 ~ 216	150 **	3
216 ~ 960	200 **	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

- Part 15.205(a): Restricted band of operation

MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.414 25 ~ 8.414 75	108 ~ 121.94	1 300 ~ 1 427	4.5 ~ 5.15	14.47 ~ 14.5
0.495 ~ 0.505	12.29 ~ 12.293	123 ~ 138	1 435 ~ 1 626.5	5.35 ~ 5.46	15.35 ~ 16.2
2.173 5 ~ 2.190 5	12.519 75 ~ 12.520 25	149.9 ~ 150.05	1 645.5 ~ 1 646.5	7.25 ~ 7.75	17.7 ~ 21.4
4.125 ~ 4.128	12.576 75 ~ 12.577 25	156.524 75 ~ 156.525 25	1 660 ~ 1 710	8.025 ~ 8.5	22.01 ~ 23.12
4.177 25 ~ 4.177 75	13.36 ~ 13.41	156.7 ~ 156.9	1 718.8 ~ 1 722.2	9.0 ~ 9.2	23.6 ~ 24.0
4.207 25 ~ 4.207 75	16.42 ~ 16.423	162.012 5 ~ 167.17	2 200 ~ 2 300	9.3 ~ 9.5	31.2 ~ 31.8
6.215 ~ 6.218	16.694 75 ~ 16.695 25	167.72 ~ 173.2	2 310 ~ 2 390	10.6 ~ 12.7	36.43 ~ 36.5
6.267 75 ~ 6.268 25	16.804 25 ~ 16.804 75	240 ~ 285	2 483.5 ~ 2 500	13.25 ~ 13.4	Above 38.6
6.311 75 ~ 6.312 25	25.5 ~ 25.67	322 ~ 335.4	2 655 ~ 2 900		
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	3 260 ~ 3 267		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	3 332 ~ 3 339		
8.376 25 ~ 8.386 75	74.8 ~ 75.2	960 ~ 1240	3 345.8 ~ 3 358		
			3 600 ~ 4 400		

5.5.1. Test Setup

Refer to the APPENDIX I.

5.5.2. Test Procedures

- 1. The EUT is placed on a non-conductive table. For emission measurements at or below 1 GHz, the table height is 80 cm. For emission measurements above 1 GHz, the table height is 1.5 m.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.

Note: Measurement Instrument Setting for Radiated Emission Measurements.

- KDB558074 D01v05r02 Section 8.6
- ANSI C63.10-2013 Section 11.12

1. Frequency Range Below 1 GHz

RBW = 100 or 120 kHz, VBW = 3 x RBW, Detector = Peak or Quasi Peak

2. Frequency Range > 1 GHz

Peak Measurement

RBW = 1 MHz, VBW = 3 MHz, Detector = Peak, Sweep time = Auto, Trace mode = Max Hold until the trace stabilizes **Average Measurement**

- 1. RBW = 1 MHz (unless otherwise specified).
- 2. VBW ≥ 1/T
- 3. Detector = Peak
- 4. Trace mode = max hold
- 5. Averaging type = voltage
- 6. Sweep time = auto.
- 7. Allow max hold to run for at least [50 x (1/D) traces.

Duty Cycle

Test Mode	Date rate	T _{on} (ms)	T _{on+off} (ms)	$D = T_{on} / (T_{on+off})$	1/T (kHz)
TM 1	1 Mbps	8.420	8.580	0.981 4	0.119
TM 2	6 Mbps	1.392	1.528	0.911 0	0.718
TM 3	MCS 0	1.308	1.468	0.891 0	0.765

Note1: Where, T= Transmission duration / D= Duty cycle

Note2: Please refer to the appendix II for duty cycle plots.

5.5.3. Test Results

- Test Notes

1. The radiated emissions were investigated 9 kHz to 25 GHz. And no other spurious and harmonic emissions were found below listed frequencies.

2. Information of Distance Correction Factor

For finding emissions, measurements may be performed at a distance closer than that specified in the regulations.

In this case, the distance factor is applied to the result.

- Calculation of distance correction factor

At frequencies below 30 MHz = 40 log(tested distance / specified distance)

At frequencies at or above 30 MHz = 20 log(tested distance / specified distance)

When distance factor is "N/A", the measurements were performed at the specified distance and distance factor is not applied.

3. Sample Calculation.

Margin = Limit - Result / Result = Reading + TF+ DCCF + DCF / TF = AF + CL + HL + AL - AG

Where, TF = Total Factor, AF = Antenna Factor, CL = Cable Loss, AG = Amplifier Gain, HL = High pass filter Loss, AL = Attenuator Loss, DCCF = Duty Cycle Correction Factor, DCF = Distance Correction Factor

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 389.67	Н	Х	PK	52.62	4.46	N/A	N/A	57.08	74.00	16.92
2 412	2 389.85	Н	Х	AV	40.71	4.46	N/A	N/A	45.17	54.00	8.83
2 412	4 824.03	Н	Y	PK	53.79	2.33	N/A	N/A	56.12	74.00	17.88
	4 823.95	Н	Y	AV	48.27	2.33	N/A	N/A	50.60	54.00	3.40
2 437	4 873.86	Н	Y	PK	53.65	2.17	N/A	N/A	55.82	74.00	18.18
2 437	4 873.05	Н	Y	AV	48.29	2.17	N/A	N/A	50.46	54.00	3.54
	2 483.72	Н	Х	PK	56.63	5.40	N/A	N/A	62.03	74.00	11.97
2.462	2 483.91	Н	Х	AV	45.82	5.40	N/A	N/A	51.22	54.00	2.78
2 462	4 923.73	Н	Y	PK	52.12	2.45	N/A	N/A	54.57	74.00	19.43
	4 923.98	Н	Y	AV	45.92	2.45	N/A	N/A	48.37	54.00	5.63

Radiated Emissions data(9 kHz ~ 25 GHz) : TM 1

Radiated Emissions data(9 kHz ~ 25 GHz) : TM 2

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 389.98	V	Y	PK	56.34	4.46	N/A	N/A	60.80	74.00	13.20
2 412	2 389.92	V	Y	AV	45.17	4.46	N/A	N/A	49.63	54.00	4.37
2 412	4 824.90	Н	Z	PK	50.34	2.33	N/A	N/A	52.67	74.00	21.33
	4 824.73	Н	Z	AV	38.60	2.33	N/A	N/A	40.93	54.00	13.07
2 437	4 873.39	Н	Z	PK	48.47	2.20	N/A	N/A	50.67	74.00	23.33
2 437	4 873.77	Н	Z	AV	38.55	2.20	N/A	N/A	40.75	54.00	13.25
	2 483.56	V	Y	PK	56.24	5.40	N/A	N/A	61.64	74.00	12.36
2 462	2 483.52	V	Y	AV	45.90	5.40	N/A	N/A	51.30	54.00	2.70
2 402	4 929.62	Н	Z	PK	48.95	2.45	N/A	N/A	51.40	74.00	22.60
	4 929.47	Н	Z	AV	38.31	2.45	N/A	N/A	40.76	54.00	13.24

Radiated Emissions data(9 kHz ~ 25 GHz) : TM 3

Tested Frequency (MHz)	Frequency (MHz)	ANT Pol	EUT Position (Axis)	Detector Mode	Reading (dBuV)	TF (dB/m)	DCCF (dB)	DCF (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
	2 388.74	V	Y	PK	57.58	4.46	N/A	N/A	62.04	74.00	11.96
2 412	2 389.98	V	Y	AV	44.95	4.46	N/A	N/A	49.41	54.00	4.59
2 412	4 823.02	Н	Z	PK	49.33	2.33	N/A	N/A	51.66	74.00	22.34
	4 823.84	Н	Z	AV	38.42	2.33	N/A	N/A	40.75	54.00	13.25
0.407	4 874.77	Н	Z	PK	49.65	2.20	N/A	N/A	51.85	74.00	22.15
2 437	4 874.90	Н	Z	AV	38.44	2.20	N/A	N/A	40.64	54.00	13.36
	2 483.73	V	Y	PK	55.25	5.40	N/A	N/A	60.65	74.00	13.35
2 462	2 483.51	V	Y	AV	45.12	5.40	N/A	N/A	50.52	54.00	3.48
2 462	4 924.88	Н	Z	PK	48.14	2.45	N/A	N/A	50.59	74.00	23.41
	4 925.18	Н	Z	AV	38.34	2.45	N/A	N/A	40.79	54.00	13.21

5.6. AC Power-Line Conducted Emissions

Test Requirements and limit, Part 15.207

An intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted	Limit (dBuV)
Frequency Range (MHz)	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5.0	56	46
5 ~ 30	60	50

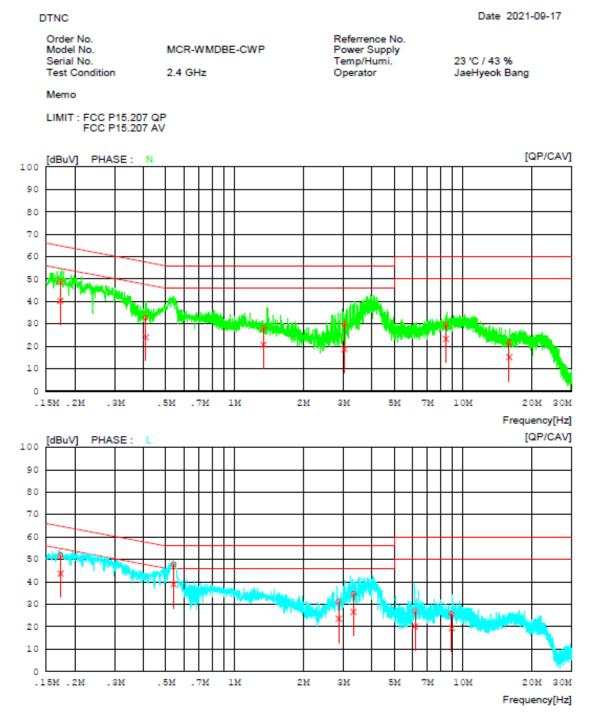
* Decreases with the logarithm of the frequency

3.6.1. Test Setup

See test photographs for the actual connections between EUT and support equipment.

3.6.2. Test Procedures

Conducted emissions from the EUT were measured according to the ANSI C63.10-2013.


- The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

3.6.3. Test Results

Refer to the next page. (The worst case data was reported. The worst data is TM 1 & Highest)

AC Power-Line Conducted Emissions (Graph)

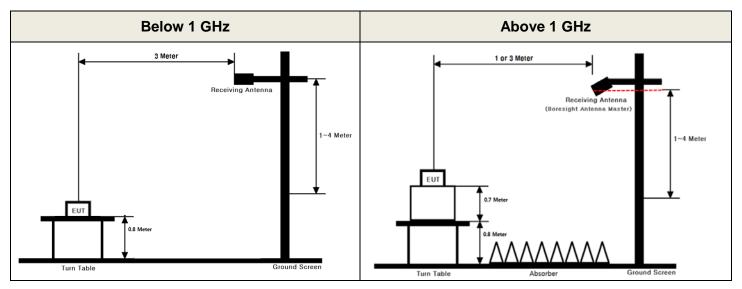
Results of Conducted Emission

DTNC

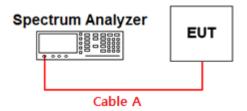
AC Power-Line Conducted Emissions (List)

Results of Conducted Emission

Date 2021-09-17


Order No. Model No. Serial No. Test Condition		MCR-V 2.4 GH	WMDBE-CWP		Referrence No. Power Supply Temp/Humi. Operator	23 'C / 43 % JaeHyeok Bang	
Memo							
	FCC P15. FCC P15.						
NO	FREQ	READING	C.FACTOR	RESULT	LIMIT	MARGIN	PHASE

NC	FREQ	READING	C.FACTOR	RESULT	LIMIT	MARGIN	PHASE
		QP CAV		QP CAV	QP CAV	QP CAV	
	[MHz]	[dBuV] [dBuV] [dB]	[dBuV][dBuV] [dBuV][dBuV]] [dBuV][dBuV	п
1	0.17261	38.84 30.46	9.90	48.74 40.36	64.83 54.83	16.0914.47	N
2	0.40925	22.9314.20	9.91	32.8424.11	57.66 47.66	24.82 23.55	N
3	1.33995	18.1510.69	10.05	28.20 20.74	56.00 46.00	27.80 25.26	N
4	3.03372	19.80 8.66	10.08	29.8818.74	56.00 46.00	26.12 27.26	N
5	8.44363	19.4613.06	10.27	29.7323.33	60.00 50.00	30.27 26.67	N
6	15.96558	11.21 4.85	10.39	21.60 15.24	60.00 50.00	38.40 34.76	N
7	0.17319	41.87 33.77	9.90	51.77 43.67	64.81 54.81	13.0411.14	L
8	0.54177	37.7529.01	9.91	47.6638.92	56.00 46.00	8.34 7.08	L
9	2.86094	21.0513.44	10.08	31.13 23.52	56.00 46.00	24.87 22.48	L
10	3.32247	24.40 16.42	10.09	34.4926.51	56.00 46.00	21.5119.49	L
11	6.17930	16.66 9.98	10.15	26.81 20.13	60.00 50.00	33.19 29.87	L
12	8.94523	15.22 8.96	10.30	25.52 19.26	60.00 50.00	34.48 30.74	L


APPENDIX I

Test set up diagrams

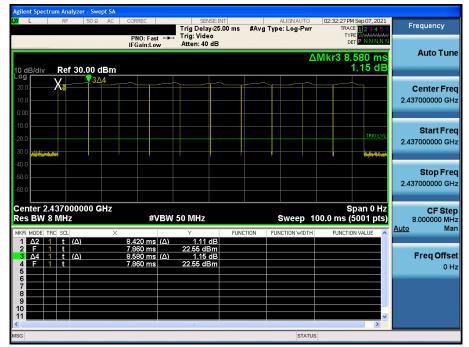
Radiated Measurement

Conducted Measurement

APPENDIX II

Duty cycle plots

Test Procedures

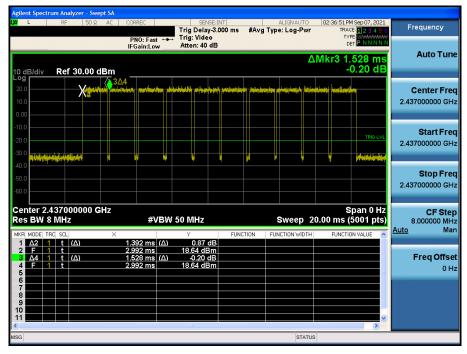

- KDB558074 D01v05r02 - Section 6

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average.

The zero-span measurement method shall not be used unless both RBW and VBW are > 50 /T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

Duty Cycle

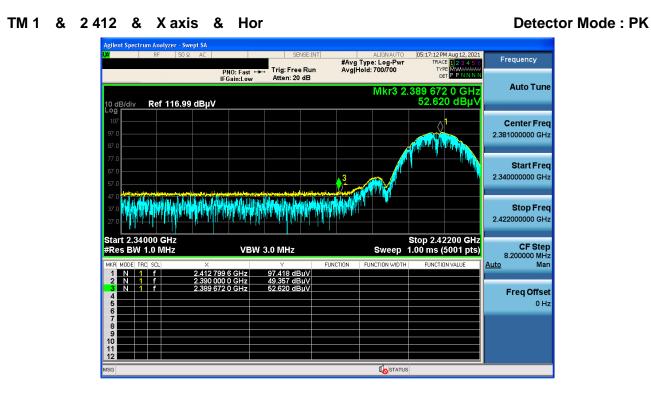
TM 1 & 2 437 MHz



Duty Cycle

Duty Cycle

TM 2 & 2 437 MHz

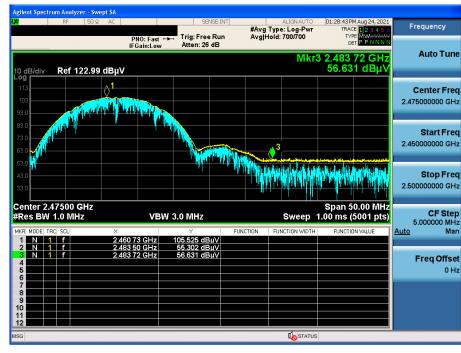


TM 3 & 2 437 MHz

Frequency SENSE:INT Trig Delay-3.000 ms Trig: Video Atten: 40 dB #Avg Type: Log-Pwr TYPI DE PNO: Fast IFGain:Low Auto Tune ∆Mkr3 1.468 ms -0.66 dE Ref 30.00 dBm **Center Freq** 2.437000000 GHz Start Freq 2.437000000 GHz Stop Freq 2.437000000 GHz Span 0 Hz Sweep 20.00 ms (5001 pts) Center 2.437000000 GHz CF Step 8.000000 MHz Res BW 8 MHz #VBW 50 MHz Auto Man FUNCTION 17.88 dBm -0.66 dB 17.88 dBm 1 t 1 t (Δ) 1 t Freq Offset s (Δ) Δ4 F 0 Hz STATUS

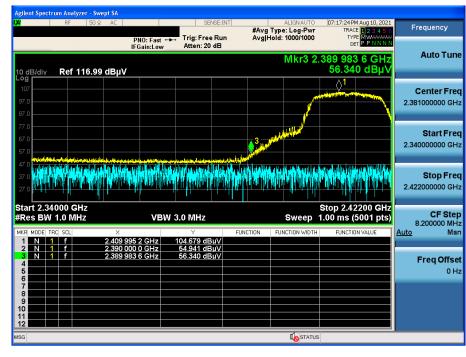
APPENDIX III

Unwanted Emissions (Radiated) Test Plot


TM 1 & 2412 & Xaxis & Hor

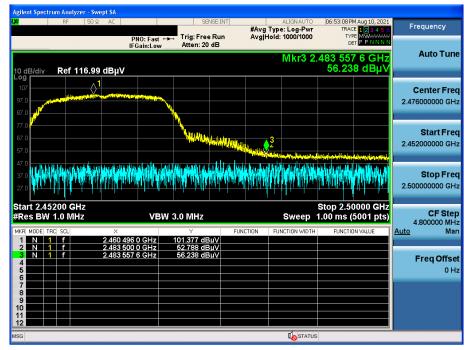
TM 1 & 2 462 & X axis & Hor

Detector Mode : PK


TM 1 & 2462 & Xaxis & Hor

TM 2 & 2 412 & Y axis & Ver

Detector Mode : PK


TM 2 & 2412 & Yaxis & Ver

ectrum Analyzer - Swept SA Frequency Jg 10, #Avg Type: Voltage Avg|Hold: 1000/1000 1234 Muluu PPNN PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 20 dB TYPI DE Auto Tune Mkr3 2.389 918 0 GHz 45.165 dBµ\ Ref 116.99 dBµV 0 dB/div **Center Freq** \Diamond^{1} 2 381000000 GHz Start Fred 2.340000000 GHz 3 Stop Freq 2.422000000 GHz Start 2.34000 GHz #Res BW 1.0 MHz Stop 2.42200 GHz 64.0 ms (5001 pts) CF Step 8.200000 MHz Man #VBW 1.0 kHz Sweep Auto 2.390 000 0 GHz 2.389 918 0 GHz 45.303 dBµ\ 45.165 dBµ\ Freq Offset 0 Hz **I**STATUS

Detector Mode : PK

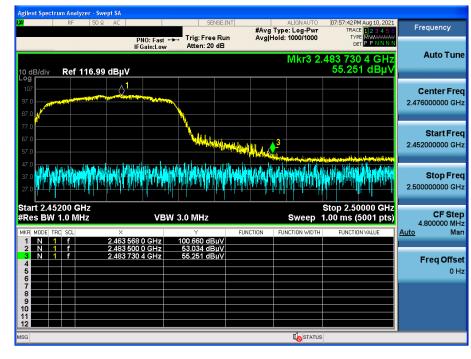
TM 2 & 2462 & Yaxis & Ver

TM 2 & 2462 & Yaxis & Ver

ectrum Analyzer - Swept SA Frequency #Avg Type: Voltage Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 20 dB TYPE DE1 PPNN Auto Tune Mkr3 2.483 519 2 GHz 45.898 dBµ∨ Ref 116.99 dBµV 0 dB/div **Center Freq** \Diamond^1 2 476000000 GHz Start Fred 2.452000000 GHz <mark>♦</mark>3 Stop Freq 2.50000000 GHz Stop 2.50000 GHz 37.7 ms (5001 pts) Start 2.45200 GHz #Res BW 1.0 MHz CF Step 4.800000 MHz Man #VBW 1.0 kHz Sweep Auto 2.483 500 0 GHz 2.483 519 2 GHz 45.840 dBµ\ 45.898 dBµ\ N Freq Offset 0 Hz **I**STATUS

TM 3 & 2 412 & Y axis & Ver

Detector Mode : PK


TM 3 & 2412 & Yaxis & Ver

ectrum Analyzer - Swept SA Frequency #Avg Type: Voltage Avg|Hold: 1000/1000 PNO: Fast ---- Trig: Free Run IFGain:Low Atten: 20 dB TYP PPNN Auto Tune Mkr3 2.389 983 6 GHz 44.954 dBµ\ Ref 116.99 dBµV 0 dB/div **Center Freq** 2 381000000 GHz Start Fred 2.340000000 GHz 3 Stop Freq 2.422000000 GHz Start 2.34000 GHz #Res BW 1.0 MHz Stop 2.42200 GHz 64.0 ms (5001 pts) CF Step 8.200000 MHz Man #VBW 1.0 kHz Sweep Auto 44.922 dBµ 44.954 dBµ 2.390 000 0 GHz 2.389 983 6 GHz N Freq Offset 0 Hz **I**STATUS

TM 3 & 2462 & Yaxis & Ver

Detector Mode : PK

TM 3 & 2462 & Yaxis & Ver

ectrum Analyzer - Swept SA Frequency #Avg Type: Voltage Avg|Hold: 1000/1000 1234 Muluu PPNN PNO: Fast +++ Trig: Free Run IFGain:Low Atten: 20 dB TYP Auto Tune Mkr3 2.483 509 6 GHz 45.117 dBµ\ Ref 116.99 dBµV 0 dB/div **Center Freq** \Diamond^1 2 476000000 GHz Start Fred 2.452000000 GHz ♦3 Stop Freq 2.50000000 GHz Stop 2.50000 GHz 37.7 ms (5001 pts) Start 2.45200 GHz #Res BW 1.0 MHz CF Step 4.800000 MHz Man #VBW 1.0 kHz Sweep Auto 45.074 dBµ\ 45.117 dBµ\ 2.483 500 0 GHz 2.483 509 6 GHz N Freq Offset 0 Hz **I**STATUS

Detector Mode : AV

TM 1 & 2 437 & Y axis & Hor

TM 2 & 2412 & Zaxis & Hor

TM 3 & 2462 & Zaxis & Hor

Detector Mode : AV

