

Report No. : EED32M80145501 Page 1 of 41

Product : RollerMouse mobile

Trade mark : CONTOUR

Model/Type reference : RM-Mobile

Series Model Number : RM-Mobile2, RM-Mobile-Mini, RM-Mobile-CN

Report Number : EED32M80145501

FCC ID : 2AG6O-RMOB

Date of Issue : Jan. 26, 2021

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

CONTOUR (GUANGZHOU) DESIGN, INC.
Building B21-2F, Huachuang Animation Park, Panyu, GZ, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Approved by:
Report Seal

Ken Cai

David Wang

David Wang

Reviewed by:

Date:

Aaron Ma

Jan. 26, 2021

Lavon

Check No.:7025241220

Page 2 of 41

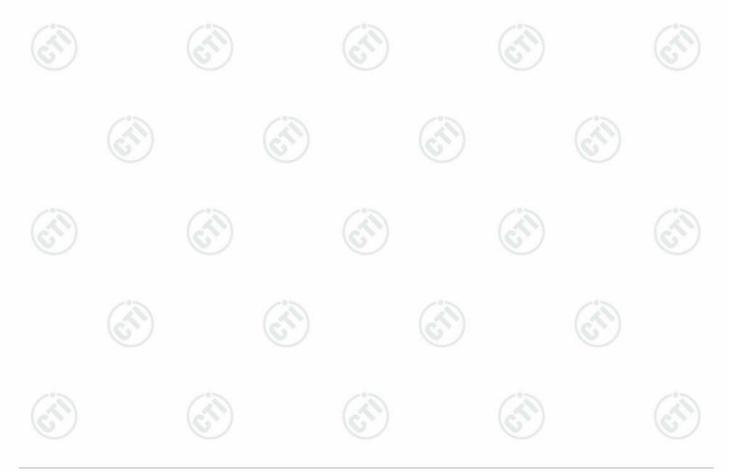
2 Content

1 COVER PAGE	•••••		1
2 CONTENT	•••••		2
3 VERSION			
4 TEST SUMMARY			4
5 GENERAL INFORMATION			5
5.1 CLIENT INFORMATION			
5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST ENVIRONMENT			
5.4 TEST CONDITION			
5.5 DESCRIPTION OF SUPPORT UNITS.			
5.6 TEST LOCATION			7
5.7 Measurement Uncertainty (959	% CONFIDENCE LEVELS, K=	2)	7
6 EQUIPMENT LIST			8
7 TEST RESULTS AND MEASUREME	ENT DATA		10
7.1 ANTENNA REQUIREMENT			10
7.2 CONDUCTED PEAK OUTPUT POWE	R		11
7.3 6dB Occupy Bandwidth			
7.4 POWER SPECTRAL DENSITY			
7.5 CONDUCTED BAND EDGE AND SPU 7.6 RADIATED SPURIOUS EMISSION &			
8 APPENDIX A			
PHOTOGRAPHS OF TEST SETUP			
PHOTOGRAPHS OF EUT CONSTRUC	CTIONAL DETAILS		34

3 Version

Version No.	sion No. Date Description				/ersion No. Date		
00	Jan. 26, 2021	Original					
	6		0				

4 Test Summary


Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	N/A	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

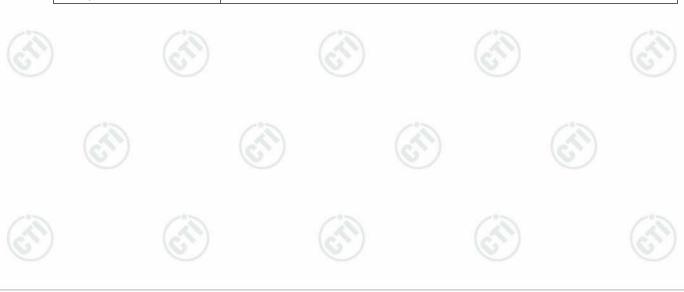
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

N/A: The wireless function does not work in charging(connect to a computer/an adapter) state performed on the EUT.

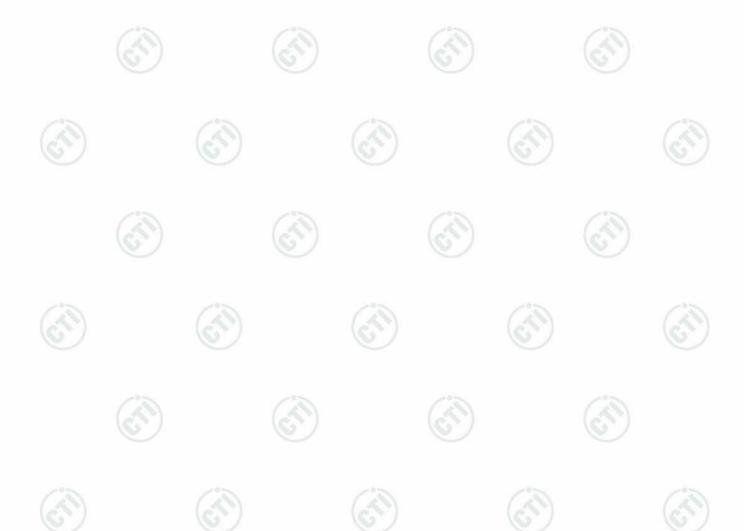
Report No. : EED32M80145501 Page 5 of 41


5 General Information

5.1 Client Information

Applicant:	CONTOUR (GUANGZHOU) DESIGN, INC.	
Address of Applicant:	Building B21-2F, Huachuang Animation Park, Panyu, GZ, China	-05
Manufacturer:	CONTOUR (GUANGZHOU) DESIGN, INC.	(3)
Address of Manufacturer:	Building B21-2F, Huachuang Animation Park, Panyu, GZ, China	
Factory:	CONTOUR (GUANGZHOU) DESIGN, INC.	
Address of Factory:	Building B21-2F, Huachuang Animation Park, Panyu, GZ, China	

5.2 General Description of EUT


Product Name:	RollerMouse mobile			
Model No.:	RM-Mobile			
Series Model Number:	RM-Mobile2, RM-Mobile-M	lini, RM-Mobile-CN		(AN
Trade mark:	CONTOUR	6	/	(0)
Hardware Version:	PCB212.RM01.001			
Software Version:	V1.0	1846		
Bluetooth Version:	5.1	(41)		
Operation Frequency:	2402MHz~2480MHz			
Modulation Type:	GFSK			
Number of Channel:	40	6-		
Test Power Grade:	Default	CA.		(20)
Test Software of EUT:	nRFgo Studio	6	7	(0,
Antenna Type:	PCB antenna			
Antenna Gain:	0dBi			
Test voltage:	DC 3.7V	(2)	(2)	
Sample Received Date:	Dec. 25, 2020	(0,	(6,)	
Sample tested Date:	Dec. 25, 2020 to Jan. 07, 2	2021		

Page	6	Ωf	41	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Report No. : EED32M80145501 Page 7 of 41

5.3 Test Environment

Operating Environment:	(55)	(50)	(25)	
Temperature:	24.0 °C			
Humidity:	55 % RH			
Atmospheric Pressure:	1010mbar			-0-

5.4 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
rest Mode	TA/KX	Low(L)	Middle(M)	High(H)	
	0.4001411 0.4001411	Channel 0	Channel 19	Channel 39	
BLE_1M	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

Support equipment

1.7	sociated ment name	Manufacture	model	S/N serial number	Supplied by	Certification
AE	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC

5.6 Test Location

All tests were performed at:

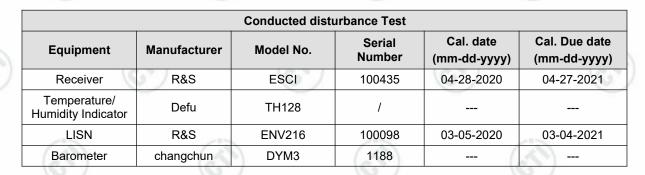
Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164


5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
9 /	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32M80145501 Page 8 of 41

6 Equipment List

RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	02-17-2020	02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	02-17-2020	02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-29-2020	06-28-2021
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002	(<u>G</u>)	(3)
High-pass filter	MICRO- TRONICS	SPA-F-63029-4			
DC Power	Keysight	E3642A	MY56376072	02-17-2020	02-16-2021
PC-1	Lenovo	R4960d		(C)	(6)
Power unit	R&S	OSP120	101374	02-17-2020	02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	02-17-2020	02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	(4)	(6	<u></u>

	3M Semi/full-anechoic Chamber										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)						
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022						
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	05-16-2020	05-15-2021						
Loop Antenna	Schwarzbeck	Schwarzbeck FMZB 1519B 1519B-076		04-25-2018	04-24-2021						
Receiver	R&S	ESCI7	100938-003	10-16-2020	10-15-2021						
Multi device Controller	maturo	NCD/070/10711 112									
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	06-29-2020	06-28-2021						
Cable line	Fulai(7M)	SF106	5219/6A	/ A	/3						
Cable line	Fulai(6M)	SF106	5220/6A	(2/3/2 1)	(6%)						
Cable line	Fulai(3M)	SF106	5216/6A		(0)						
Cable line	Fulai(3M)	SF106	5217/6A								

7.5		3M full-anechoi	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166		
Receiver	Keysight	N9038A	MY57290136	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-05-2020	03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-05-2020	03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-20-2020	05-19-2021
Preamplifier	EMCI	EMC001330	980563	04-22-2020	04-21-2021
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-09-2020	01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-27-2020	04-26-2021
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	(6	<u>(1)</u>
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001		(3
Cable line	Times	EMC104-NMNM- 1000	SN160710		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	(- 65
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	(5)
Cable line	Times	HF160-KMKM- 3.00M	393493-0001		

Report No. : EED32M80145501 Page 10 of 41

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

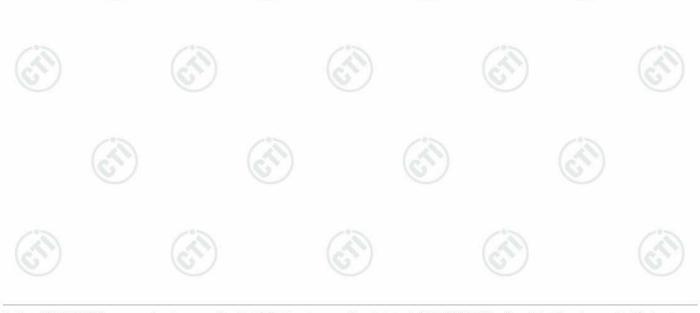
EUT Antenna: Please see Internal photos

The antenna is integral antenna. The best case gain of the antenna is 0dBi.

Report No. : EED32M80145501 Page 11 of 41

7.2 Conducted Peak Output Power

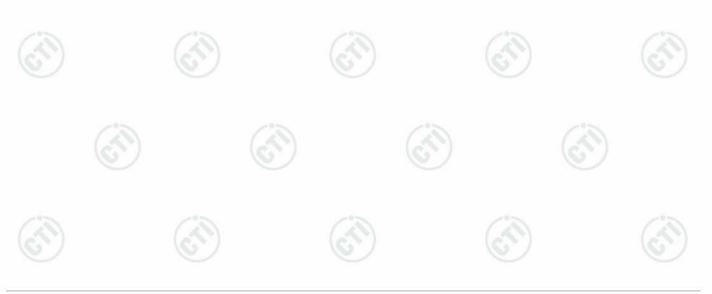
equirement:	47 CFR Part 15C Section 15.247 (b)(3)	
ethod:	ANSI C63.10 2013	
etup:		
	Control Computer Power porte) Power port Power port Power Table EUT Control Power port Power port Table RF test System Instrument	
	Remark: Offset=Cable loss+ attenuation factor.	(T)
ocedure:	 a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 	**
	30dBm	41
ode:	Refer to clause 5.4	8
esults:	Refer to Appendix A	
	ethod: etup: occedure:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. Set the RBW > DTS bandwidth. b) Set VBW > 3 × RBW. c) Set span > 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 30dBm Detector = Refer to clause 5.4



Report No. : EED32M80145501 Page 12 of 41

7.3 6dB Occupy Bandwidth

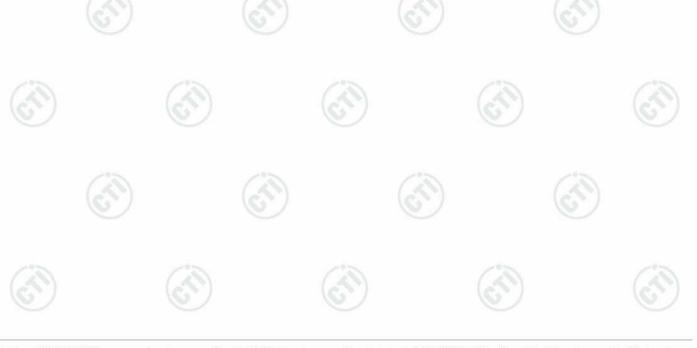
47 CFR Part 15C Section 15.247 (a	\(2)
	<u>)(~)</u>
ANSI C63.10 2013	
Control Computer Power Supply Figure CABNET Control	RF test - System Instrument
Remark: Offset=Cable loss+ attenua	ation factor.
frequencies associated with the two	the emission that is constrained by the o outermost amplitude points (upper and led by 6 dB relative to the maximum level ion.
≥ 500 kHz	
Refer to clause 5.4	
Refer to Appendix A	
	ANSI C63.10 2013 Control Computer Power Power



Report No. : EED32M80145501 Page 13 of 41

7.4 Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)		
Test Method:	ANSI C63.10 2013	and the	- 0.5
Test Setup:			
	Control Computer Power Supply Power TEMPERATURE CABNET Table	RF test System Instrument	
	Remark: Offset=Cable loss+ attenua	ation factor.	
Test Procedure:	a) Set analyzer center frequency to I b) Set the span to 1.5 times the DTS c) Set the RBW to 3 kHz < RBW < d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to within the RBW. j) If measured value exceeds requithan 3 kHz) and repeat.	bandwidth. 100 kHz. determine the maximum amplitude	
Limit:	≤8.00dBm/3kHz	21%	
Test Mode:	Refer to clause 5.4		
Test Results:	Refer to Appendix A		



Report No. : EED32M80145501 Page 14 of 41

7.5 Conducted Band Edge and Spurious Emission

ANSI C63.10 2013
ANOI 000.10 2010
Control Control Power Supply Table RF test System System Instrument RF test System Instrument
Remark: Offset=Cable loss+ attenuation factor.
a) Set RBW =100KHz. b) Set VBW = 300KHz. c) Sweep time = auto couple. d) Detector = peak. e) Trace mode = max hold. f) Allow trace to fully stabilize. g) Use peak marker function to determine the peak amplitude level.
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Refer to clause 5.4
Refer to Appendix A

Report No. : EED32M80145501 Page 15 of 41

7.6 Radiated Spurious Emission & Restricted bands

Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205					
Test Method:	ANSI C63.10 2013								
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	noic Cham	ber)				
Receiver Setup:	Frequency	0	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	lz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MH	lz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	z	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MH	lz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz		Quasi-peak	100 kH	z 300kHz	Quasi-peak			
	Ah 4011-	Peak	1MHz	3MHz	Peak				
	Above 1GHz		Peak	1MHz	10kHz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremer distance (m)			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-70%	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-		30			
	1.705MHz-30MHz		30	-	100	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz	10	200	46.0	Quasi-peak	3			
	960MHz-1GHz	1	500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

Report No. : EED32M80145501 Page 16 of 41

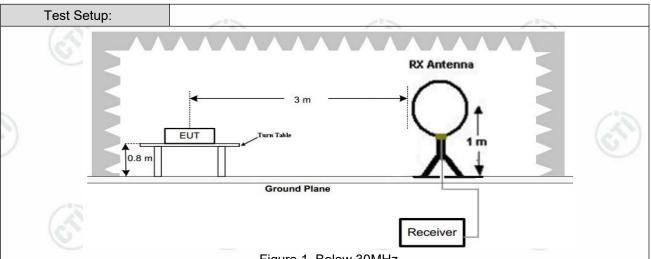
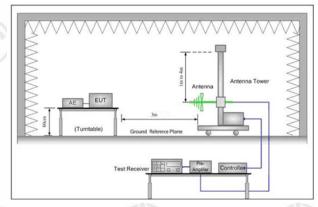



Figure 1. Below 30MHz

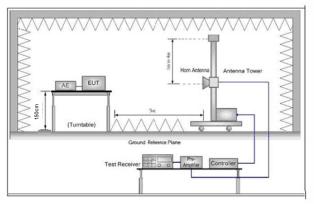


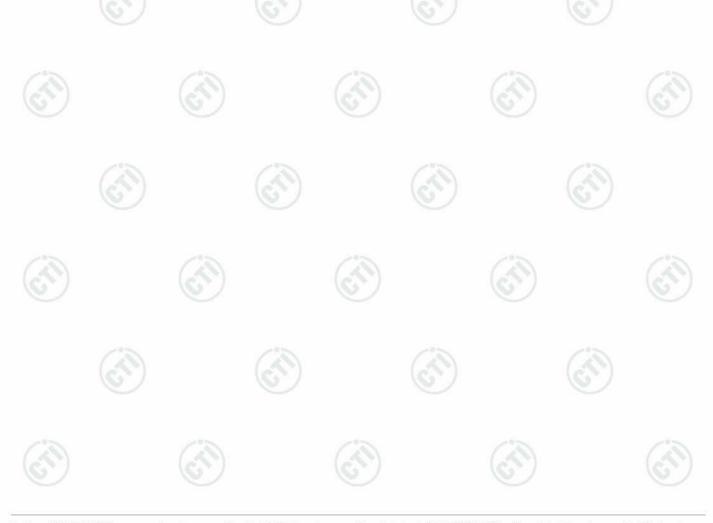
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:


Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Report No. : EED32M80145501 Page 17 of 41

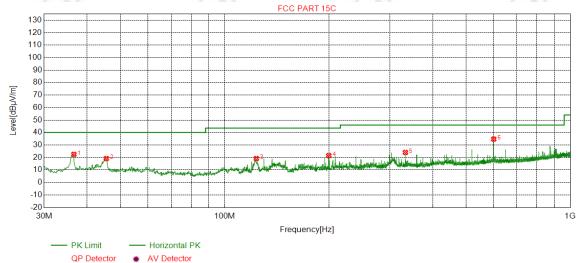
-23%	
Test Results:	Pass
Test Mode:	Refer to clause 5.4
	i. Repeat above procedures until all frequencies measured was complete.
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	horizontal and vertical polarizations of the antenna are set to make the measurement.

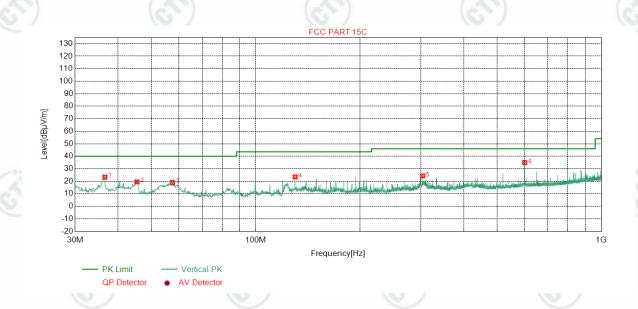
Report No. : EED32M80145501 Page 18 of 41

Radiated Spurious Emission below 1GHz:

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2402MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

Mode	Mode:			BLE GFSK Transmitting						2402MHz	2402MHz		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	36.5967	11.21	0.67	-31.38	42.04	22.54	40.00	17.46	Pass	Н	PK		
2	45.4245	13.20	0.75	-31.74	36.94	19.15	40.00	20.85	Pass	Н	PK		
3	123.4203	8.69	1.31	-32.06	41.21	19.15	43.50	24.35	Pass	Н	PK		
4	199.9610	10.90	1.67	-31.90	40.88	21.55	43.50	21.95	Pass	Н	PK		
5	333.2523	13.93	2.17	-31.78	39.71	24.03	46.00	21.97	Pass	Н	PK		
6	600.0290	19.00	2.96	-31.50	44.27	34.73	46.00	11.27	Pass	Н	PK		
7	36.5967	11.21	0.67	-31.38	42.87	23.37	40.00	16.63	Pass	V	PK		
8	45.3275	13.20	0.75	-31.73	37.35	19.57	40.00	20.43	Pass	V	PK		
9	57.3567	12.02	0.87	-31.88	38.05	19.06	40.00	20.94	Pass	V	PK		
10	130.0170	7.70	1.33	-32.02	46.52	23.53	43.50	19.97	Pass	V	PK		
11	304.0524	13.29	2.07	-31.60	40.57	24.33	46.00	21.67	Pass	V	PK		
12	600.0290	19.00	2.96	-31.50	44.50	34.96	46.00	11.04	Pass	V	PK		





Page 19 of 41

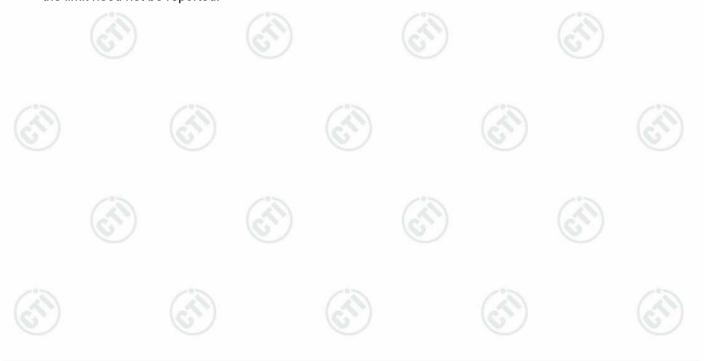
Test Graph

Radiated Spurious Emission above 1GHz:

Mode	Mode:			BLE GFSK Transmitting						2402MHz		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2126.5127	31.88	3.62	-43.18	49.66	41.98	74.00	32.02	Pass	Н	PK	
2	3088.0059	33.24	4.75	-43.11	48.98	43.86	74.00	30.14	Pass	Н	PK	
3	3807.0538	33.65	4.37	-43.04	49.93	44.91	74.00	29.09	Pass	Н	PK	
4	5002.1335	34.50	4.82	-42.79	50.97	47.50	74.00	26.50	Pass	Н	PK	
5	6315.2210	35.86	5.46	-42.53	48.97	47.76	74.00	26.24	Pass	Н	PK	
6	8850.3900	37.37	6.42	-42.00	48.82	50.61	74.00	23.39	Pass	Н	PK	
7	2430.3430	32.30	3.95	-43.11	50.78	43.92	74.00	30.08	Pass	V	PK	
8	3820.0547	33.66	4.37	-43.04	50.38	45.37	74.00	28.63	Pass	V	PK	
9	5010.1340	34.51	4.83	-42.79	51.21	47.76	74.00	26.24	Pass	V	PK	
10	6322.2215	35.86	5.46	-42.53	49.14	47.93	74.00	26.07	Pass	V	PK	
11	7727.3152	36.51	6.25	-42.15	49.02	49.63	74.00	24.37	Pass	V	PK	
12	9647.4432	37.66	6.71	-42.10	49.58	51.85	74.00	22.15	Pass	V	PK	

	- 27%			4.0		-240	The contract of the contract o		200		
Mode	:		BLE GFSK Transmitting					Channel:		2440MH	Z
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2107.7108	31.85	3.59	-43.18	49.29	41.55	74.00	32.45	Pass	Н	PK
2	3831.0554	33.66	4.36	-43.03	50.34	45.33	74.00	28.67	Pass	Н	PK
3	5024.1349	34.52	4.85	-42.79	50.62	47.20	74.00	26.80	Pass	Н	PK
4	7502.3002	36.60	5.95	-42.10	49.13	49.58	74.00	24.42	Pass	Н	PK
5	9770.4514	37.71	6.68	-42.10	49.57	51.86	74.00	22.14	Pass	Н	PK
6	11255.5504	38.75	7.25	-42.00	49.20	53.20	74.00	20.80	Pass	Н	PK
7	2564.7565	32.50	4.09	-43.09	50.34	43.84	74.00	30.16	Pass	V	PK
8	3844.0563	33.68	4.36	-43.03	50.93	45.94	74.00	28.06	Pass	V	PK
9	5011.1341	34.51	4.83	-42.79	50.30	46.85	74.00	27.15	Pass	V	PK
10	6453.2302	35.89	5.52	-42.51	48.41	47.31	74.00	26.69	Pass	V	PK
11	7754.3170	36.50	6.23	-42.15	49.14	49.72	74.00	24.28	Pass	V	PK
12	10223.4816	38.11	6.84	-42.05	49.57	52.47	74.00	21.53	Pass	V	PK

	20%			Land Conc.		-,210	21%				
Mode	:		BLE GF	SK Transm	itting		Channel:		2480MHz		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2563.3563	32.50	4.09	-43.10	50.21	43.70	74.00	30.30	Pass	Н	PK
2	3412.0275	33.36	4.53	-43.10	48.80	43.59	74.00	30.41	Pass	Н	PK
3	5026.1351	34.53	4.85	-42.79	50.32	46.91	74.00	27.09	Pass	Н	PK
4	7028.2686	36.13	5.69	-42.19	48.91	48.54	74.00	25.46	Pass	Н	PK
5	9811.4541	37.72	6.61	-42.10	49.54	51.77	74.00	22.23	Pass	Н	PK
6	11187.5458	38.71	7.20	-41.99	49.06	52.98	74.00	21.02	Pass	Н	PK
7	2444.3444	32.32	3.97	-43.11	50.81	43.99	74.00	30.01	Pass	V	PK
8	3491.0327	33.40	4.48	-43.10	49.33	44.11	74.00	29.89	Pass	V	PK
9	4985.1323	34.50	4.82	-42.80	50.87	47.39	74.00	26.61	Pass	V	PK
10	7511.3008	36.60	5.94	-42.11	49.43	49.86	74.00	24.14	Pass	V	PK
11	9735.4490	37.69	6.72	-42.09	49.71	52.03	74.00	21.97	Pass	V	PK
12	11220.5480	38.73	7.22	-42.00	49.15	53.10	74.00	20.90	Pass	V	PK

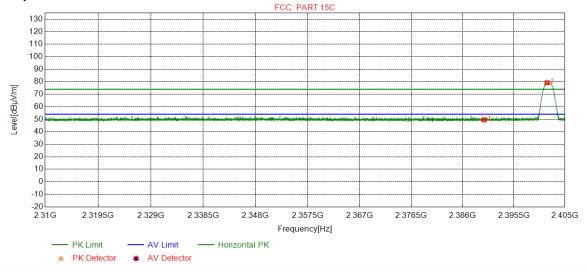

NOTE:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



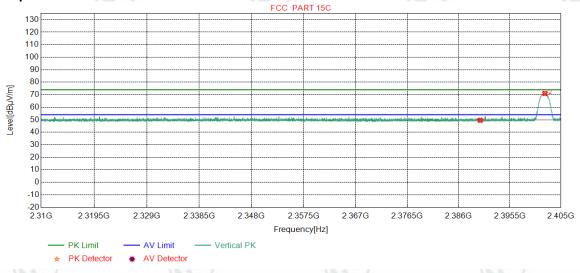
Page 23 of 41

Restricted bands:

Mode:	BLE GFSK Transmitting	Channel:	2402 MHz
Remark:	PK		

Test Graph

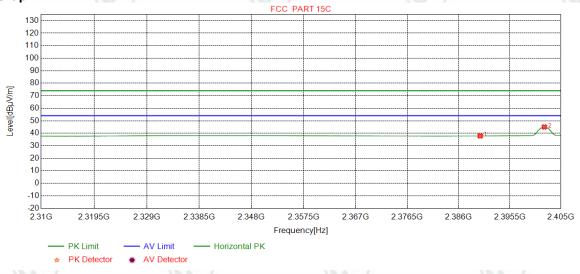
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV /m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.03	49.53	74.00	24.47	Pass	Horizontal
2	2401.6874	32.26	13.31	-43.12	76.74	79.19				Horizontal

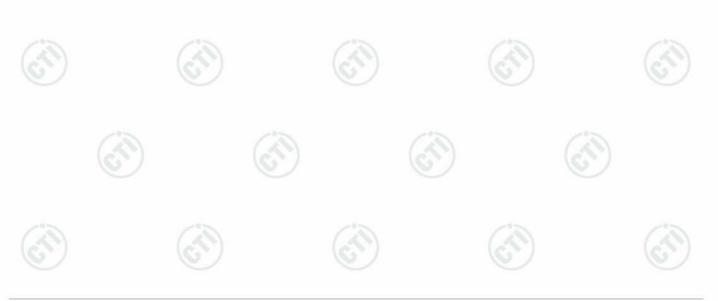


1907	1,69.7	2 /	190
Mode:	BLE GFSK Transmitting	Channel:	2402 MHz
Remark:	PK		

Test Graph

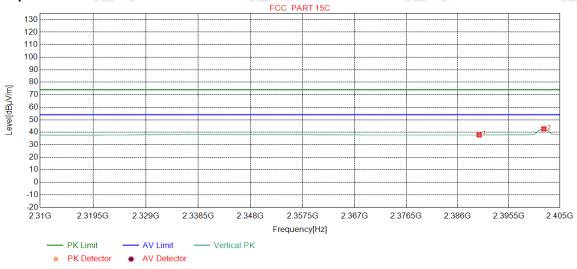
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.04	49.54	74.00	24.46	Pass	Vertical
2	2402.0295	32.26	13.31	-43.12	68.56	71.01				Vertical




Page	25	of	41
------	----	----	----

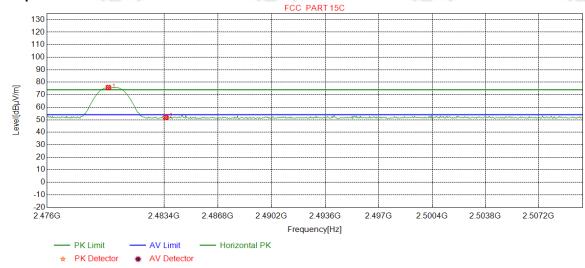
(92	193 /	33.7 /	193 /	
Mode:	BLE GFSK Transmitting	Channel:	2402 MHz	
Remark:	AV			

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Readi ng [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.37	37.87	54.00	16.13	Pass	Horizontal
2	2401.9218	32.26	13.31	-43.12	42.58	45.03				Horizontal

(3-2 /	160 / 19	2 /	190
Mode:	BLE GFSK Transmitting	Channel:	2402 MHz
Remark:	AV		

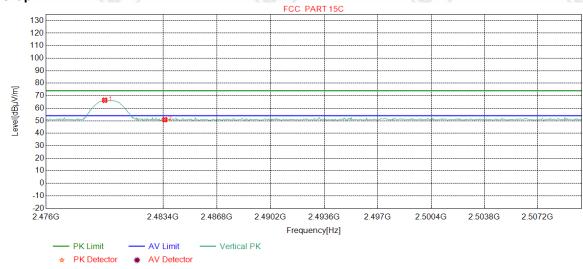
Test Graph

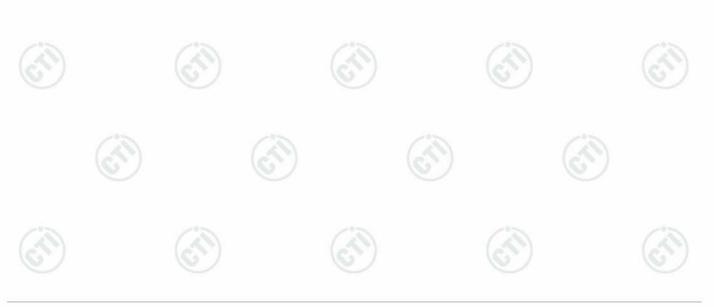

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/ m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	35.36	37.86	54.00	16.14	Pass	Vertical
2	2402.0105	32.26	13.31	-43.12	40.30	42.75				Vertical

(927 /	1923	337 /	193 /
Mode:	BLE GFSK Transmitting	Channel:	2480 MHz
Remark:	PK		·

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7447	32.37	13.39	-43.10	74.71	77.37				Horizontal
2	2483.5000	32.38	13.38	-43.11	48.29	50.94	74.00	23.06	Pass	Horizontal

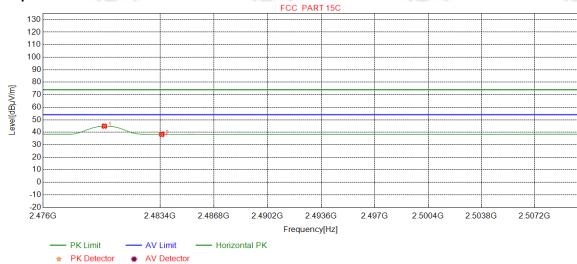


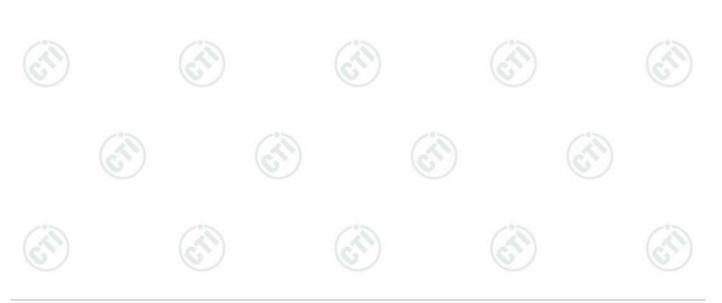

1 490 20 01 11	Page	28	of	41
----------------	------	----	----	----

(927 /	1923	337 /	19.3
Mode:	BLE GFSK Transmitting	Channel:	2480 MHz
Remark:	PK		·

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.7021	32.37	13.39	-43.10	63.74	66.40				Vertical
2	2483.5000	32.38	13.38	-43.11	48.18	50.83	74.00	23.17	Pass	Vertical

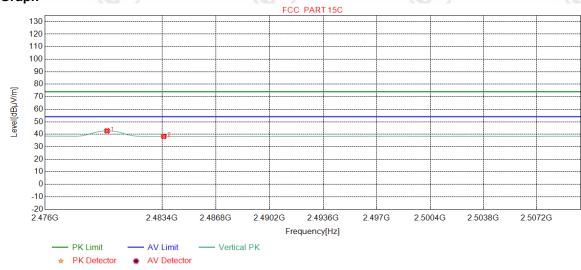


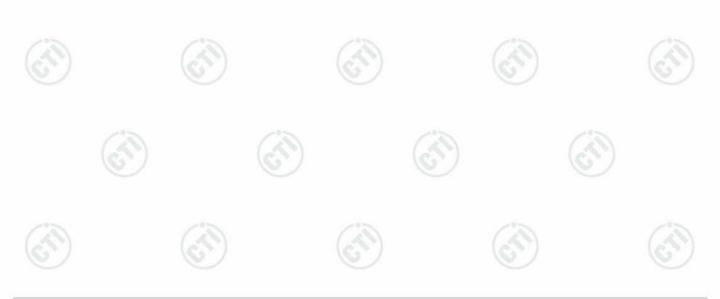

Page	29	of	41
------	----	----	----

Mode:	BLE GFSK Transmitting	Channel:	2480 MHz
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Result	Polarity
1	2479.8723	32.37	13.39	-43.10	42.24	44.90	-			Horizontal
2	2483.5000	32.38	13.38	-43.11	35.60	38.25	54.00	15.75	Pass	Horizontal




	Page	30	of	41
--	------	----	----	----

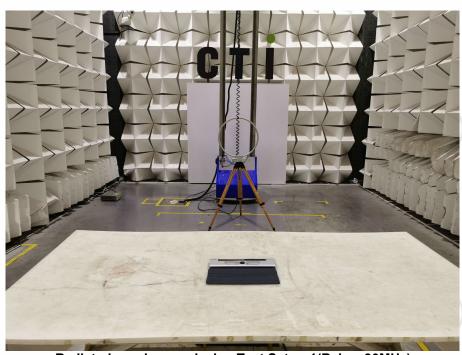
		192 /	(0.3	
Mode:	BLE GFSK Transmitting	Channel:	2480 MHz	
Remark:	AV			

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2479.9149	32.37	13.39	-43.10	40.09	42.75			I	Vertical
2	2483.5000	32.38	13.38	-43.11	35.56	38.21	54.00	15.79	Pass	Vertical

Appendix A

Refer to Appendix: Bluetooth LE of EED32M80145501



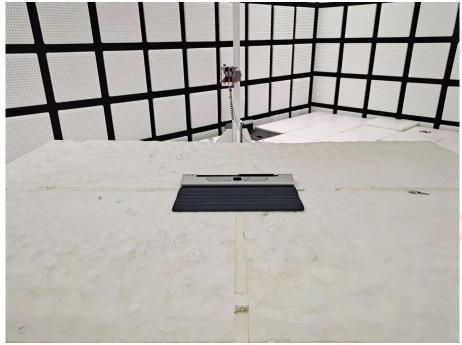
Page 32 of 41 Report No.: EED32M80145501

PHOTOGRAPHS OF TEST SETUP

Test model No.:RM-Mobile

Radiated spurious emission Test Setup-1(Below 30MHz)

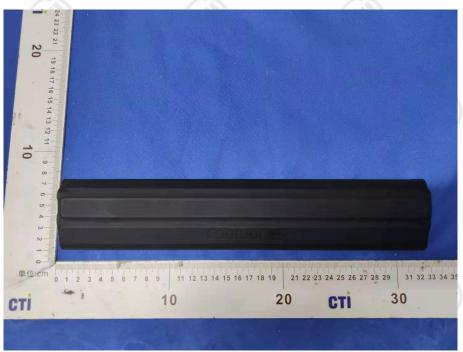
Radiated spurious emission Test Setup-2(Below 1GHz)

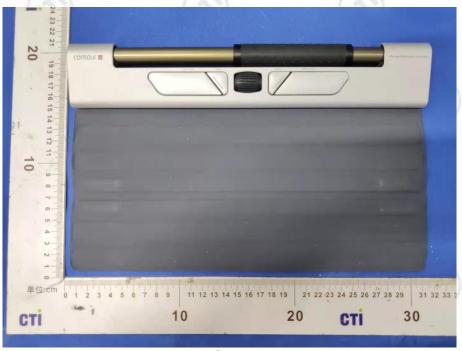


Report No. : EED32M80145501 Page 33 of 41

Radiated spurious emission Test Setup-2(Above 1GHz)

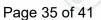
Radiated spurious emission Test Setup-3(Above 1GHz)
There are absorbing materials under the ground.




Report No. : EED32M80145501 Page 34 of 41

PHOTOGRAPHS OF EUT Constructional Details

Test mode No.RM-Mobile

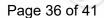


View of Product-1

View of Product-2

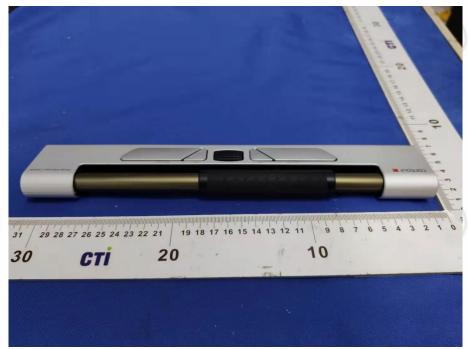
View of Product-3

View of Product-4



View of Product-5

View of Product-6

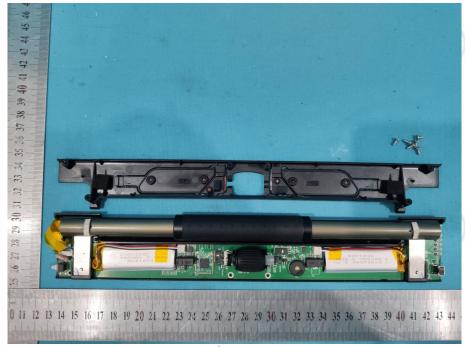


View of Product-7

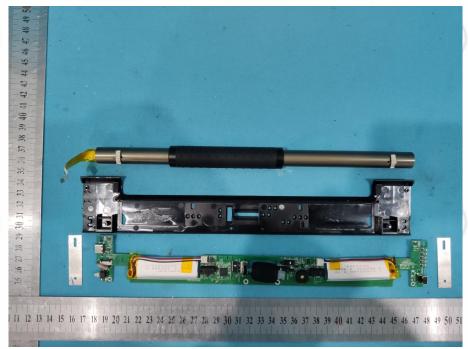
View of Product-8

Page 38 of 41

View of Product-9

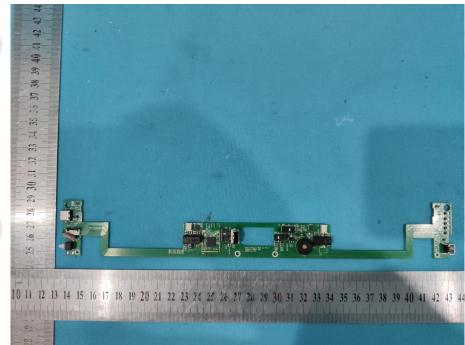


View of Product-10

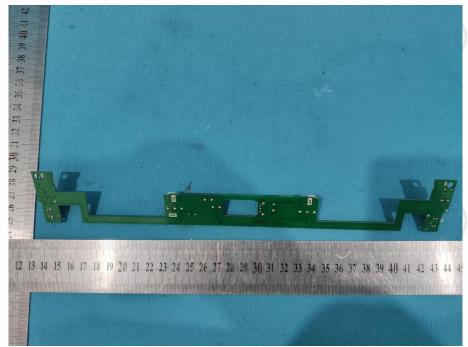


Report No. : EED32M80145501 Page 39 of 41

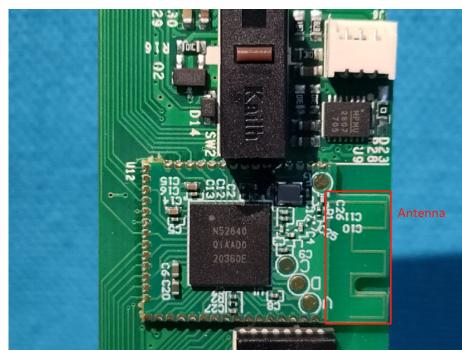
View of Product-11



View of Product-12



Report No. : EED32M80145501 Page 40 of 41


View of Product-13

Report No.: EED32M80145501 Page 41 of 41

View of Product-15

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

