17.21 SAR Calibration Certificate for Dipole D2600V2 – SN 1030 # **Calibration Laboratory of** Schmid & Partner Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates UL Japan HQ (Vitec) Client Certificate No: D2600V2-1030_Mar16 | bject | D2600V2 - SN: 1 | 030 | | |---|---|---|--| | Calibration procedure(s) | QA CAL-05.v9
Calibration proce | dure for dipole validation kits abo | ve 700 MHz | | Calibration date: | March 09, 2016 | | | | | • | onal standards, which realize the physical un
robability are given on the following pages an | | | All calibrations have been condu | cted in the closed laborator | y facility; environment temperature (22 \pm 3)°C | C and humidity < 70%. | | Calibration Equipment used (M& | TE critical for calibration) | | | | | ID# | Cal Finte (Cavillinate No.) | Outer de dout Outlingston | | Primary Standards | 13.27 | Cal Date (Certificate No.) | Scheduled Calibration | | | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power meter EPM-442A | | | | | Power meter EPM-442A
Power sensor HP 8481A | GB37480704
US37292783
MY41092317 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator | GB37480704
US37292783
MY41092317
SN: 5058 (20k) | 07-Oct-15 (No. 217-02222)
07-Oct-15 (No. 217-02222)
07-Oct-15 (No. 217-02223)
01-Apr-15 (No. 217-02131) | Oct-16
Oct-16
Oct-16
Mar-16 | | Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327 | 07-Oct-15 (No. 217-02222)
07-Oct-15 (No. 217-02222)
07-Oct-15 (No. 217-02223)
01-Apr-15 (No. 217-02131)
01-Apr-15 (No. 217-02134) | Oct-16
Oct-16
Oct-16
Mar-16
Mar-16 | | Power meter EPM-442A
Power sensor HP 8481A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349 | 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) | Oct-16
Oct-16
Oct-16
Mar-16 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) | Oct-16
Oct-16
Oct-16
Mar-16
Mar-16
Dec-16 | | Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) | Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) | Oct-16
Oct-16
Oct-16
Mar-16
Mar-16
Dec-16 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601 | 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) | Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards RF generator R&S SMT-06 Network Analyzer HP 8753E | GB37480704
US37292783
MY41092317
SN: 5058 (20k)
SN: 5047.2 / 06327
SN: 7349
SN: 601
ID #
100972
US37390585 S4206 | 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) | Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Oct-16 | | Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # 100972 US37390585 S4206 Name | 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02222) 07-Oct-15 (No. 217-02223) 01-Apr-15 (No. 217-02131) 01-Apr-15 (No. 217-02134) 31-Dec-15 (No. EX3-7349_Dec15) 30-Dec-15 (No. DAE4-601_Dec15) Check Date (in house) 15-Jun-15 (in house check Jun-15) 18-Oct-01 (in house check Oct-15) | Oct-16 Oct-16 Oct-16 Mar-16 Mar-16 Dec-16 Dec-16 Scheduled Check In house check: Jun-18 In house check: Oct-16 | # **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z not applicable or not measured N/A ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5$ mm | | | Frequency | 2600 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.0 ± 6 % | 2.05 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | No transacti | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 56.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL. | condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.2 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | 75.3 | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2,16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 2.21 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | ART | | # SAR result with Body TSL Certificate No: D2600V2-1030_Mar16 | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.6 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 53.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.04 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.0 W/kg ± 16.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.0 Ω - 5.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.0 dB | # Antenna Parameters with Body TSL | - | Impedance, transformed to feed point | 45.6 Ω - 4.1 jΩ | |---|--------------------------------------|-----------------| | - | Return Loss | - 24.1 dB | # **General Antenna Parameters and Design** | - 1 | | | | |-----|----------------------------------|----------|--| | - 1 | E1 - 14-7 - 14 EX 1 | | | | - 1 | Electrical Delay (one direction) | 1.152 ns | | | - 1 | Eloculosi policy (one direction) | 1.132118 | | | - 1 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | March 03, 2009 | # **DASY5 Validation Report for Head TSL** Date: 09.03.2016 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1030 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\hat{\sigma} = 2.05$ S/m; $\epsilon_r = 38$; $\rho = 1000$ kg/m³ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(7.49, 7.49, 7.49); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom Type: QD000P50AA - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 114.9 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 14.4 W/kg; SAR(10 g) = 6.39 W/kgMaximum value of SAR (measured) = 24.3 W/kg 0 dB = 24.3 W/kg = 13.86 dBW/kg # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 09.03.2016 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1030 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.21 \text{ S/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$ Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.6, 7.6, 7.6); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom Type: QD000P50AA DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.8 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.9 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.04 W/kg Maximum value of SAR (measured) = 22.8 W/kg 0 dB = 22.8 W/kg = 13.58 dBW/kg # Impedance Measurement Plot for Body TSL