W5 CT

WSET

TEST REPORT

W5CT

WSET

WSET

WSET

W5 CT

W5 CT

WSET

WSIT

FCC ID: 2AIZN-X6873

W5CT"

Product: Mobile Phone

Model No.: X6873

Issued Date: 26 February 2025

W51

W5ET

Trade Mark: Infinix

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

WELT

WELT

WSET

WSET

WS CT

Issued for:

WSIT

INFINIX MOBILITY LIMITED

WSET

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

WSET

WSET

Issued By:

W5 CT°

WSET

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd.
Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan
Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

FAX: +86-755-86376605

WSET

WSET

75-

1 AX. 100-733-000

Note: This report shall not be reproduced except in full, without the written approval of World

Standardization Certification Testing Group (Shenzhen) Co., Ltd. This document may be altered or revised by World Standardization Certification Testing Group (Shenzhen) Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only

apply to the tested sample.

WSIT

WSIT

WSCT

W5 67

深圳世标检测认证股份有限公司 ** p**

Member of the WSCT Group (WSCT SA)

WELL

Page 1 of 113

World Standardization Certification& Testing Group(Shenzhen) Co.,Ltd

IVV-

WELT

W5C1

one defined attention of the details a resulty stoup (choizeness) of the

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

TABLE OF CONTENTS

	Test Certification W5 CT W5 CT W5 CT	W35ET
2.	Test Result Summary	4
3.	EUT Description	5
W5 [1]	Genera Information	7
4.	X X X	
	4.1. TEST ENVIRONMENT AND MODE	
5.	Well Well	0
X 3.	5.1. FACILITIES	9
	5.1. FACILITIES	
WSCT	5.3. MEASUREMENT UNCERTAINTY	
	5.4. MEASUREMENT INSTRUMENTS	
6.	Test Results and Measurement Data	
\	6.1. ANTENNA REQUIREMENT	12
X	6.2. CONDUCTED EMISSION	
WEET	6.3. MAXIMUM CONDUCTED OUTPUT POWER	17
AWSLIE	6.4. EMISSION BANDWIDTH	38
	6.5. Power Spectral Density	49
	6.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	
$\overline{}$	6.7. RADIATED SPURIOUS EMISSION MEASUREMENT	101
7.	Test Setup Photographs	113
WELT	WSCT WSCT WSCT WSC	
	\times \times \times \times	X
	WSET WSET WSET WSET	W5 LT
X	\times \times \times \times	
WSET	WSET WSET WSET WSE	
	X X X X	X
	WSCT WSCT WSCT WSCT	ation& Testin
		WSLT COUNTY OF THE PARTY OF THE
		WS CT
WSLT	WSCT WSCT WSCT W	
ADD: Building A-B, Baoli'a	l'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.	MOM # PITTOS

WSCT

W5CT°

WSET

Page 2 of 113

W5 CT

WS CT

W5CT

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Test Certification 1.

Product: Mobile Phone

Additional Model:

Model No.:

Infinix

X6873

INFINIX MOBILITY LIMITED Applicant:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN

W5 ET

MEI STREET FOTAN NT HONGKONG

INFINIX MOBILITY LIMITED Manufacturer:

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN

MEI STREET FOTAN NT HONGKONG

Date of Test: 07 January 2025 to 26 February 2025

Applicable FCC CFR Title 47 Part 15 Subpart C Section 15.247 Standards:

The above equipment has been tested by World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Cher Checked By: Tested By: (Chen Xu) (Wang Xiang) W5C Approved By: (Li Huaibi) WSET" WSCT

WSLT WSET

WSET

深圳世标检测认证股份有限公司 Vorld Standardization Certification& Testing Group(Shenzhen) Co.,Ltd

Page 3 of 113

W5C1

W5 CT

W5C1

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Test Result Summary 2.

	WSCT WST	WSCT	WSCT	W5CT
7	Requirement	CFR 47 Section	Result	
	Antenna requirement	§15.203/§15.247 (c)	PASS	
	AC Power Line Conducted Emission	§15.207	PASS	\bigvee
	Maximum Conducted Output Power	§15.247 (b)(3) §2.1046	W5 PASS	W5ET
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS W5.77	
	Power Spectral Density	§15.247 (e)	PASS	
	W5 C1 Band Edge	1§5.247(d) §2.1051, §2.1057	W5 C PASS	WSET
	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	
	Note:		17.15	

Note:

W5 CT

W5 CT

NS C

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

WSCT	WSET	WSET	WSET	WSET	
				\times	\times
	WSET	WSET	WSET	WSET	WSET

WS ET

W5 CT WS ET WS CT W5 C1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

Page 4 of 113

W5 CT

W5CT

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

3. EUT Description

	Product:	Mobile Phone WSET WSET	V5 CT
\langle	Model No.:	X6873	
r T	Trade Mark:	Infinix WSCT WSCT	
	Operation Frequency:	2412MHz~2462MHz (802.11b/g/n(HT20) 2422MHz~2452MHz (802.11n(HT40)	\times
	Channel Separation:	5MHz	VECT
<	Modulation type:	DSSS (DBPSK, DQPSK, CCK) for IEEE 802.11b OFDM (BPSK,QPSK,16QAM,64QAM,256QAM,1024QAM) for IEEE 802.11g/n/ax	FIGA
C T	Antenna Type:	Integral Antenna WS [7]	
	Antenna Gain	ANT1:-3.1dBi,ANT2: -1.4dBi	
<u></u>	Operating Voltage:	Adapter: U450XSB Input: 100-240V~50/60Hz 1.8A Output: 5.0V3.0A 15.0W or 5.0-11.0V4.5A or 11.04.1A 45.0W MAX Rechargeable Li-ion Polymer Battery: BL-55AX Rated Voltage: 3.91V Rated Capacity: 5350mAh/20.92Wh Typical Capacity: 5500mAh/21.51Wh Limited Charge Voltage: 4.50V	WSET
_	Remark:	N/A.	WS CT®
-			

Note: 1. N/A stands for no applicable.

2. The antenna gain is provided by the customer. For any reported data issues caused by the antenna gain, World Standardization Certification&Testing Group (Shenzhen) Co., Ltd assumes no responsibility.

WSET WSET WSET WSET WSET

W5CT"

WSET

W5 CT

W5 CT

WSLT Sollow

WSET WSE

W5CT

AWS CT

ADD: Building A-B,Baoil'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chir TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhe

CT WSCT WSCT

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Operation Frequency each of channel For 802.11b/g/n(HT20)

•	operation.	i i icquency	Cacil Oi	CHAINCI I O	1 002.11	<i>org/11(11120)</i>		<u>.</u>
	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
_	MPLI	2412MHz	W ₄ LI	2427MHz	M 7 54	2442MHz	10	2457MHz
	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

WSCT WSCT WSCT WSCT WSCT

Operation Frequency each of channel For 802.11n(HT40)

Chan	nel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
W	; <i>CT</i>		w4, r7	2427MHz	W/sr	2442MHz	W75 C	7
			5	2432MHz	8	2447MHz		
3		2422MHz	6	2437MHz	9	2452MHz		X

WSCT Note: WSCT WSCT WSCT WSCT

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see helow:

WSCT WSCT WSCT WSCT

802.11b/g/n(HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n(HT40) WSET WSET WSET WSET

Channel	Frequency
The lowest channel	2422MHz
The middle channel	2437MHz
The Highest channel	2452MHz

SCT WSCT WSCT

WSCT WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT

ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26998053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http: www.wsct-cert.com

Ang@wsct-cert.com Http://www.wsct-cert.com World Standardization Certification& Testing Group(Shenzhei

VSCT WSCT

ET" WS L

W5CT°

WSET

15 CI

World Standardization Certification & Testing Group (Shenzhen) Co..ltd.

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Genera Information 4.

Operating Environment:

maximum state.

4.1. Test environment and mode

	Temperature:	25.0 °C	
	Humidity:	56 % RH	
	Atmospheric Pressure:	1010 mbar	X
	Test Mode:		
7	Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The	WSL
		value of duty cycle is 98.46%)	
7	The sample was placed (0.8m below 1GH	z, 1.5m above 1GHz) above the ground	
	plane of 3m chamber. Measurements in be performed. During the test, each emission continuously working, investigated all oper 2) and considered typical configuration to	was maximized by: having the EUT rating modes, rotated about all 3 axis (X, Y &	WSG
	interconnecting cables, rotating the turntal	ole, varying antenna height from 1m to 4m in The emissions worst-case are shown in Test	

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Results of the following pages. For the full battery state and The output power to the

Per-scan all kind of data rate in lowest channel, and found the follow list which it

was worst case.			
WSCT	ws Mode	WSCT	WSCT

802.11b

802.11n(H20)

802.11n(H40)

802.11g

Final Test Mode:

Operation mode: Keep the EUT in continuous transmitting with modulation

1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.2. According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 98.5% with maximum power setting for all modulations.

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

<u> 7</u>	Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
	1	Adapter		U450XSB	1/	/

Note:

'an Industrial Park, No.58 a

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

WSCT	WSET	WSET	W5 CT	WSCT
WSET	WSET	WSET	WSET	WSET
WSCT	WSET	WSET	WSET	WSET
WSCT	WSET	WSET	WSLT	WSET
WSET	WSET	WSET	WSET	WSCT
WSCT	WSET	WSET	WSCT	WSET
WSCT	WSET	WSET	WSET	X
WSET	WSET	WSET	WSET	WSCT Shear 200 Cloup (Shear 200)

Page 8 of 113

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Facilities and Accreditations 5.

5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China of the World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2. ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB) Certification Number: AT-3951

	Accreditation (AIV)	AB). Ceruncation Num	iber. A1-3931		
	WSET	W5 ET	WSCT	WSET	WSLT
			\times	\times	\times
WS	GT W	SET W	SET	WS CT	WS ET
	WSET	WSET	WSET	WSET	WSET
WS		$\langle \hspace{0.1cm} \rangle$	SET	WSET	WSET
	WSCT	WSET	WSET	WSET	WSCT
WS		$\langle \hspace{0.1cm} \rangle$	SET	WSET	WSET
	WSET	WSET	WSET	WSET	X
WS		$\langle \hspace{0.1cm} \rangle$	\times	WSET	WSLT WSLT

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Ave

TEL: 0086-755-26996192 26996053 26996144

Page 9 of 113

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

5.3. Measurement Uncertainty

	No.	Item	MU	W5 C7
	1	Conducted Emission Test	±3.2dB	
	2	RF power, conducted	±2.4%	
	3	Spurious emissions, conducted	±0.21dB	
	4	All emissions, radiated(<1GHz)	±4.7dB	\times
	5W5 C	All emissions, radiated(>1GHz) W5 [7] W5	±4.7dB	W5
	6	Temperature	±0.5°C	
	7	Humidity	±2.0%	
	8	Receiver Spurious Emissions	±2.5%	
	9	Transmitter Unwanted Emissions in the Spurious Domain	±2.5%	\times
_	10/5 L	Transmitter Unwanted Emission in the out-of Band	±1.3%	W5 C1
	11	Occupied Channel Bandwidth	±2.4%	
1	OTE 4 T			

NOTE:1. The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

2. The Ulab is less than Ucispr, compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit; non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

3. For conducted emission test of laboratory have a measurement uncertainty greater than that specified in harmonized standard, this equipment can still be used provided that an adjustment is made follows: any additionan uncertainty in the test system over and above that specified in harmonized standard should be used to tighter the test requirements-making the test harder to pass. This procedure will ensure that a test system not comliant with harmonized standard does not increase the probability of passing a EUT that would otherwise have failed a test if a test system comliant with harmonized standard had been used.

Page 10 of 113

W5CT

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

5.4.MEASUREMENT INSTRUMENTS

	<u> </u>										
_	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	'5 E				
	Test software		EZ-EMC	CON-03A	-	<u> </u>					
C	Test software	- /	MTS8310	WSET	- /	VS CT					
	EMI Test Receiver	R&S	ESCI	100005	11/05/2024	11/04/2025					
	LISN	AFJ	LS16	16010222119	11/05/2024	11/04/2025	\wedge				
	LISN(EUT)	Mestec	AN3016/5/	04/10040	11/05/2024	11/04/2025	'5 E				
<	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2024	11/04/2025					
C	Coaxial cable	Megalon V	/5 LMR400	N/A _ T	11/05/2024	11/04/2025					
	GPIB cable	Megalon	GPIB	N/A	11/05/2024	11/04/2025					
	Spectrum Analyzer	R&S	FSU	100114	11/05/2024	11/04/2025					
	Pre Amplifier	H.p.CT	HP8447E 5 4	2945A02715	11/05/2024	11/04/2025	15 C				
1	Pre-Amplifier	CDSI	PAP-1G18-38		11/05/2024	11/04/2025					
	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2024	7/28/2025					
	9*6*6 Anechoic		75.1	W5-7	11/05/2024	11/04/2025					
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000		11/05/2024	11/04/2025	X				
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2024	11/04/2025	15 E				
_	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2024	11/04/2025					
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R					
C	Turn Table	ccs	ν _{5 Ε 1} Ν/Α	N/A	N.C.R	N.C.R					
	Antenna Tower	ccs	N/A	N/A	N.C.R	N.C.R					
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2024	11/04/2025	\wedge				
	Loop Antenna	EMCO	6502 W 5 L	00042960	11/05/2024	11/04/2025	15 E				
<	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2024	11/04/2025					
	Power meter	Anritsu	ML2487A	6K00003613	11/05/2024	11/04/2025					
7	Power sensor	Anritsu	MX248XD	100	11/05/2024	11/04/2025					
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2024	11/04/2025	X				

Page 11 of 113

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Test Results and Measurement Data 6.

6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is a Integral Antenna, it meets the standards, and the best case gain of the antenna is "ANT1:-3.1dBi,ANT2: -1.4dBi".

Please refer to the attached "X6873 Internal Photo" for the antenna location

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(NANT/NSS=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4 .

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e.,

F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01

The directional gain "DG" is calculated as following table.

CDD Madaas	Ant1	Ant2	DG for power	DG for PSD
<cdd modes=""></cdd>	(dBi)	(dBi)	(dBi)	(dBi)
2412~2462MHz	-3.1	-1.4	-1.4	0.8

Power limit reduction = Composite gain -6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain - 6dBi, (min = 0)

Page 12 of 113

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

6.2. Conducted Emission

6.2.1. Test Specification

W5CT"

W5 ET

4W5 C1

	o.z.r. rest specification		_
X	Test Requirement:	FCC Part15 C Section 15.207	
<u>L</u> T	Test Method:W5ET	ANSI C63.10:2014 W5 [T] W5 [T]	
	Frequency Range:	150 kHz to 30 MHz	\times
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto	WSET
<u></u>	Limits:	Frequency range (MHz) Limit (dBuV) 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50	
	\rightarrow	Reference Plane	X
	WS CT WS	40cm 80cm LISN Filter AC power	WSET
CT	Test Setup: W5 CT	Remark E.U.T AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	WSET
	Test Mode:	Charging + transmitting with modulation	
ET	WS CT WS	 The E.U.T is connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main 	WSET
<	Test Procedure:	power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).	
	\times	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of	X

WELT

Test Result:

C/T

PASS

WS CT

the interface cables must be changed according to ANSI C63.10: 2014 on conducted measurement.

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City Guangdong Province, Chi EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http::www.wsct-cert.com 深圳世标检测认证股份有限公司 ** pl7

WSC

Malalalate

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

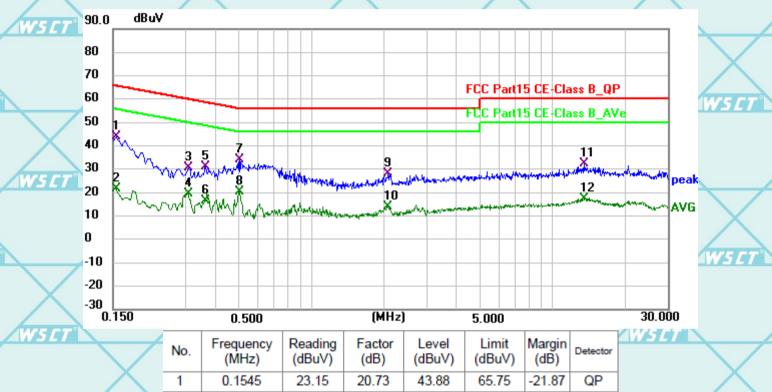
6.2.2. EUT OPERATING CONDITIONS

The EUT is working in the Normal link mode. All modes have been tested and normal link mode is

Devices subject to Part 15 must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 60 Hz and 240 VAC, 50 Hz) for which the device is capable of operation. So, The configuration 120 VAC, 60 Hz and 240 VAC, 50 Hz were tested respectively, but only the worst configuration (120 VAC, 60 Hz) shown here.

W5 E1 W5E WSE. W5 E1 WS CT W5 CT WS CI V5 C WS C W5C1 Page 14 of 113

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1


Test data

Please refer to following diagram for individual

W5 CI

W5 C1

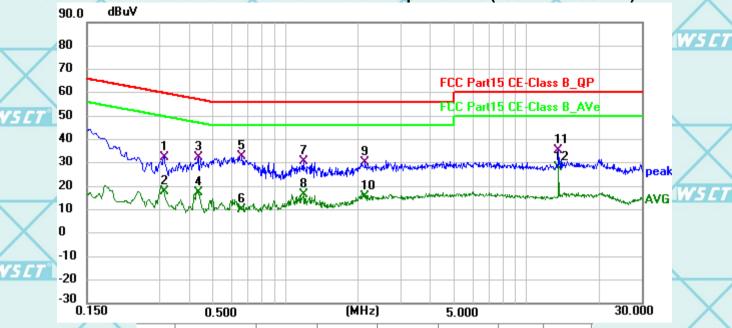
Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

	No.	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	Detector
	1	0.1545	23.15	20.73	43.88	65.75	-21.87	QP
W5 CT	2	0.1545	0.78	20.73	21.51	55.75	-34.24	AVG
11717	3	0.3075	10.08	20.63	30.71	60.04	-29.33	QP
	4	0.3075	-1.02	20.63	19.61	50.04	-30.43	AVG
	5	0.3615	10.60	20.59	31.19	58.69	-27.50	QP
	6	0.3615	-4.26	20.59	16.33	48.69	-32.36	AVG
	7 *	0.5010	13.73	20.51	34.24	56.00	-21.76	QP
X	8	0.5010	-0.08	20.51	20.43	46.00	-25.57	AVG
	9	2.0850	7.63	20.61	28.24	56.00	-27.76	QP
W5CT"	10	2.0850	-6.78	20.61	13.83	46.00	-32.17	AVG
	11	13.6005	12.24	20.25	32.49	60.00	-27.51	QP
	12	13.6005	-3.03	20.25	17.22	50.00	-32.78	AVG

WS CT

WS CI

Page 15 of 113



CCT WCCT WCCT

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

WSET	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	
	1	0.3120	11.95	20.62	32.57	59.92	-27.35	QP	
	2	0.3120	-2.97	20.62	17.65	49.92	-32.27	AVG	
WSET	3	0.4335	11.81	20.55	32.36	57.19	-24.83	QP	
12.17	4	0.4335	-2.98	20.55	17.57	47.19	-29.62	AVG	
	5	0.6585	12.13	20.53	32.66	56.00	-23.34	QP	
	6	0.6585	-10.61	20.53	9.92	46.00	-36.08	AVG	
WSET	7	1.1895	9.81	20.66	30.47	56.00	-25.53	QP	
	8	1.1895	-4.22	20.66	16.44	46.00	-29.56	AVG	
X	9	2.1390	9.47	20.61	30.08	56.00	-25.92	QP	
	10	2.1390	-4.99	20.61	15.62	46.00	-30.38	AVG	
W5 CT"	11	13.5645	14.96	20.25	35.21	60.00	-24.79	QP	1
	12 *	13.5645	7.72	20.25	27.97	50.00	-22.03	AVG	

Note1:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

WSCT

WSET

MICT

WSE

WS CT

WSET Strict Cations Testing Group (Shenzie

WSCT

WELT

WELT

WSCT

WSET

DD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, Chi EL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

lember of the WSCT Group (WSCT SA)

Page 16 of 113

SET

WSCT

W5CT"

W5CT®

W5E1

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

6.3. Maximum Conducted Output Power

6.3.1. Test Specification

W5 CT

	Test Requirement:	FCC Part15 C Section	1 15.247 (b)(3)		
W5ET°	Test Method:	KDB 558074	W5 CT	WS CT	
	Limit:	30dBm	X		\times
	Test Setup:				WS ET
		Spectrum Analyzer	EUT		
W5 CT	Test Mode:	Transmitting mode wit	h modulation	W5 ET	
WSCT	Test Procedure:	v04. 2. The RF output of E analyzer by RF ca	O74 DTS D01 Meas. UT was connected to ble and attenuator. The to the results for each power setting and elements.	Guidance the spectrum ne path loss	WSCT
	Test Result:	Measure the conduresults in the test results in the test results.	cted output power and eport.		WSET

	WSET	WSET	WSET	WSET	WSET
WSCT	WSET	X			CT .

W5CT

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

6.3.2. Test Data

0.3.2. Test Data						
ANT1W5CT	/	WSCT	WSET		WS	CT WSCT
W-E	Mode	Frequency	Total Power	Limit	Verdict	7.6
		(MHz)	(dBm)	(dBm)		
	b	2412	16.37	30	Pass	
	b	2437	16.78	30	Pass	
WSET	/ c / b°	2462	16.48	30	Pass	WSCT
	g	2412	20.76	30	Pass	
	g	2437	21.12	30	Pass	
	g	2462	21.17	30	Pass	
	n20	2412	20.79	30	Pass	
W5ET"	n20	2437	20.69	30	Pass	CT° WSCT°
	n20	2462	21.36	30	Pass	
	n40	2422	21.77	30	Pass	
	n40	2437	21.9	30	Pass	
	n40	2452	22.23	30	Pass	
WSET N	ax20	2412 ///5	22.07	305	Pass	W5 CT°
	ax20	2437	22.48	30	Pass	
	ax20	2462	22.49	30	Pass	
	ax40	2422	22.4	30	Pass	
	ax40	2437	22.85	30	Pass	
W5 LT	ax40	2452	22.7	30	Pass	T WSET
ANTO						

ANT2

			V		
Mode	Frequency	Total Power	Limit	Verdict	
	(MHz)	(dBm)	(dBm)		
_b	2412	14.41	305 -	Pass	W5 CT°
b	2437	14.37	30	Pass	
b	2462	14.3	30	Pass	
g	2412	18.11	30	Pass	
g	2437	18.71	30	Pass	
g/	2462	18.63	30	Pass	CT WS CT
n20	2412	17.84	30	Pass	
n20	2437	18.62	30	Pass	X
n20	2462	18.45	30	Pass	
n40	2422	18.91	30	Pass	The second secon
n40	2437	18.56	30	Pass	WSET
n40	2452	18.3	30	Pass	
ax20	2412	19.06	30	Pass	X
ax20	2437	18.93	30	Pass	
ax20	2462	19.03	30	Pass	CT ³
ax40	2422	19.15	30	Pass	CT WSCT
ax40	2437	18.71	30	Pass	
ax40	2452	19.29	30	Pass	X
	b b g g g n20 n20 n20 n40 n40 n40 ax20 ax20 ax40 ax40	(MHz) b 2412 b 2412 b 2437 b 2462 g 2412 g 2437 g 2462 n20 2412 n20 2437 n20 2462 n40 2422 n40 2437 n40 2452 ax20 2412 ax20 2462 ax40 2422 ax40 2437	(MHz) (dBm) b 2412 14.41 b 2437 14.37 b 2462 14.3 g 2412 18.11 g 2437 18.71 g 2462 18.63 n20 2412 17.84 n20 2437 18.62 n20 2462 18.45 n40 2422 18.91 n40 2437 18.56 n40 2452 18.3 ax20 2412 19.06 ax20 2462 19.03 ax40 2422 19.15 ax40 2437 18.71	(MHz) (dBm) (dBm) b 2412 14.41 30 b 2437 14.37 30 b 2462 14.3 30 g 2412 18.11 30 g 2437 18.71 30 g 2462 18.63 30 n20 2412 17.84 30 n20 2437 18.62 30 n20 2462 18.45 30 n40 2422 18.91 30 n40 2437 18.56 30 n40 2452 18.3 30 ax20 2412 19.06 30 ax20 2437 18.93 30 ax20 2462 19.03 30 ax40 2422 19.15 30 ax40 2437 18.71 30	(MHz) (dBm) (dBm) b 2412 14.41 30 Pass b 2437 14.37 30 Pass b 2462 14.3 30 Pass g 2412 18.11 30 Pass g 2437 18.71 30 Pass g 2462 18.63 30 Pass n20 2412 17.84 30 Pass n20 2437 18.62 30 Pass n20 2462 18.45 30 Pass n40 2422 18.91 30 Pass n40 2437 18.56 30 Pass n40 2452 18.3 30 Pass ax20 2412 19.06 30 Pass ax20 2462 19.03 30 Pass ax40 2422 19.15 30 Pass ax40 2422 <

WS CT WS CT WS CT WS CT

WSCT WSCT WSCT WSCT

WSCT WSCT WSCT

Guangdong Province, China. 深圳

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen) Co.

D: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Studet, Bao'an District, Shenzhen City, Guangdong Province, Chii L: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

W5 E1

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

W5 CT

ax40

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1 **MiMO Mode**

•						P
	Mode	Frequency	Total Power	Limit	Verdict	•
		(MHz)	(dBm)	(dBm)		
	n20	2412	22.57	30	Pass	
	n20	2437	22.79	30	Pass	
1	n20	2462	23.15	30	Pass	
/	n40	2422	23.58	30	Pass	
	n40	2437	23.55	30	Pass	
15	n40	2452	23.71	305	Pass	
	ax20	2412	23.83	30	Pass	
	ax20	2437	24.07	30	Pass	ı
	ax20	2462	24.11	30	Pass	١
	ax40	2422	24.08	30	Pass	
	ax40	2437	24.27	30	Pass	ĺ

24.33

30

Pass

W5E7 W5 CI

2452

W5 CI WS CT WSEI WSE WSE

W5 CT W5 CT WS ET W5 E1 W5 C1

W5 C W5E

W5 CI WS ET W5 CI W5 E1 tion& Testin

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

深圳世标检测认证股份有限公司

W5C1

Page 19 of 113 W5CT

W5 C7

World Standardization Certification & Testing Group (Shenzhen) Co., ltd. **ac-MRA** Malalalal Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1 ANT1 Test Graphs Power b 2412MHz Spectrum Analyzer 1 Channel Power SCPI KEYSIGHT Input: RF Input Z: 50 Ω Atten: 30 dB Trig: Free Run Center Freq: 2.412000000 GHz Corr CCorr Freq Ref: Int (S) Gate: Off #IF Gain: Low Avg|Hold: 300/300 Radio Std: None Align: Auto

1 Granh Ref Lvi Offset 4.26 dB Ref Value 24.26 dBm Scale/Div 10.0 dB 143 Center 2.41200 GHz #Res BW 1.0000 MHz #Video BW 3.0000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) 16.37 dBm / 20.0 MHz Total Channel Power -56.64 dBm/Hz Total Power Spectral Density Jan 17, 2025 9:44:17 AM Power b 2437MHz 15 CT Spectrum Analyzer 1 Channel Power SCPI + Input Z: 50 Ω Center Freq: 2.437000000 GHz Avg|Hold: 100/100 Radio Std: None KEYSIGHT Input: RF Atten: 30 dB Trig: Free Run Gate: Off Corr CCorr Freq Ref: Int (S) Preamp: Off #PNO: Fast Align: Auto #IF Gain: Low 1 Graph Ref Lvi Offset 4.28 dB Ref Value 24.28 dBm Scale/Div 10.0 dB pt/Myharatalages.pfylodharachashiftydag.uk...l Center 2.43700 GHz #Res BW 1.0000 MHz Span 40 MHz Sweep 1.00 ms (1001 pts) #Video BW 3.0000 MHz 2 Metrics Total Channel Power 16.78 dBm / 20.0 MHz Total Power Spectral Density -56.23 dBm/Hz Jan 17, 2025 9:45:42 AM

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. 深圳世标检测认证股份有限公司 TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Page 20 of 113

Page 21 of 113

E-mail: fengbing.wang@wsct-cert.com

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144

ET W5 L

W5CT"

WSCT[®]

Page 22 of 113

15 Ci

15 Ci

Page 24 of 113

Page 25 of 113

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144

E-mail: fengbing.wang@wsct-cert.com

VS CI

深圳世标检测认证股份有限公司

10M #

Page 26 of 113

15 Ci

Page 27 of 113

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144


E-mail: fengbing.wang@wsct-cert.com

15 Ci

Page 28 of 113

WSCT

WSET

W5CT°

WSET

World Standardization Certification & Testing Group (Shenzhen) Co., ltd. Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1 ANT2 Test Graphs

E-mail: fengbing.wang@wsct-cert.com

MON # 深圳世标检测认证股份有限公司

TEL: 0086-755-26996192 26996053 26996144

Page 29 of 113

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

FAX: 0086-755-86376605

15 Ci

Page 30 of 113

WELT

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144

WSI

E-mail: fengbing.wang@wsct-cert.com

WS CT

TEL: 0086-755-26996192 26996053 26996144

FAX: 0086-755-86376605

深圳世标检测认证股份有限公司

World Standardization Certification

World Standardization Certification & Testing Group (Shenzhen) Co., ltd.

Page 32 of 113

E-mail: fengbing.wang@wsct-cert.com

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144

WSET

Page 33 of 113

ADD: Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China.

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144

Aug V

E-mail: fengbing.wang@wsct-cert.com

VSCT WSCT

深圳世标检测认证股份有限公司

MON #

Page 35 of 113

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144

E-mail: fengbing.wang@wsct-cert.com

Page 36 of 113

World Standardization Certificat

World Standardization Certification & Testing Group (Shenzhen) Co.,ltd.

V5 CI

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

6.4. Emission Bandwidth

6.4.1. Test Specification

W5 CT

W5 CT

W5 CT

W5 CT

\times	Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
W5 CT°	Test Method:	KDB 558074
	Limit:	>500kHz
X	Test Setup:	Spectrum Analyzer EUT
W5 ET	Test Mode:	Transmitting mode with modulation W5 [7]
WS ET	Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
	Test Result:	be greater than 500 kHz. 4. Measure and record the results in the test report. PASS

WSCT WSCT WSCT WSCT WSCT

W5C1

W5 CT

WSET

WSET

WSCT Shenza

WSCT

WSCT

WELT

AWS CT

| 深圳世标检测认证股份有限公司 | World Standard Story Certification Cer

K: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

W5ET

W5 CT

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1

6.4.2. Test data(worst)

AM/C/T	` '	MACE	FT
WELL		UCI	54

W5E1

W5C1

W5 C1

\times	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
CT	b /	2412	7.986	0.5	Pass
	b	2437	8.042	0.5	Pass
	b	2462	8.017	0.5	Pass
	g	2412	15.04	0.5	Pass
	g	2437	15.64	0.5	Pass
TT	g	2462	16.31	0.5	Pass
	n20	2412	16.90	0.5	Pass
	n20	2437	17.57	0.5	Pass
	n20	2462	17.51	0.5	Pass
	n40	2422	35.99	0.5	Pass
	n40	2437	34.42	0.5	Pass
	n40	2452	35.15	0.5	Pass
	ax20	2412	18.53	0.575	Pass
\langle	ax20	2437	16.55	0.5	Pass
	ax20	2462	18.87	0.5	Pass
	ax40	2422	35.79	0.5	Pass
CT N	ax40	W5 [T] 2437 W5 [36.22	V5 <i>LT</i> 0.5	Pass
	ax40	2452	37.14	0.5	Pass
	X	X	X	X	

WSET W5C1

W5 C1 W5 ET W5 C W5 C1

W5 CT W5 CT

> W5 CT W5 CT W5 ET W5 E1

ADD: Building A-B, Baoli'an Industrial Park, No. 58 and 60, Tangtou Avenue

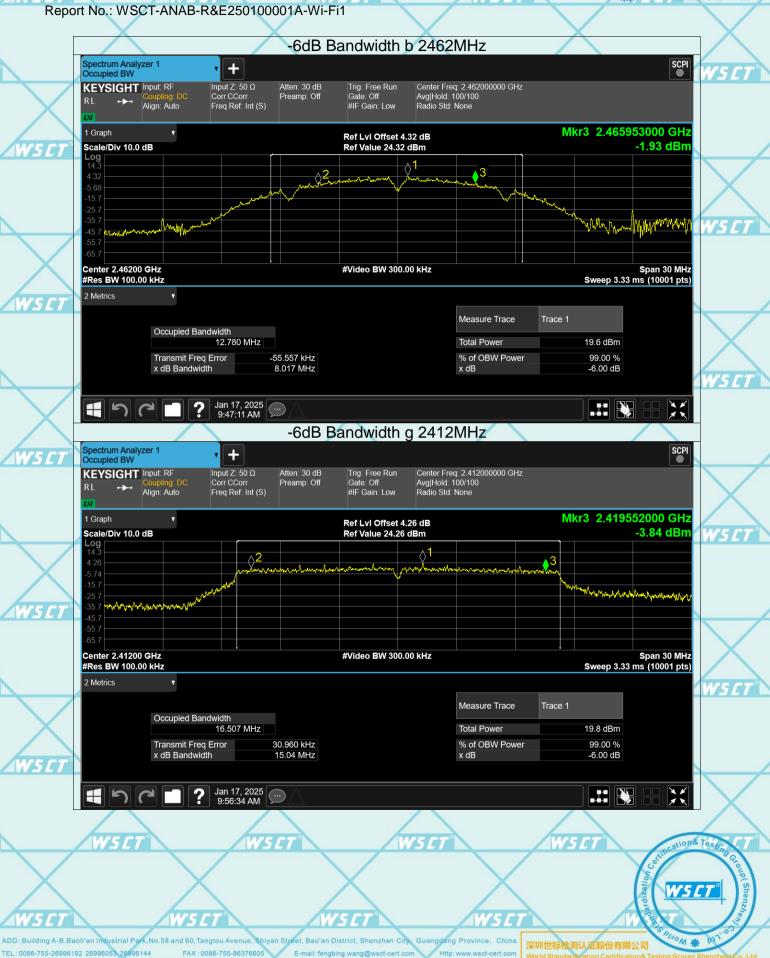
深圳世标检测认证股份有限公司 Page 39 of 113

W5 CT W5 CT

W5CT

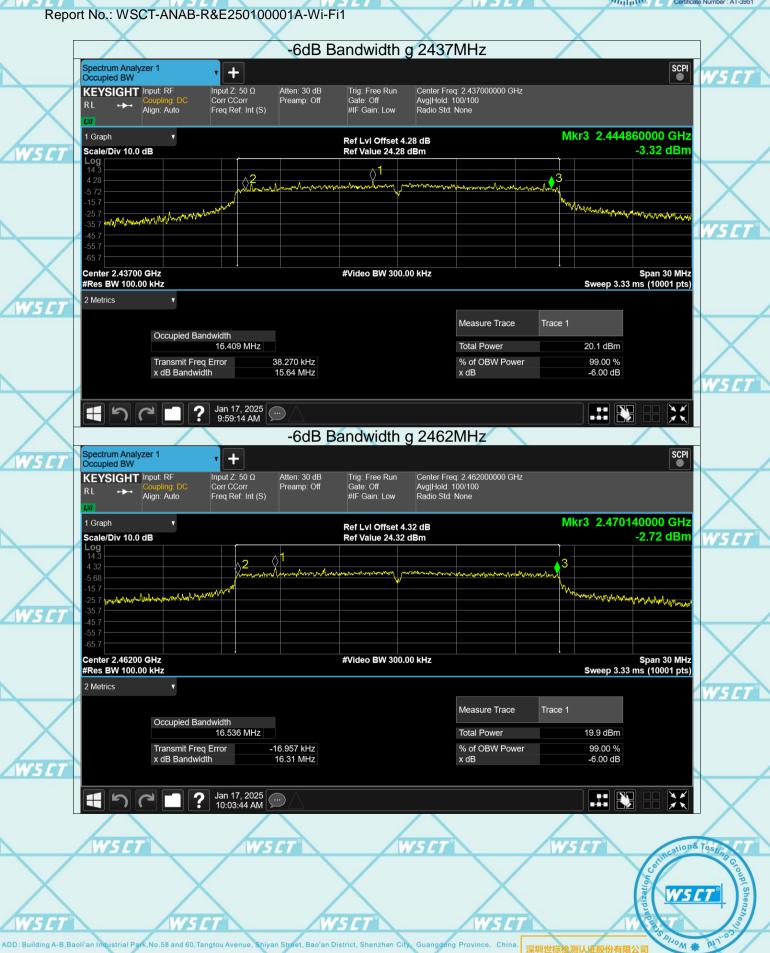
W5CT

Report No.: WSCT-ANAB-R&E250100001A-Wi-Fi1



ADD: Building A-B,Baoli'an Industrial Park,No.58 and 60,Tangtou Avenue, Shiyan Street, Bao'an District, Shenzhen City, Guangdong Province, China. TEL: 0086-755-26996192 26996053 26996144 FAX: 0086-755-86376605 E-mail: fengbing.wang@wsct-cert.com Http://www.wsct-cert.com

深圳世标检测认证股份有限公司
World Standard zation Certification& Testing Group(Shenzhen) Co.,Ltd.



Page 41 of 113

Page 42 of 113

FAX: 0086-755-86376605

TEL: 0086-755-26996192 26996053 26996144

深圳世标检测认证股份有限公司