

Armatura LLC RF TEST REPORT

Report Type: FCC Part 15.247 RF report

Model: OmniAC20

REPORT NUMBER: 230402194SHA-002

ISSUE DATE: July 5, 2023

DOCUMENT CONTROL NUMBER: TTRF15.247-03_V1 © 2018 Intertek

Intertek Testing Services Shanghai Building No.86, 1198 Qinzhou Road (North) Caohejing Development Zone Shanghai 200233, China

> Telephone: 86 21 6127 8200 www.intertek.com

Report no.: 230402194SHA-002

Applicant:	Armatura LLC
Address of Applicant:	190 Bluegrass Valley Parkway Alpharetta, GA 30005
Manufacturer:	Armatura LLC
Address of Manufacturer:	190 Bluegrass Valley Parkway Alpharetta, GA 30005
FCC ID:	2A5UQ-OMNIAC20W

SUMMARY:

The equipment complies with the requirements according to the following standard(s) or Specification:

47CFR Part 15 (2021): Radio Frequency Devices (Subpart C)

ANSI C63.10 (2013): American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

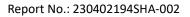
PREPARED BY:

REVIEWED BY:

Donan - Ding

Project Engineer Damon Ding Reviewer Erick Liu

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.


Content

RE	VISIO	ON HISTORY	5
м	EASU	REMENT RESULT SUMMARY	6
1	G	ENERAL INFORMATION	7
	1.1	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)	7
	1.2	TECHNICAL SPECIFICATION	
	1.3	ANTENNA INFORMATION	8
	1.4	DESCRIPTION OF TEST FACILITY	8
2	TE	EST SPECIFICATIONS	10
	2.1	Standards or specification	.10
	2.2	MODE OF OPERATION DURING THE TEST	
	2.3	Test software list	. 10
	2.4	TEST PERIPHERALS LIST	.11
	2.5	SUPPORT CABLE LIST	.11
	2.6	TEST ENVIRONMENT CONDITION:	.11
	2.7	INSTRUMENT LIST	. 12
	2.8	MEASUREMENT UNCERTAINTY	.13
	2.9	DUTY CYCLE	.14
3	Μ	IINIMUM 6DB BANDWIDTH	17
	3.1	Liмit	.17
	3.2	– Measurement Procedure	
	3.3	Test Configuration	
	3.4	Test Results of Minimum 6dB bandwidth	.17
4	М	IAXIMUM CONDUCTED OUTPUT POWER	18
4	M 4.1	IAXIMUM CONDUCTED OUTPUT POWER	
4			. 18
4	4.1	Lіміт	.18 .18
4	4.1 4.2	Limit Measurement Procedure	.18 .18 .19
4	4.1 4.2 4.3 4.4	Limit Measurement Procedure Test Configuration	.18 .18 .19 .19
	4.1 4.2 4.3 4.4	LIMIT Measurement Procedure Test Configuration Test Results of Maximum conducted output power OWER SPECTRUM DENSITY	. 18 . 18 . 19 . 19 20
	4.1 4.2 4.3 4.4 PC	LIMIT Measurement Procedure Test Configuration Test Results of Maximum conducted output power	. 18 . 18 . 19 . 19 20 . 20
	4.1 4.2 4.3 4.4 P(5.1	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT	. 18 . 18 . 19 . 19 20 . 20 . 20
	4.1 4.2 4.3 4.4 P(5.1 5.2	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE	. 18 . 18 . 19 . 19 20 . 20 . 20 . 21
	4.1 4.2 4.3 4.4 P(5.1 5.2 5.3 5.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION	.18 .19 .19 .20 .20 .21 .21
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND	.18 .19 .19 20 .20 .21 .21 .21 22
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 Ef 6.1	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND	.18 .19 .19 20 .20 .20 .21 .21 .21
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE	.18 .19 .19 20 .20 .21 .21 22 .22
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 EI 6.1 6.2	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND	.18 .19 .19 .20 .20 .21 .21 .21 .22 .22 .22
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST CONFIGURATION TEST CONFIGURATION TEST CONFIGURATION TEST CONFIGURATION	.18 .18 .19 .20 .20 .21 .21 .22 .22 .22 .23 .23
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 R/	LIMIT	.18 .19 .19 20 .20 .21 .21 .21 .22 .22 .23 .23 24
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 R / 7.1	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS	.18 .19 .19 20 .20 .20 .21 .21 22 .22 .23 .23 .23 24 .24
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 7.1 7.2	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY UMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS LIMIT MEASUREMENT PROCEDURE	.18 .19 .19 20 .20 .20 .21 .21 22 .22 .23 .23 .23 24 .24
5	4.1 4.2 4.3 4.4 PC 5.1 5.2 5.3 5.4 ET 6.1 6.2 6.3 6.4 R 7.1 7.2 7.3	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION THE RESULTS OF EMISSION SIN RESTRICTED FREQUENCY BANDS LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION THE RESULTS OF EMISSION SIN RESTRICTED FREQUENCY BANDS LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION	.18 .19 .19 .20 .20 .21 .21 .22 .22 .23 .23 .23 .24 .24 .24 .24
5	4.1 4.2 4.3 4.4 5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 7.1 7.2 7.3 7.4	LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF MAXIMUM CONDUCTED OUTPUT POWER OWER SPECTRUM DENSITY UMIT MEASUREMENT PROCEDURE TEST CONFIGURATION TEST RESULTS OF POWER SPECTRUM DENSITY MISSION OUTSIDE THE FREQUENCY BAND LIMIT MEASUREMENT PROCEDURE TEST CONFIGURATION THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND THE RESULTS OF EMISSION OUTSIDE THE FREQUENCY BAND ADIATED EMISSIONS IN RESTRICTED FREQUENCY BANDS LIMIT MEASUREMENT PROCEDURE	.18 .19 .19 .20 .21 .21 .21 .22 .23 .23 .23 .23 .23 .23 .24 .24 .24 .24 .27

intertek Total Quality. Assured.

TEST REPORT

	8.1	LIMIT	28
	8.2	Test Configuration	.28
	8.3	Measurement Procedure	.29
	8.4	Test Results of Power line conducted emission	.30
		NTENNA REQUIREMENT	
		DIX I: PHOTOGRAPH OF TEST SETUP	
AF	PEND	DIX II: PHOTOGRAPH OF EQUIPMENT UNDER TEST	. 33

Revision History

Report No.	Version	Description	Issued Date
230402194SHA-002	Rev. 01	Initial issue of report	June 6, 2023

Measurement result summary

TEST ITEM	FCC REFERENCE	RESULT
Minimum 6dB Bandwidth	15.247(a)(2)	Pass
Maximum conducted output power	15.247(b)(3)	Pass
Power spectrum density	15.247(e)	Pass
Emission outside the frequency band	15.247(d)	Pass
Radiated Emissions in restricted frequency bands	15.247(d), 15.205&15.209	Pass
Power line conducted emission	15.207(a)	Pass
Occupied bandwidth	-	Tested
Antenna requirement	15.203	Pass

Notes: 1: NA =Not Applicable

Intertek Total Quality. Assured. TEST REPORT

1 GENERAL INFORMATION

1.1 Description of Equipment Under Test (EUT)

Product name:	Smart Access Control Terminal
Type/Model:	OmniAC20
Description of EUT:	Smart Access Control Terminal
Rating:	Powered from adapter: Input: 100V-240~50/60Hz, 1.0A Max Output: DC12V, 3.0A
EUT type:	Table top 🔲 Floor standing
Software Version:	Not provided
Hardware Version:	Not provided
Normal Test Voltage:	120V ~60Hz
Sample received date:	March 8, 2023
Date of test:	April 3, 2023 to January 16, 2023

1.2 Technical Specification

Frequency Range:	2400MHz ~ 2483.5MHz
Support Standards:	IEEE 802.11b, IEEE 802.11g, IEEE 802.11n-HT20, IEEE 802.11n40
Type of Modulation:	IEEE 802.11b: DSSS(CCK, DQPSK, DBPSK) IEEE 802.11g: OFDM(64-QAM, 16-QAM, QPSK, BPSK) IEEE 802.11n-HT20: OFDM(64-QAM, 16-QAM, QPSK, BPSK) IEEE 802.11n-HT40: OFDM(64-QAM, 16-QAM, QPSK, BPSK)
Channel Number:	IEEE 802.11b: 11 IEEE 802.11g: 11 IEEE 802.11n-HT20: 11 IEEE 802.11n-HT40: 9
Data Rate:	IEEE 802.11b: Up to 11 Mbps IEEE 802.11g: Up to 54 Mbps IEEE 802.11n-HT20: Up to MCS7 IEEE 802.11n-HT40: Up to MCS7
Channel Separation:	5 MHz

1.3 Antenna information

Antenna No.	Model	Antenna type	Antenna Gain	Note
1	SUR-V3L-WIFI- V1.3	FPCB Antenna	3.2 dBi	/

Mode	Tx/Rx Function	Beamforming function	CDD function
802.11b	1Tx/1Rx	NO	NO
802.11g	1Tx/1Rx	NO	NO
802.11n-HT20	1Tx/1Rx	NO	NO
802.11n-HT40	1Tx/1Rx	NO	NO

1.4 Description of Test Facility

Name:	Intertek Testing Services Shanghai
	· · ·
Address:	Building 86, No. 1198 Qinzhou Road(North), Shanghai 200233, P.R. China
Telephone:	86 21 61278200
Telefax:	86 21 54262353

The test facility is recognized,	CNAS Accreditation Lab Registration No. CNAS L0139
certified, or accredited by these organizations:	FCC Accredited Lab Designation Number: CN0175
organizations.	IC Registration Lab CAB identifier.: CN0014
	VCCI Registration Lab Member No: 3598 (Registration No.: R-14243, G-10845, C-14723, T-12252)
	A2LA Accreditation Lab Certificate Number: 3309.02

All tests were sub-contracted.

Name:	Shenzhen UnionTrust Quality and Technology Co., Ltd.
Address:	Unit D/E of 9/F and 16/F, Block A, Building 6, Baoneng Science and Technology Park, Longhua District, Shenzhen, China
Telephone:	+86 (0) 755 2823 0888
Telefax:	+86 (0) 755 2823 0886

The test facility is	CNAS Accreditation Lab
recognized,	Registration No. CNAS L9069
certified, or	FCC Accredited Lab
accredited by	Designation Number: CN1194
these	A2LA Accorditation Lab
organizations:	A2LA Accreditation Lab Certificate Number: 4312.01
	Certificate Number: 4312.01

2 TEST SPECIFICATIONS

2.1 Standards or specification

47CFR Part 15 (2021) ANSI C63.10 (2013) KDB 558074 (v05or02)

2.2 Mode of operation during the test

While testing transmitting mode of EUT, the continuously transmission was applied by following software.

Software name	Manufacturer	Version	Supplied by
PUTTY.exe	NA	NA	Client

The lowest, middle and highest channel were tested as representatives.

Frequency Band (MHz)	Modulation	Lowest (L) (MHz)	Middle (M) (MHz)	Highest (H) (MHz)
2400-2483.5	IEEE 802.11b	2412	2437	2462
2400-2483.5	IEEE 802.11g	2412	2437	2462
2400-2483.5	IEEE 802.11n-HT20	2412	2437	2462
2400-2483.5	IEEE 802.11n-HT40	2422	2437	2452

2.3 Test software list

Test Items	Software	Manufacturer	Version
Radiated emission	e3	Audix	9.160323
Conducted emission	e3	Audix	9 20151119i

2.4 Test peripherals list

ltem No.	Name	Band and Model	Description
1	Notebook	DELL Inspiron 5409	NA
2	Antenna Cable	SMA	NA
3	Advanced Look	N/A, AL-280 (LED)	N/A
4	Card Reader	ZKTeco, KR503E	N/A
5	Laptop	Lenovo,E450	N/A
6	mouse	DELL, MS111	N/A

2.5 Support Cable list

Item No	Description	Length (m)	Cable Type
1	Ethernet Cable	1.5	RJ45_Cat 5

2.6 Test environment condition:

Test items	Temperature	Humidity
Minimum 6dB Bandwidth		
Maximum conducted output power		
Power spectrum density	25.6°C	54.0 % RH
Emission outside the frequency band		
Occupied bandwidth		
Radiated Emissions in restricted frequency bands	25.0°C	61.9% RH
Power line conducted emission	24.4°C	58.2% RH

intertek Total Quality. Assured.

TEST REPORT

2.7 Instrument list

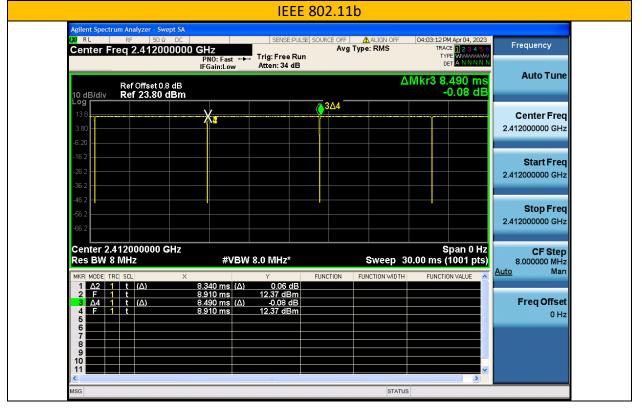
		Ra	diated Emission		
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
\boxtimes	3m Chamber SAC	ETS-LINDGREN	3m	NA	21-Jan-2024
X	Receiver	R&S	ESIB26	100114	2-Nov-2023
\boxtimes	Loop Antenna	ETS-LINDGREN	6502	00202525	20-Nov-2023
\boxtimes	Broadband Antenna	ETS-LINDGREN	3142E	00201566	12-Dec-2023
X	6dB Attenuator	Talent	RA6A5-N-18	18103001	12-Dec-2023
X	Preamplifier	HP	8447F	2805A02960	31-Oct-2023
\boxtimes	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-Lindgren	3117-PA	00201541	16-Apr-2024
X	Pre-amplifier	ETS-Lindgren	00118385	00201874	31-Oct-2023
X	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	20-Nov-2023
X	Pre-amplifier	ETS-LINDGREN	00118384	00202652	20-Nov-2023
X	Band Reject Filter(2400MHz~ 2500MHz)	Micro-Tronics	BRM50702	G248	1-Nov-2023
X	Test Software	Audix	e3	Software Vers	sion: 9.160323
			Conducted test		
Used	Equipment	Manufacturer	Туре	Internal no.	Due date
\boxtimes	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	13-Apr-2024
\boxtimes	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	2-Nov-2023
		Conducted En	nission Test Equipm	ent List	
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. Due date (mm dd, yyyy)
\boxtimes	Receiver	R&S	ESR7	101181	31-Oct-2023
\boxtimes	Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	31-Oct-2023
\boxtimes	LISN	R&S	ESH2-Z5	860014/024	31-Oct-2023
\boxtimes	LISN	ETS-Lindgren	3816/2SH	00201088	31-Oct-2023
\boxtimes	Test Software	Audix	e3	Software Versi	on: 9 20151119i

2.8 Measurement uncertainty

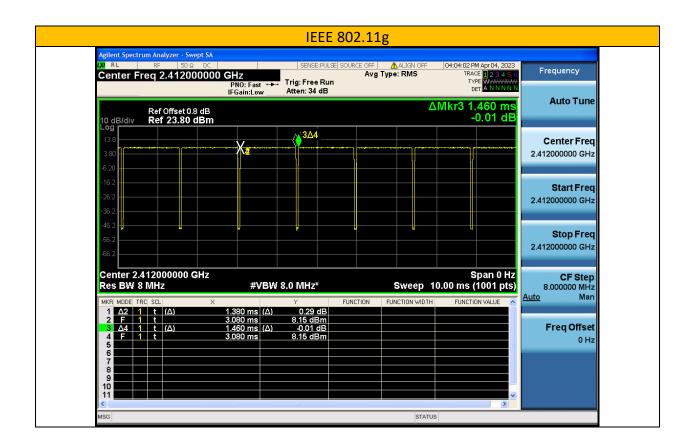
The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Measurement uncertainty
Maximum peak output power	\pm 0.68 dB
Minimum 6dB Bandwidth	\pm 1.86 %
Power spectral density	\pm 0.6 dB
Radiated Emissions in restricted frequency bands below 1GHz	± 4.6 dB
Radiated Emissions in restricted frequency bands above 1GHz	± 4.4 dB
Emission outside the frequency band	± 4.4 dB
Power line conducted emission	± 2.7 dB

2.9 DUTY CYCLE


Mode	Data rates (Mbps)	On Time (msec)	Period (msec)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/ T Minimum VBW (kHz)
IEEE 802.11b	1	8.340	8.490	98.23	0.00	0.01
IEEE 802.11g	6	1.380	1.460	94.52	0.24	0.72
IEEE 802.11n-HT20	MCS8	5.060	5.160	98.06	0.00	0.01
IEEE 802.11n-HT40	MCS8	2.460	2.540	96.85	0.14	0.41

Remark:


1) Duty cycle= On Time/ Period;

2) Duty Cycle factor = 10 * log(1/ Duty cycle);

The test plots as follows

Total Quality. Assured. TEST REPORT

	um Analyzer - Swept SA						
Center Fr	req 2.412000000	PNO: Fast ↔			ALIGN OFF	04:04:57 PM Apr 04, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWWWW DET A N N N N N	Frequency
10 dB/div	Ref Offset 0.8 dB Ref 23.80 dBm	I Gam.cow			Δ	Mkr3 5.160 ms 1.09 dB	Auto Tune
13.8 3.80		Xa		3∆4			Center Freq 2.412000000 GHz
-0.20 -16.2 -26.2 -36.2							Start Freq 2.412000000 GHz
-46.2 -56.2							Stop Freq 2.412000000 GHz
	12000000 GHz MHz	#VBV	√ 8.0 MHz*		Sweep 2	Span 0 Hz 0.00 ms (1001 pts)	CF Step 8.000000 MHz
MKR MODE TR		5.060 ms (Δ)	Y 1.03 dB	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man
2 F 1 3 <u>Δ</u> 4 1 4 F 1 5 6		6.560 ms 5.160 ms (∆) 6.560 ms	7.02 dBm 1.09 dB 7.02 dBm				Freq Offset 0 Hz
7 8 9 10							
11						~	

intertek Total Quality. Assured.

TEST REPORT

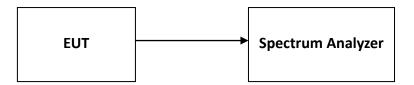
	IEEE 802	2.11n-HT40		
Agilent Spectrum Analyzer - Swept SA		SOURCE OFF ALIGN OFF	04:07:08 PM Apr 04, 2023 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET A N N N N	Frequency
Ref Offset 0.8 dB 10 dB/div Ref 23.80 dBm		Δ	Mkr3 2.540 ms 0.87 dB	Auto Tune
13.8 3.80 -6.20	X2	304		Center Freq 2.422000000 GHz
-16.2 -26.2 -36.2				Start Freq 2.422000000 GHz
-46.2				Stop Freq 2.422000000 GHz
Center 2.422000000 GHz Res BW 8 MHz	#VBW 8.0 MHz*		Span 0 Hz 0.00 ms (1001 pts)	CF Step 8.000000 MHz uto Man
2 F 1 t 3 Δ4 1 t (Δ)	2.460 ms (Δ) 2.45 dB 3.140 ms 2.62 dBm 2.540 ms (Δ) 0.87 dB 3.140 ms 2.62 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset 0 Hz
6 7 8 9 10				
<	E CARACTER CONTRACTOR CONTRA	STATU	>	

Total Quality. Assured.

3 Minimum 6dB bandwidth

Test result: Pass

3.1 Limit


For systems using digital modulation techniques that may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz bands, the minimum 6 dB bandwidth shall be at least 500 kHz.

3.2 Measurement Procedure

The minimum 6dB bandwidth is measured using the Spectrum Analyzer according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 8.2) for compliance requirements.

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.3 Test Configuration

3.4 Test Results of Minimum 6dB bandwidth

Test data reference "Appendix of 230402194SHA-002_15.247-WIFI_Appendix" Appendix A

Total Quality. Assured.

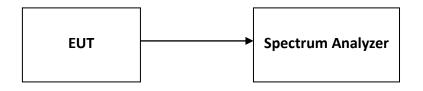
4 Maximum conducted output power

Test result: Pass

4.1 Limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 W.

If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 30dBm and 30+ (6 –antenna gain-beam forming gain).


4.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 9.2.2.4) for compliance requirements.

- a) Measure the duty cycle, x, of the transmitter output signal as described in Section 6.0.
- b) Set span to at least 1.5 x OBW.
- c) Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- d) Set VBW \geq 3 x RBW.
- e) Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to "free run".
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on- and off-times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25 %.

4.3 Test Configuration

4.4 Test Results of Maximum conducted output power

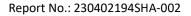
Test data reference "Appendix of 230402194SHA-002_15.247-WIFI_Appendix" Appendix B

5 Power spectrum density

Test result: Pass

5.1 Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.


If the transmitting antenna of directional gain greater than 6dBi is used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi. If there have a beam forming type, the limit should be the minimum of 8dBm/MHz and 8+ (6 –antenna gain-beam forming gain).

5.2 Measurement Procedure

The power output was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 10.5) for compliance requirements.

This procedure is applicable when the EUT cannot be configured to transmit continuously (i.e., duty cycle < 98 %), and when sweep triggering/signal gating cannot be used to measure only when the EUT is transmitting at its maximum power control level, and when the transmission duty cycle is constant (i.e., duty cycle variations are less than ± 2 %):

- a) Measure the duty cycle (x) of the transmitter output signal as described in Section 6.0.
- b) Set instrument center frequency to DTS channel center frequency.
- c) Set span to at least 1.5 x OBW.
- d) Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- e) Set VBW \geq 3 x RBW.
- f) Detector = power averaging (RMS) or sample detector (when RMS not available).
- g) Ensure that the number of measurement points in the sweep $\ge 2 \times \text{span/RBW}$.
- h) Sweep time = auto couple.
- i) Do not use sweep triggering. Allow sweep to "free run".
- j) Employ trace averaging (RMS) mode over a minimum of 100 traces.
- k) Use the peak marker function to determine the maximum amplitude level.
- I) Add 10 log (1/x), where x is the duty cycle measured in step (a, to the measured PSD to compute the average PSD during the actual transmission time.
- m) If resultant value exceeds the limit, then reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

5.3 Test Configuration

5.4 Test Results of Power spectrum density

Test data reference "Appendix of 230402194SHA-002_15.247-WIFI_Appendix" Appendix C

Intertek Total Quality. Assured. TEST REPORT

6 Emission outside the frequency band

Test result: Pass

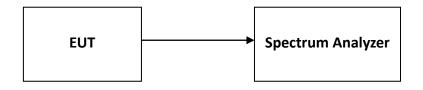
6.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

6.2 Measurement Procedure

The EUT was tested according to DTS test procedure of "KDB558074 D01 DTS Meas Guidance" (clause 11.0) for compliance requirements.

Reference level measurement


Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to \geq 1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW \geq 3 x RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.
- **Emission level measurement**
- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq 3 x RBW.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

6.3 Test Configuration

6.4 The results of Emission outside the frequency band

Test data reference "Appendix of 230402194SHA-002_15.247-WIFI_Appendix" Appendix D

Total Quality. Assured.

7 Radiated Emissions in restricted frequency bands

Test result: Pass

7.1 Limit

The radiated emissions which fall in the restricted bands, must also comply with the radiated emission limits specified showed as below:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

7.2 Measurement Procedure

For Radiated emission below 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) Both X and Y axes of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

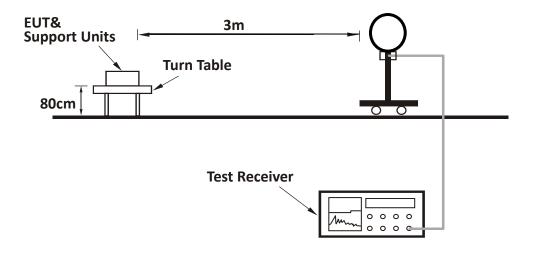
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

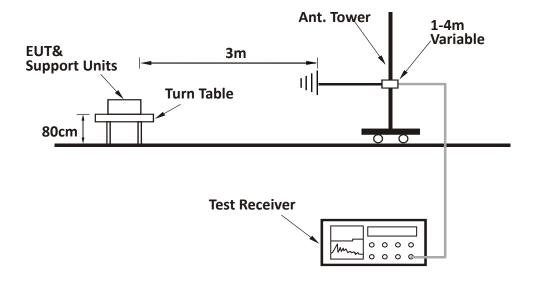
For Radiated emission above 30MHz:

- a) The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c) The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e) The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f) The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

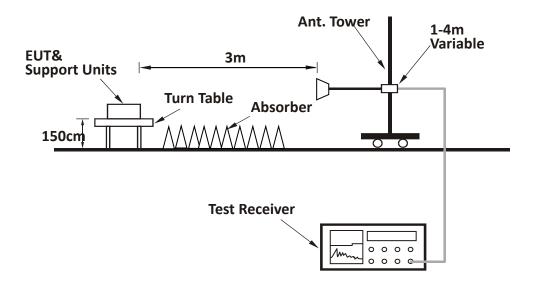

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 3 x RBW (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported

Report No.: 230402194SHA-002


Intertek Total Quality. Assured. TEST REPORT

7.3 Test Configuration

For Radiated emission below 30MHz:



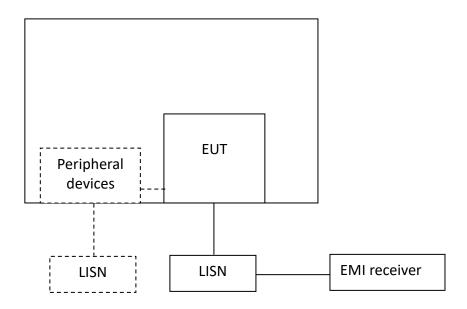
For Radiated emission 30MHz to 1GHz:

For Radiated emission above 1GHz:

7.4 Test Results of Radiated Emissions

Test data reference "Appendix of 230402194SHA-002_15.247-WIFI_Appendix" Appendix E

intertek Total Quality. Assured. TEST REPORT


8 Power line conducted emission

Test result: Pass

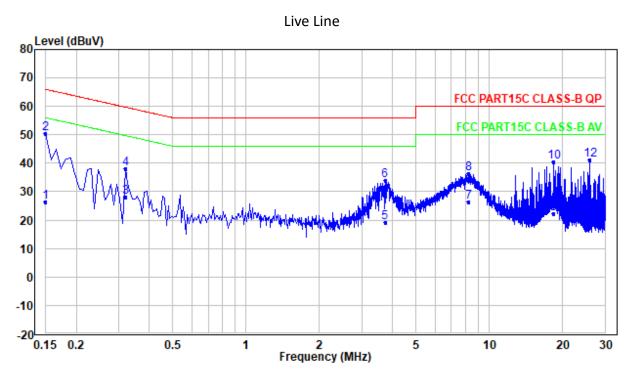
8.1 Limit

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	QP	AV			
0.15-0.5	66 to 56*	56 to 46 *			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

8.2 Test Configuration

8.3 Measurement Procedure

Measured levels of ac power-line conducted emission shall be the emission voltages from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), where permitted, terminated into a 50 Ω measuring instrument. All emission voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord by the use of mating plugs and receptacles on the LISN, if used. Equipment shall be tested with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended by the manufacturer. For those measurements using a LISN, the 50 Ω measuring port is terminated by a measuring instrument having 50 Ω input impedance. All other ports are terminated in 50 Ω loads.

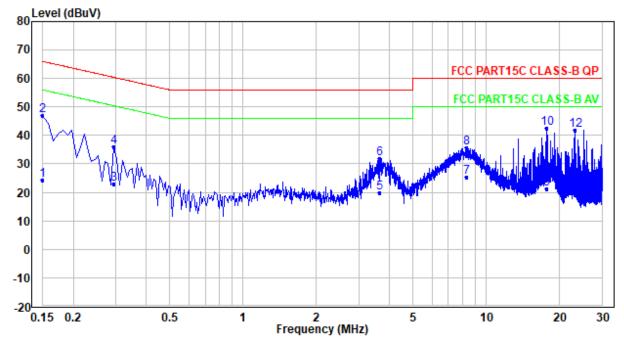

Tabletop devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

The bandwidth of the test receiver is set at 9 kHz.

intertek Total Quality. Assured. TEST REPORT

8.4 Test Results of Power line conducted emission

Test Curve:



Test Data:

Frequency (MHz)	Quasi-peak		Average			
	Level dB(µV)	Limit dB(µV)	Margin (dB)	Level dB(µV)	Limit dB(µV)	Margin (dB)
0.150	50.53	66.00	-15.47	26.53	56.00	-29.47
0.318	38.00	59.76	-21.76	28.00	49.76	-21.76
3.733	34.12	56.00	-21.88	19.12	46.00	-26.88
8.236	36.32	60.00	-23.68	26.32	50.00	-23.68
18.498	40.39	60.00	-19.61	22.39	50.00	-27.61
26.009	41.22	60.00	-18.78	20.22	50.00	-29.78

Total Quality. Assured.

Neutral Line

Frequency (MHz)	Quasi-peak			Average		
	Level dB(µV)	Limit dB(µV)	Margin (dB)	Level dB(µV)	Limit dB(µV)	Margin (dB)
0.150	47.17	66.00	-18.83	24.17	56.00	-31.83
0.294	36.08	60.41	-24.33	23.08	50.41	-27.33
3.661	31.75	56.00	-24.25	19.75	46.00	-26.25
8.332	35.53	60.00	-24.47	25.53	50.00	-24.47
17.826	42.40	60.00	-17.60	21.40	50.00	-28.60
23.321	41.90	60.00	-18.10	20.90	50.00	-29.10

Remark:

- 1. Correct Factor = LISN Factor + Cable Loss, the value was added to Original Receiver Reading by the software automatically.
- 2. Level = Original Receiver Reading + Correct Factor
- 3. Margin = Limit Level
- 4. All possible modes of operation were investigated, only the worst-case emissions reported.

9 Antenna requirement

Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Result:

EUT uses permanently attached antenna to the intentional radiator, so it can comply with the provisions of this section.

Appendix I: Photograph of test setup

See test photos attached in Appendix I for the actual connections between Product and support equipment.

Appendix II: Photograph of equipment under test

Refer to Appendix II for EUT external and internal photos.