

TEST REPORT

Report No. CISRR24120605002

Project No. CISR241206050

FCC ID 2AL6KBLM8723DU1

Applicant ShenZhen BiLian Electronic Co.,Ltd.

Address Room 501, Building 3, No.32, Dafu Road, Zhangge Community,

FuchengStreet, Longhua District, Shenzhen, China

Manufacturer ShenZhen BiLian Electronic Co.,Ltd.

Address Room 501, Building 3, No. 32, Dafu Road, Zhangge Community,

FuchengStreet, Longhua District, Shenzhen, China

Product Name 802.11b/g/n 150Mbps WLAN + Bluetooth v4.2 Combo USB Module

Trade Mark N/A

Model/Type reference BL-M8723DU1

Listed Model(s) N/A

Standard 47 CFR Part 15.247

Test date December 7, 2024 to December 23, 2024

Issue date December 24, 2024

Test result Complied

Prepared by: Edward Wang

Edward Womg

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
	_
2. TEST DESCRIPTION	4
3. SUMMARY	5
3. SUMINIARI	
3.1. Product Description *	5
3.2. Radio Specification Description *	5
3.3. Modification of EUT	
3.4. Deviation from standards	6
3.5. Testing Site	
3.6. Test frequency list	
3.7. Descriptions of test mode	
3.8. Test sample information	
3.9. Support unit used in test configuration	
3.10. Environmental conditions	
5.11. Equipment Osed during the rest	
4. TEST RESULTS	
4.1. Evaluation Results (Evaluation)	10
4.1.1. Antenna Requirement	10
4.2. Radio Spectrum Matter Test Results (RF)	11
4.2.1. Conducted Emission at AC power line	11
4.2.2. 6dB Bandwidth	14
4.2.3. Maximum Conducted Output Power	15
4.2.4. Power Spectral Density	16
4.2.5. Conducted band edge and spurious emission	17
4.2.6. Radiated band edge emission	18
4.2.7. Radiated Spurious Emission (below 1GHz)	21
4.2.8. Radiated Spurious Emission (Above 1GHz)	25
5. TEGT OFFUR BUGTOS	
5. TEST SETUP PHOTOS	33
6 ADDENDIY DEDODT	3/

1. REPORT VERSION

Version No.	Issue date	Description
00	December 24, 2024	Original

2. TEST DESCRIPTION

No.	Test Item	Standard Requirement	Result
1	Antenna Requirement	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR 15.207(a)	Pass
3	6dB Bandwidth	47 CFR 15.247(a)(2)	Pass
4	Maximum Conducted Output Power	47 CFR 15.247(b)(3)	Pass
5	Power Spectral Density	47 CFR 15.247(e)	Pass
6	Conducted band edge and spurious emission	47 CFR 15.247(d), 15.209, 15.205	Pass
7	Radiated band edge emission	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Radiated Spurious Emission (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated Spurious Emission (Above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass

Note:

The measurement uncertainty is not included in the test result.

3. **SUMMARY**

3.1. Product Description *

Main unit information:	
Product Name:	802.11b/g/n 150Mbps WLAN + Bluetooth v4.2 Combo USB Module
Trade Mark:	N/A
Model No.:	BL-M8723DU1
Listed Model(s):	N/A
Model difference:	N/A
Power supply:	DC 3.3V
Hardware version:	V1.0
Software version:	V1.0
Accessory unit information:	
Battery information:	N/A

3.2. Radio Specification Description *

Modulation type:	802.11b: DSSS(CCK, DQPSK, DBPSK); 802.11g/n(HT20)/n(HT40): OFDM(BPSK, QPSK, 16QAM, 64QAM)
Operation frequency:	802.11b/g/n(HT20): 2412MHz to 2462MHz; 802.11n(HT40): 2422MHz to 2452MHz
Channel number:	802.11b/g/n(HT20): 11 Channels; 802.11n(HT40): 7 Channels
Channel separation:	5MHz
Antenna type:	PCB Antenna
Antenna gain:	2.5dBi

Note:

- 1) *: Since the above information is provided by the applicant relevant results or conclusions of this report are only made for these information, Bangce is not responsible for the authenticity, integrity and results of the information and/or the validity of the conclusion.
- 2) Operation frequency list as follow:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447	1	/

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Deviation from standards

None

3.5. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen,Guangdong, China
Contact information	Tel: 86-755-2319 6848, email: service@cis-cn.net Website: http://www.cis-cn.net/
FCC registration number	736346
FCC designation number	CN172

TEST CONFIGURATION

3.6. Test frequency list

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2412	2437	2462

3.7. Descriptions of test mode

No	Test mode	Description
TM1	802.11b mode	Keep the EUT in 802.11b transmitting mode at lowest, middle and highest channel.
TM2	802.11g mode	Keep the EUT in 802.11g transmitting mode at lowest, middle and highest channel.
ТМ3	802.11n(HT20) mode	Keep the EUT in 802.11n(HT20) transmitting mode at lowest, middle and highest channel.
TM4	802.11n(HT40) mode	Keep the EUT in 802.11n(HT40) transmitting mode at lowest, middle and highest channel.
TM5	Link mode	Keep the EUT in WiFi linking mode with AE.

3.8. Test sample information

Туре	Sample No.
Engineer sample	CISR241206050-S01
Normal sample	CISR241206050-S02

3.9. Support unit used in test configuration

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Item	Equipment name	Trade Name	Model No.
1	Adapter	Guangdong Sangu Technology Co. Itd	SG-0501000AU
2	PC	Lenovo	ThinkPad

3.10. Environmental conditions

Туре	Requirement
Temperature:	15~35°C
Relative Humidity:	25~75%
Air Pressure:	860~1060mbar

3.11. Equipment Used during the Test

Conducted Emission at AC power line

	<u> </u>					
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024-01-08	2025-01-07
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2024-01-08	2025-01-07
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2024-01-08	2025-01-07
4	Artificial power network	Schwarzbeck	ENV216	/	2024-01-08	2025-01-07

6dB Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	MXG RF Signal Generator	Agilent	N5181A	MY50145362	2024-01-08	2025-01-07
2	Spectrum analyzer	R&S	FSV-40N	102130	2024-01-08	2025-01-07
3	Vector Signal Generator	Agilent	N5182A	MY50142364	2024-06-14	2025-06-13
4	Power Meter	WCS	WCS-PM	WCSPM23040 5A	2024-01-08	2025-01-07

Band edge emissions (Radiated)

Emissions in frequency bands (below 1GHz)

Emissions in frequency bands (above 1GHz)

Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024-01-08	2025-01-07
2	Amplifier	Tonscend	TAP9K3G 40	AP23A806027 0	2024-01-08	2025-01-07
3	Prime amplifier	Tonscend	TAP0101 8050	AP23A806028 0	2024-01-08	2025-01-07
4	9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024-09-02	2027-09-01
5	Spectrum analyzer	Agilent	N9020A	MY50530263	2024-01-08	2025-01-07
6	Spectrum analyzer	R&S	FSV-40N	102130	2024-01-08	2025-01-07
7	Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023-01-09	2025-01-08
8	Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023-01-09	2025-01-08
9	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	1	2023-01-09	2025-01-08

10	RF Cable	Tonscend	Cable 1	1	2024-01-08	2025-01-07
11	RF Cable	Tonscend	Cable 2	1	2024-01-08	2025-01-07
12	RF Cable	SKET	Cable 3	1	2024-01-08	2025-01-07
13	L.I.S.N.#1	Schwarzbeck	NSLK812 7	1	2024-01-08	2025-01-07
14	L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	1	2024-01-08	2025-01-07
15	Horn Antenna	SCHWARZBECK	BBHA917 0	1130	2023-01-09	2025-01-08
16	Preamplifier	Tonscend	TAP1804 0048	AP21C806126	2024-01-08	2025-01-07
17	Variable-frequency power source	Pinhong	PH1110	1	2024-01-08	2025-01-07
18	6dB Attenuator	SKET	DC-6G	1	1	1
19	Antenna tower	SKT	Bk-4AT- BS	AT202104010 1-V1	2024-06-14	2025-06-13

4. TEST RESULTS

4.1. Evaluation Results (Evaluation)

4.1.1. Antenna Requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

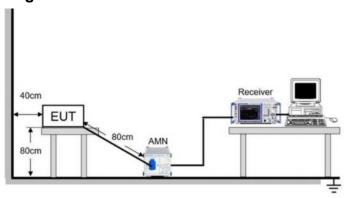
4.1.1.1. Test Result

Pass

4.1.1.2. Conclusion:

The EUT antenna is FPC Antenna (2.5dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo.

4.2. Radio Spectrum Matter Test Results (RF)

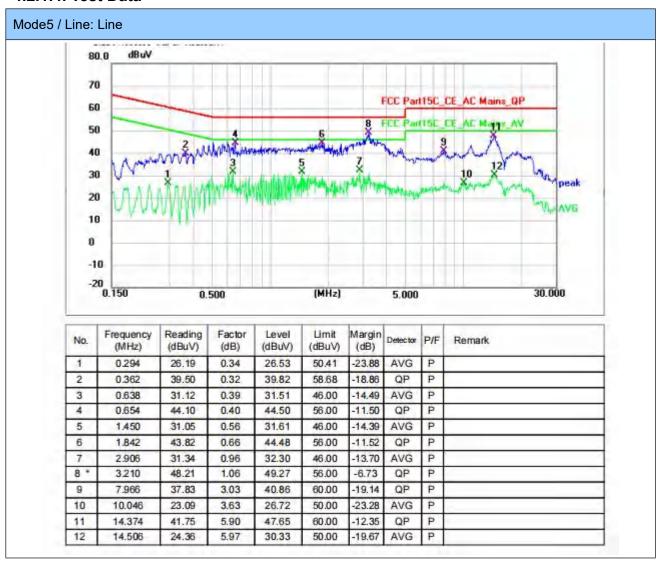

4.2.1. Conducted Emission at AC power line

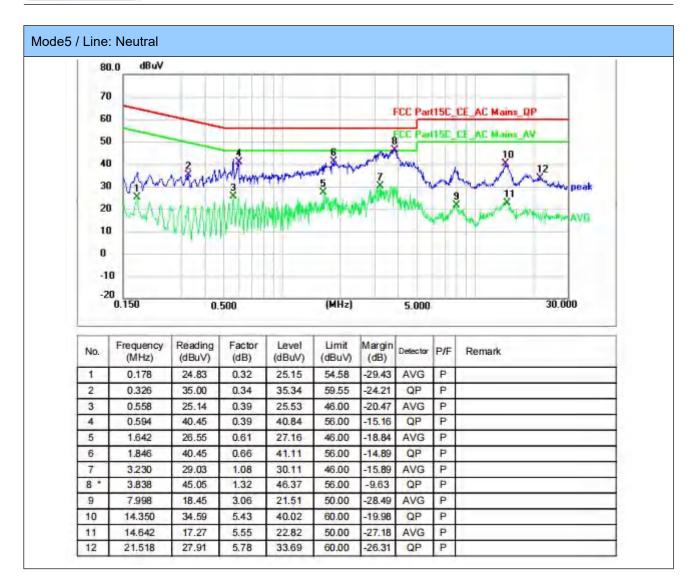
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
		Quasi-peak	Average				
Test Limit:	0.15-0.5	66 to 56*	56 to 46*				
rest Limit.	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2020 section 6.2						
Procedure:	1. The EUT was setup according to 2. The EUT was placed on a platfor above the conducting ground plane cm to the rear of the EUT. All other other grounded conducting surface. 3. The EUT and simulators are contimpedances stabilization network (Loupling impedance for the measur 4. The peripheral devices are also concept (Refer to the block diagram of the test of the state of the excess length of the power of the excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length. The excess length of the power of the excess length of the power of the excess length. The excess length of the power of the excess length of t	m of nominal size, 1 m by a The vertical conducting places of EUT were at least nected to the main power the ISN). The LISN provides a sing equipment. Isonnected to the main powers set setup and photographs of the EUT power cord, except the EUT power cord, except the EUT and the enter of the lead to form a bettigated over the frequency the first setup and the frequency the first setup and photographs and between the EUT and the enter of the lead to form a bettigated over the frequency the first setup and	1.5 m, raised 80 cm ane was located 40 ast 80 cm from any hrough a line 50 ohm /50uH er through a LISN. Ocept the ground to the input power the LISN receptacle bundle not exceeding range from 0.15MHz				

4.2.1.1. E.U.T. Operation

Operating Environment:								
Temperature: 23.4 °C			Humidity:	56.1 %	Atmospheric Pressure:	102 kPa		
Pre test mode:	TM5	5						
Final test mode:		TM5	5					

4.2.1.2. Test Setup Diagram




4.2.1.3. Test Result

Pass

4.2.1.4. Test Data

Note:

- 1). Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)
- 2). Margin = Result Limit

4.2.2. 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8
Procedure:	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

4.2.2.1. E.U.T. Operation

Operating Environment:							
Temperature: 23.4 °C)	Humidity:	55.3 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM	1, TM2, TM3, T	ГМ4			
Final test mode:		TM	TM1, TM2, TM3, TM4				

4.2.2.2. Test Setup Diagram

4.2.2.3. Test Result

Pass

4.2.2.4. Test Data

4.2.3. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

4.2.3.1. E.U.T. Operation

Operating Environment:							
Temperature: 23.4 °C			Humidity:	55.3	55.3 % Atmospheric Pressure:		102 kPa
Pre test mode:	TM	1, TM2, TM3, T	ГМ4				
Final test mode:		TM	1, TM2, TM3, T	ГМ4			

4.2.3.2. Test Setup Diagram

4.2.3.3. Test Result

Pass

4.2.3.4. Test Data

4.2.4. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

4.2.4.1. E.U.T. Operation

Operating Environment:								
Temperature:	Temperature: 23.4 °C		Humidity:	55.3 % Atmospheric Pressure:		102 kPa		
Pre test mode:	TM	1, TM2, TM3, T	ΓM4					
Final test mode:		TM	1, TM2, TM3, T	ГМ4				

4.2.4.2. Test Setup Diagram

4.2.4.3. Test Result

Pass

4.2.4.4. Test Data

4.2.5. Conducted band edge and spurious emission

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.2.5.1. E.U.T. Operation

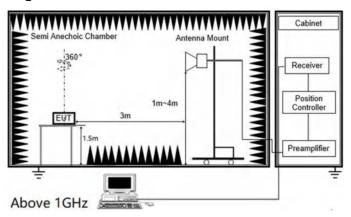
Operating Environment:									
Temperature: 23.4 °C Humidity: 55.3 % Atmospheric Pressure: 102 kPa									
Pre test mode: TM1, TM2, TM3, TM4									
Final test mode	Final test mode: TM1, TM2, TM3, TM4								

4.2.5.2. Test Setup Diagram

4.2.5.3. Test Result

Pass

4.2.5.4. Test Data


4.2.6. Radiated band edge emission

Test Requirement:	restricted bands, as defined	In addition, radiated emissions win § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
Toot Limits	216-960	200 **	3		
Test Limit:	Above 960	500	3		
	54-72 MHz, 76-88 MHz, 174 these frequency bands is pe 15.231 and 15.241. In the emission table above, The emission limits shown ir employing a CISPR quasi-pe 110–490 kHz and above 100	is section shall not be located in to 216 MHz or 470-806 MHz. How imitted under other sections of the the tighter limit applies at the base the above table are based on meak detector except for the frequency of MHz. Radiated emission limits as employing an average detector.	ever, operation within his part, e.g., §§ nd edges. heasurements ency bands 9–90 kHz, in these three bands		
Test Method:	ANSI C63.10-2020 section 6.10				
Procedure:	 The EUT is placed on a tutable is rotated 360 degrees level. The EUT waspositioned s meters. The antenna is scanned fremission level. Thisis repeat antenna. In order to find the manipulated according to ANS. Use the following spectruma) Span shall wide enough to Set RBW=1MHz, VBW=3 Trace=max hold for Peak meters. 	o fully capture the emission being MHz for >1GHz, Sweep time=au easurement use duty cycle correction factor n	maximum emission na to the EUT was 3 ut the maximum al polarization of the erface cables were ment. g measured to, Detector=peak,		

4.2.6.1. E.U.T. Operation

Operating Environment:										
Temperature: 23.4 °C Humidity: 56.1 % Atmospheric Pressure: 102 kPa										
Pre test mode: TM1, TM2, TM3, TM4										
Final test mode):	TM1, TM2, TM3,	TM4							

4.2.6.2. Test Setup Diagram

4.2.6.3. Test Result

Pass

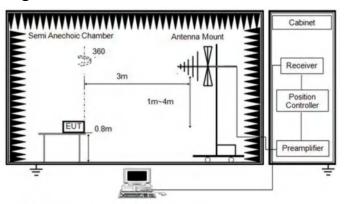
4.2.6.4. Test Data

Have pre-scan all test mode, found 802.11b mode which it was worst case, so only show the worst case's data on this report.

Test chan	Test channel:CH1											
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
2390.00	70.54	28.62	4.08	38.62	-5.92	64.62	74	9.38	Peak	Horizontal		
2390.00	51.03	28.62	4.08	38.62	-5.92	45.11	54	8.89	Average	Horizontal		
2390.00	68.68	28.62	4.08	38.62	-5.92	62.76	74	11.24	Peak	Vertical		
2390.00	50.18	28.62	4.08	38.62	-5.92	44.26	54	9.74	Average	Vertical		

Test chan	Test channel:CH11											
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
2483.50	70.01	29.45	3.91	40.17	-6.81	63.20	74	10.80	Peak	Horizontal		
2483.50	49.42	29.45	3.91	40.17	-6.81	42.61	54	11.39	Average	Horizontal		
2483.50	68.08	29.45	3.91	40.17	-6.81	61.27	74	12.73	Peak	Vertical		
2483.50	50.33	29.45	3.91	40.17	-6.81	43.52	54	10.48	Average	Vertical		

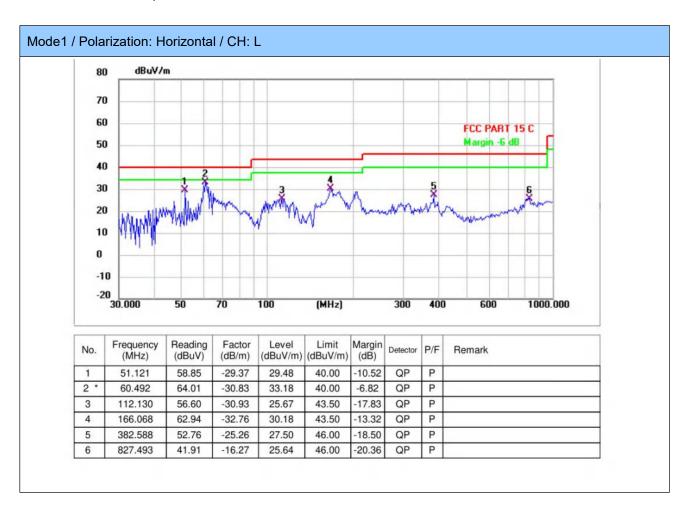
4.2.7. Radiated Spurious Emission (below 1GHz)

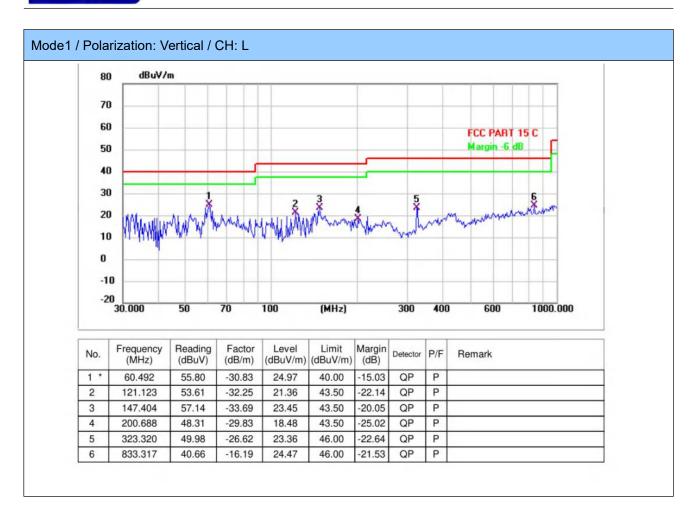

Test Requirement:	restricted bands, as defined	In addition, radiated emissions whin § 15.205(a), must also comply 15.209(a)(see § 15.205(c)).`			
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
Total Contr.	216-960	200 **	3		
Test Limit:	Above 960	500	3		
	54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.				
Test Method:	ANSI C63.10-2020 section 6	5.6.4			
Procedure:	2. The EUT is placed on a tu GHz, and 1.5 m for above 1 determine the position of the 3. The EUT was set 3 meter the top of a variable height a 4. For each suspected emission tune the Antenna tower (from degrees) to find the maximu for the test in order to get be 5. Set to the maximum powe 6. Use the following spectrum a) Span shall wide enough to b) RBW=120 kHz, VBW=300 Trace=max hold; If the emission level of the Ethe applicable limit, the peak	s from the receiving antenna, whi intenna tower. sion, the EUT was arranged to its in 1 m to 4 m) and turntable (from m reading. A pre-amp and a high tter signal level to comply with the er setting and enable the EUT tran	e ground for below 1 0 degrees to ch was mounted on worst case and then 0 degree to 360 pass filter are used e guidelines. nsmit continuously. g measured; ction=peak, or is 3 dB lower than Otherwise, the		

4.2.7.1. E.U.T. Operation

Operating Env	Operating Environment:									
Temperature: 23.4 °C Humidity: 56.1 % Atmospheric Pressure: 102 kPa										
Pre test mode: TM1, TM2, TM3, TM4, TM5										
Final test mode	e:	TM	1, TM2, TM3, T	ΓM4, TM5						

4.2.7.2. Test Setup Diagram


Below 1 GHz and above 30 MHz


4.2.7.3. Test Result

Pass

4.2.7.4. Test Data

Have pre-scan all test channel, found CH1(802.11b) mode which it was worst case, so only show the worst case's data on this report.

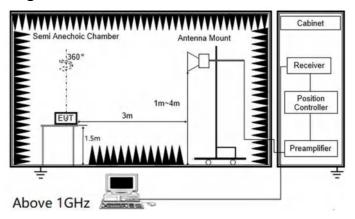
Note:

1) For 9 kHz ~ 30 MHz Measurement

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

- 2) Level= Reading + Factor; Factor = Antenna Factor + Cable Loss- Preamp Factor
- 3) Margin = Limit Level

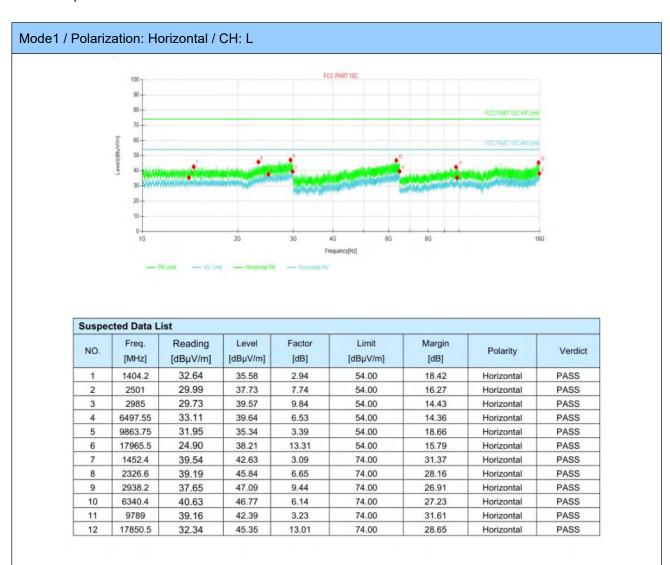
4.2.8. Radiated Spurious Emission (Above 1GHz)


Test Requirement:		ons which fall in the restricted band y with the radiated emission limits	
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
Total Contr.	216-960	200 **	3
Test Limit:	Above 960	500	3
	these frequency bands is portion 15.231 and 15.241. In the emission table above The emission limits shown in employing a CISPR quasi-part 110–490 kHz and above 10	4-216 MHz or 470-806 MHz. Howe ermitted under other sections of the , the tighter limit applies at the bar n the above table are based on m leak detector except for the frequency 00 MHz. Radiated emission limits s employing an average detector.	nis part, e.g., §§ and edges. easurements ency bands 9–90 kHz, in these three bands
Test Method:	ANSI C63.10-2020 section	6.6.4	
Procedure:	2. The EUT is placed on a t GHz, and 1.5 m for above 1 determine the position of the 3. The EUT was set 3 mete the top of a variable height 4. For each suspected emistune the Antenna tower (frodegrees) to find the maximular for the test in order to get be 5. Set to the maximum pow 6. Use the following spectrum a) Span shall wide enough b) Set RBW=1MHz, VBW=3 Trace=max hold for Peak m	rs from the receiving antenna, whi antenna tower. Ision, the EUT was arranged to its m 1 m to 4 m) and turntable (from a reading. A pre-amp and a high etter signal level to comply with the er setting and enable the EUT transmanalyzer settings to fully capture the emission being BMHz for >1GHz, Sweep time=aut easurement use duty cycle correction factor m	e ground for below 1 0 degrees to ch was mounted on worst case and then 0 degree to 360 pass filter are used e guidelines. nsmit continuously. g measured; to, Detector=peak,

4.2.8.1. E.U.T. Operation

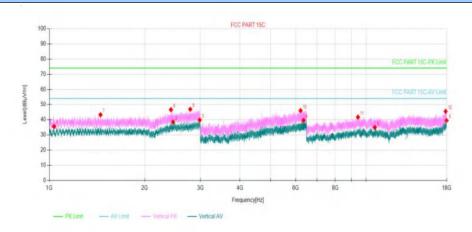
Operating Environment:										
Temperature: 23.4 °C Humidity: 56.1 % Atmospheric Pressure: 102 kPa										
Pre test mode: TM1, TM2, TM3, TM4, TM5										
Final test mode: TM1, TM2, TM3, TM4, TM5										

4.2.8.2. Test Setup Diagram

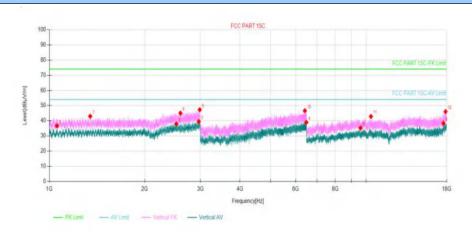

4.2.8.3. Test Result

Pass

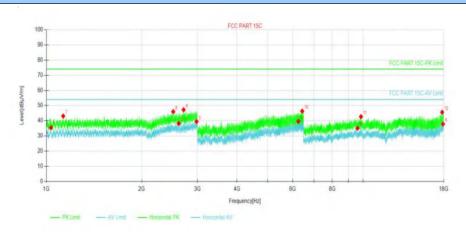
4.2.8.4. Test Data


Note:

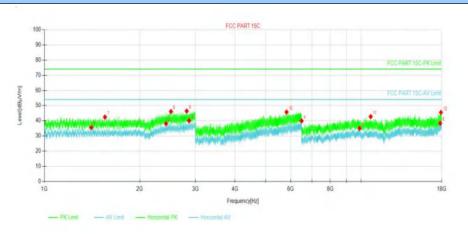
- 1. In order to prevent the amplifier from saturating, we add a band-stop filter that filters out the main frequency.
- 2.18GHz-25GHz is the background of the site, there is no radiated spurious.
- 3.Have pre-scan all test mode, found 802.11b which it was worst case, so only show the worst case's data on this report.


Mode1 / Polarization: Vertical / CH: L

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1035	35.25	35.55	0.30	54.00	18.45	Vertical	PASS
2	2459	31.04	38.47	7.43	54.00	15.53	Vertical	PASS
3	2984.8	30.00	39.84	9.84	54.00	14.16	Vertical	PASS
4	6354.75	33.38	39.62	6.24	54.00	14.38	Vertical	PASS
5	10667.6	30.52	34.92	4.40	54.00	19.08	Vertical	PASS
6	17975.8	26.19	39.57	13.38	54.00	14.43	Vertical	PASS
7	1451	40.20	43.29	3.09	74.00	30.71	Vertical	PASS
8	2421.8	39.50	46.65	7.15	74.00	27.35	Vertical	PASS
9	2787	38.57	46.92	8.35	74.00	27.08	Vertical	PASS
10	6216.5	40.36	46.04	5.68	74.00	27.96	Vertical	PASS
11	9434.8	38.67	41.76	3.09	74.00	32.24	Vertical	PASS
12	17853.9	32.57	45.57	13.00	74.00	28.43	Vertical	PASS


Mode1 / Polarization: Horizontal / CH: M

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1	1056.8	36.10	36.66	0.56	54.00	17.34	Vertical	PASS
2	2518.4	30.28	37.93	7.65	54.00	16.07	Vertical	PASS
3	2964.8	29.82	39.49	9.67	54.00	14.51	Vertical	PASS
4	6481.1	32.43	38.96	6.53	54.00	15.04	Vertical	PASS
5	9609.6	32.09	35.23	3.14	54.00	18.77	Vertical	PASS
6	17576.8	26.33	38.33	12.00	54.00	15.67	Vertical	PASS
7	1346.2	40.32	42.97	2.65	74.00	31.03	Vertical	PASS
8	2594	37.76	45.05	7.29	74.00	28.95	Vertical	PASS
9	2985.6	37.43	47.28	9.85	74.00	26.72	Vertical	PASS
10	6413.9	40.09	46.62	6.53	74.00	27.38	Vertical	PASS
11	10369.7	38.66	42.82	4.16	74.00	31.18	Vertical	PASS
12	17848.2	33.03	46.05	13.02	74.00	27.95	Vertical	PASS


Mode1 / Polarization: Vertical / CH: M

NO.	Freq.	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m] 54.00	Margin	Polarity	Verdict
	[MHz]					[dB]		
1	1034.6	35.12	35.41			18.59		
2	2620	30.87	38.24	7.37	54.00	15.76	Horizontal	PASS
3	2982.2	29.66	39.48	9.82	54.00	14.52	Horizontal	PASS
4	6254.3	33.83	39.60	5.77	54.00	14.40	Horizontal	PASS
5	9609.6	31.90	35.04	3.14	54.00	18.96	Horizontal	PASS
6	17910.3	24.88	37.84	12.96	54.00	16.16	Horizontal	PASS
7	1130.4	41.80	43.10	1.30	74.00	30.90	Horizontal	PASS
8	2515.6	38.35	46.02	7.67	74.00	27.98	Horizontal	PASS
9	2713.4	39.35	47.23	7.88	74.00	26.77	Horizontal	PASS
10	6428.25	39.82	46.35	6.53	74.00	27.65	Horizontal	PASS
11	9855.7	39.33	42.70	3.37	74.00	31.30	Horizontal	PASS
12	17794.1	32.58	45.63	13.05	74.00	28.37	Horizontal	PASS

Mode1 / Polarization: Horizontal / CH: H

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict
1 1407.8		32.57	35.52	2.95	54.00	18.48	Horizontal	PASS
2	2423	30.94	38.10	7.16	54.00	15.90	Horizontal	PASS
3	2865.8	31.19	40.07	8.88	54.00	13.93	Horizontal	PASS
4	6494.75	33.41	39.94	6.53	54.00	14.06	Horizontal	PASS
5	9891.35	31.60	35.05	3.45	54.00	18.95	Horizontal	PASS
6	17798.7	25.23	38.35	13.12	54.00	15.65	Horizontal	PASS
7	1554.4	39.21	42.44	3.23	74.00	31.56	Horizontal	PASS
8	2511.2	38.42	46.11	7.69	74.00	27.89	Horizontal	PASS
9	2816.2	37.86	46.40	8.54	74.00	27.60	Horizontal	PASS
10	5820.65	41.13	45.76	4.63	74.00	28.24	Horizontal	PASS
11	10732	38.16	42.74	4.58	74.00	31.26	Horizontal	PASS
12	17896.5	32.64	45.54	12.90	74.00	28.46	Horizontal	PASS

Mode1 / Polarization: Vertical / CH: H

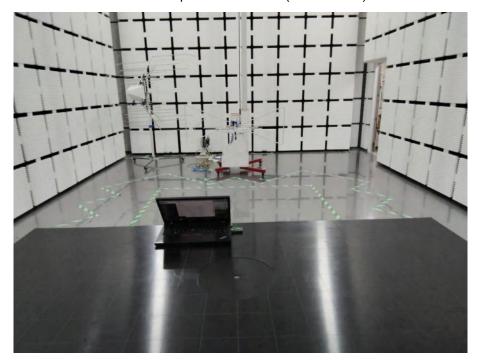
Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Polarity	Verdict	
1	1597.6	32.08	35.31	3.23	54.00	18.69	Vertical	PASS	
2	2487.4	30.97	38.62	7.65	54.00	15.38	Vertical	PASS	
3	2935.2	30.32	39.74	9.42	54.00	14.26	Vertical	PASS	
4	6428.95	32.39	38.92	6.53	54.00	15.08	Vertical	PASS	
5	9778.65	32.00	35.22	3.22	54.00	18.78	Vertical	PASS	
6	17875.8	26.12	39.07	12.95	54.00	14.93	Vertical	PASS	
7	1303.6	40.84	43.26	2.42	74.00	30.74	Vertical	PASS	
8	2487.2	37.99	45.63	7.64	74.00	28.37	Vertical	PASS	
9	2979.8	37.76	47.56	9.80	74.00	26.44	Vertical	PASS	
10	6416.35	39.86	46.39	6.53	74.00	27.61	Vertical	PASS	
11	9832.7	38.28	41.60	3.32	74.00	32.40	Vertical	PASS	
12	17906.8	32.58	45.52	12.94	74.00	28.48	Vertical	PASS	

Note:

- 1) Level= Reading + Factor; Factor =Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level
- 3) Average measurement was not performed if peak level is lower than average limit (54dBuV/m) for above 1GHz.

5. TEST SETUP PHOTOS

Conducted Emission at AC power line


Radiated band edge emission Radiated Spurious Emission (Above 1GHz)

Radiated Spurious Emission (below 1GHz)

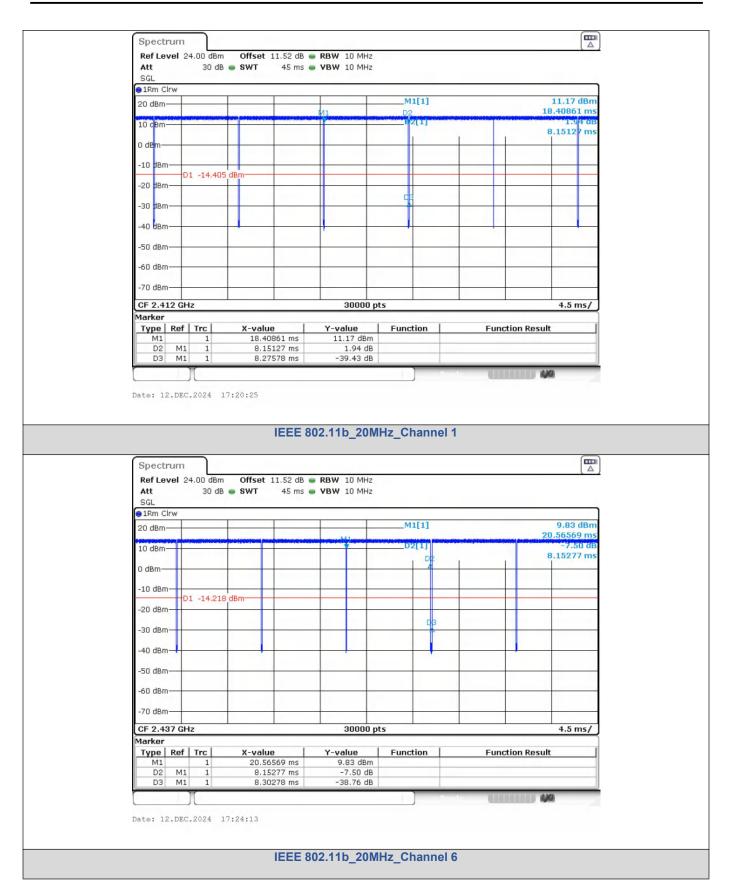
6. Appendix Report

Appendix Report

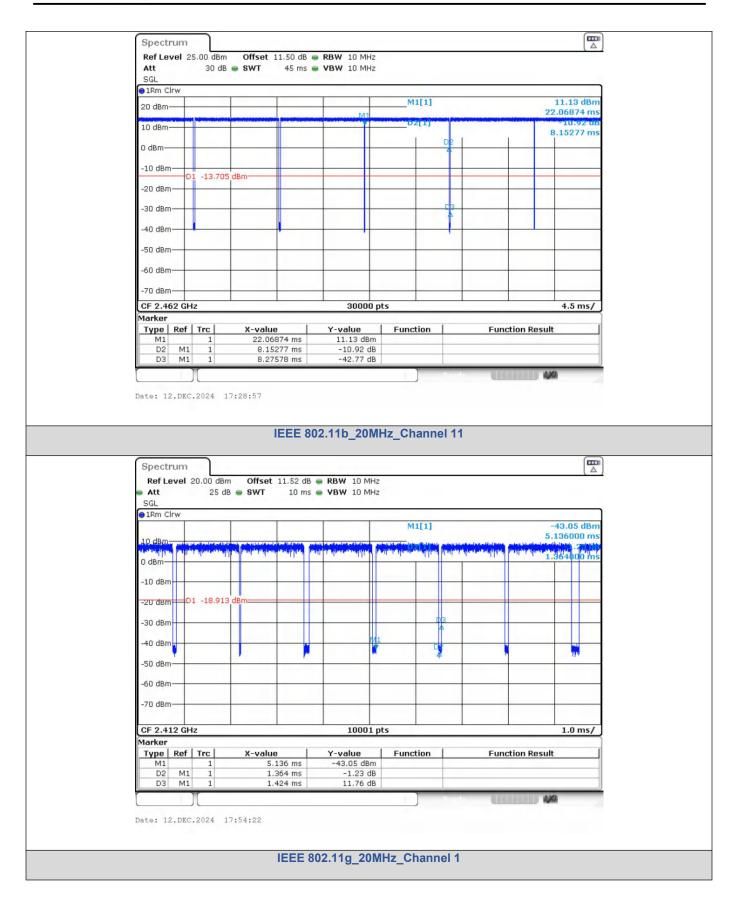
Report No.: CISRR24120605002

Test Engineer: Mark Fu

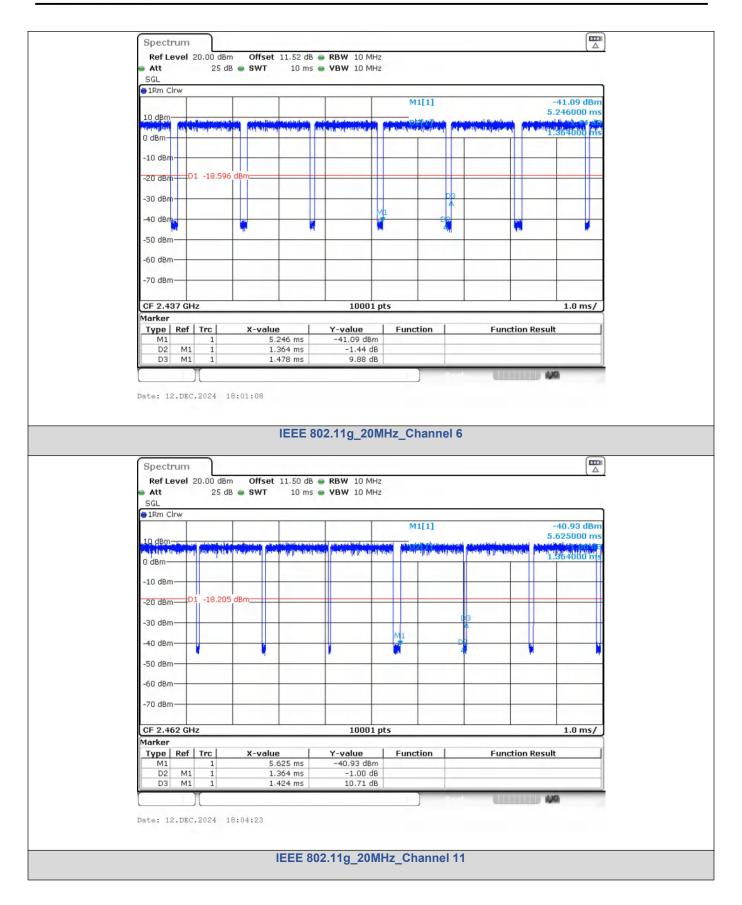
Supervised by: Rory Huang

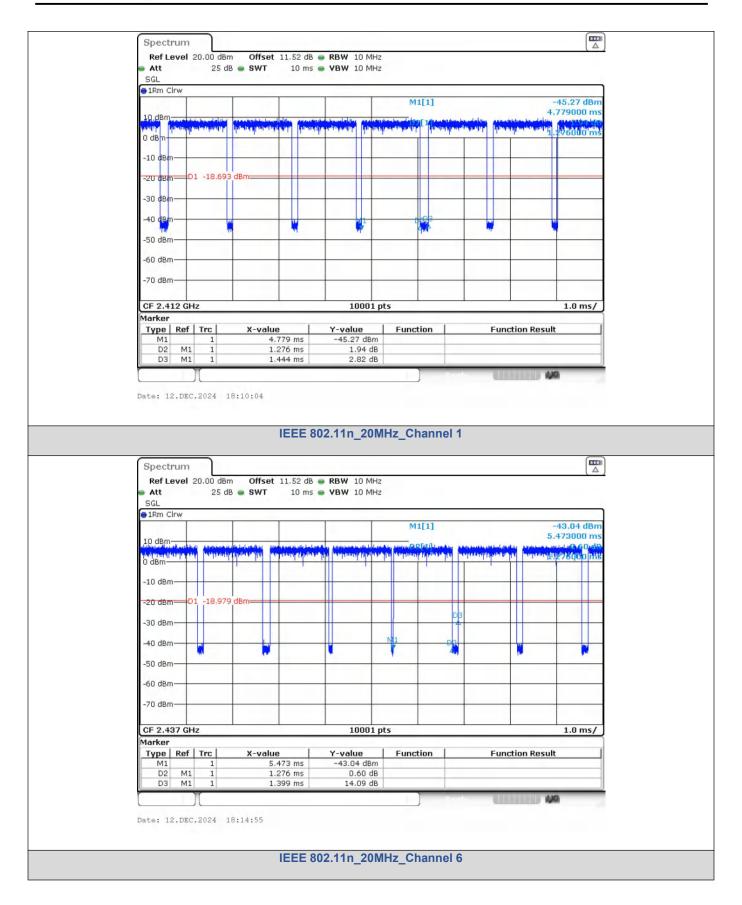

Duty Cycle

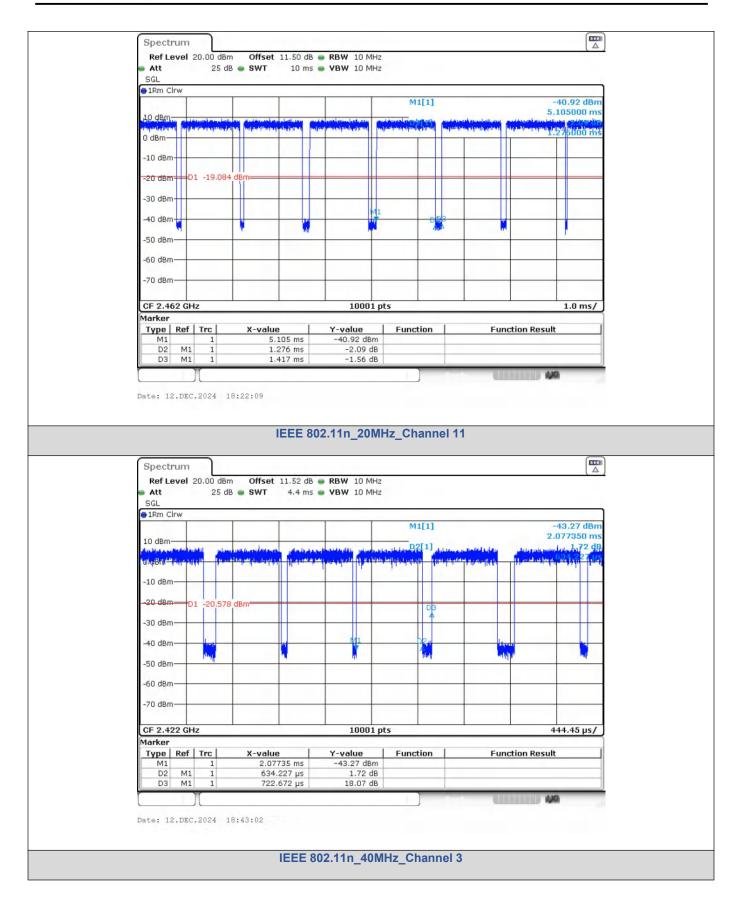
Test Result

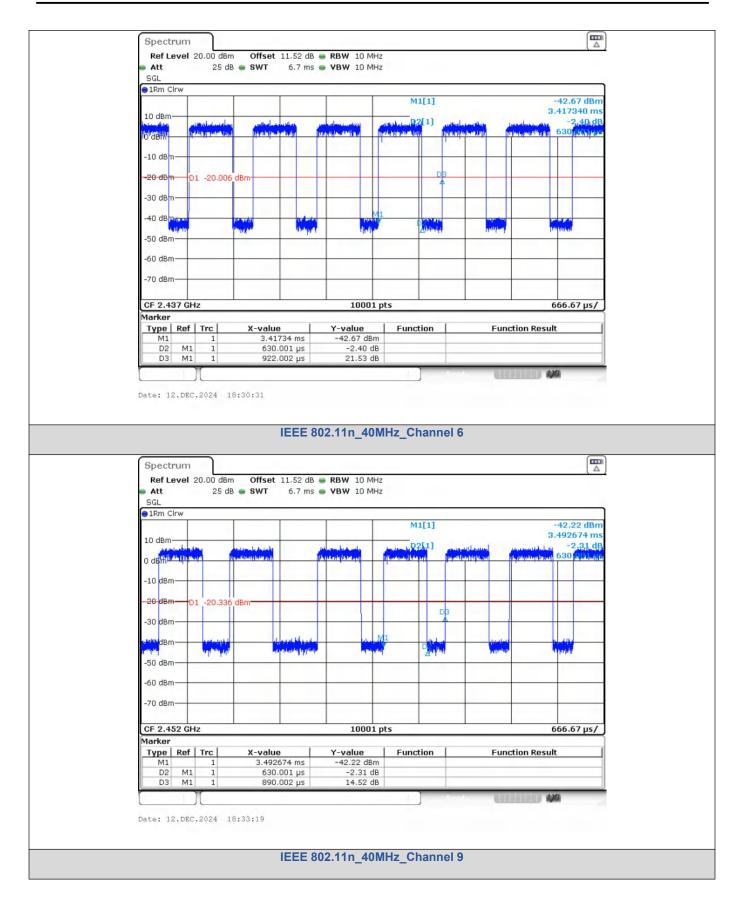

Mode	Data rates	Channel	Antenna	On Time (ms)	Period (ms)	Duty Cycle (%)	Duty Cycle (linear)	Duty Cycle Factor (dB)	1/Т
	1	1	1	8.151	8.276	98.50	0.9850	0.0656	0.1227
IEEE 802.11b		6		8.153	8.303	98.19	0.9819	0.0793	0.1227
		11		8.153	8.276	98.51	0.9851	0.0652	0.1227
		1		1.364	1.424	95.79	0.9579	0.1868	0.7331
IEEE 802.11g		6		1.364	1.478	92.29	0.9229	0.3485	0.7331
		11		1.364	1.424	95.79	0.9579	0.1868	0.7331
, FFF	MCS 0	1		1.276	1.444	88.37	0.8837	0.537	0.7837
802.11n_20		6		1.276	1.399	91.21	0.9121	0.3996	0.7837
		11		1.276	1.417	90.05	0.9005	0.4552	0.7837
		3		0.634	0.723	87.76	0.8776	0.567	1.5773
802.11n_40		6		0.630	0.922	68.33	0.6833	1.6539	1.5873
		9		0.630	0.890	70.79	0.7079	1.5003	1.5873

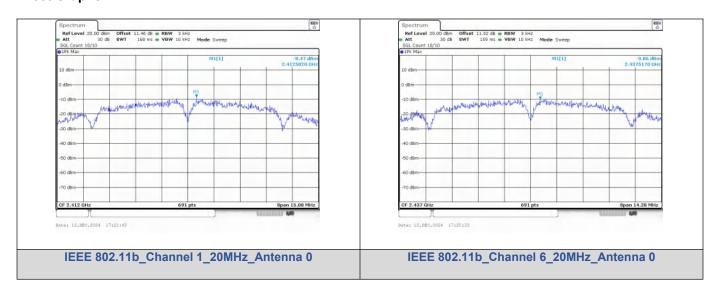
Test Graphs



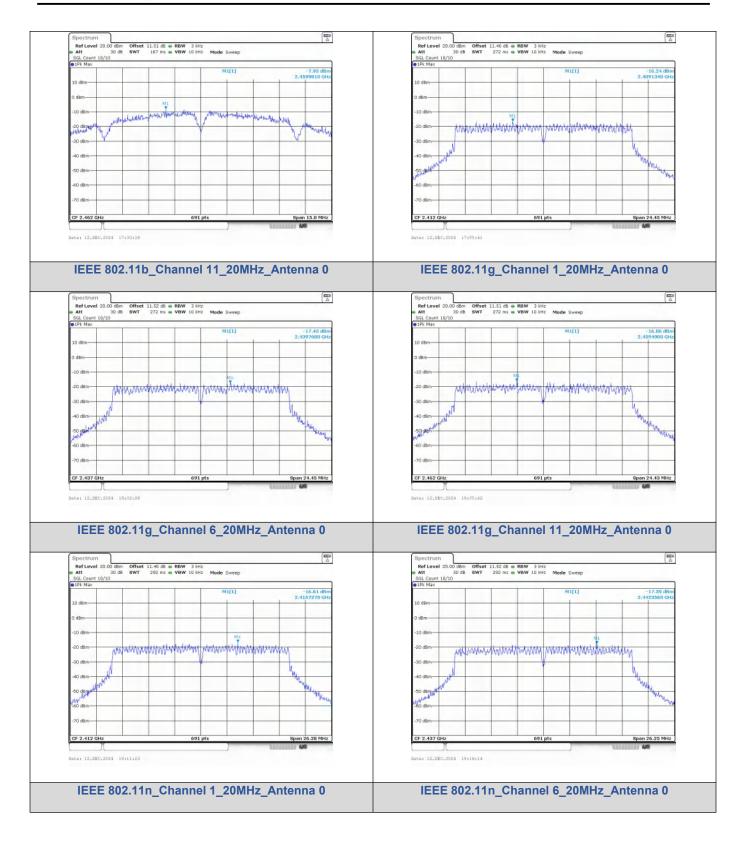




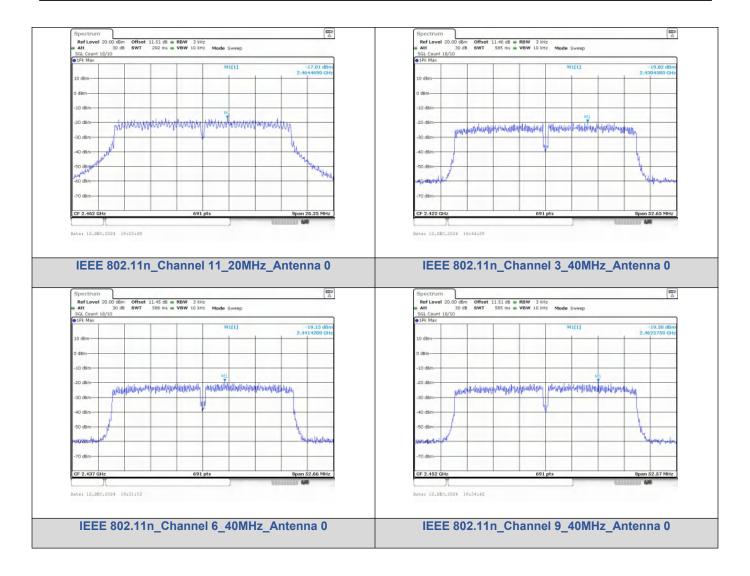




Power Spectral Density


Test Result

Mode	Channel	PSD (dBm/3kHz) Ant. 0	Limit (dBm/3kHz)	Result
	1	-8.470		PASS
IEEE 802.11b	6	-9.860		PASS
	11	-7.930		PASS
IEEE 802.11g	1	-16.240		PASS
	6	-17.430		PASS
	11	-16.060	≤8	PASS
	1	-16.610		PASS
IEEE 802.11n_20	6	-17.390		PASS
	11	-17.010		PASS
IEEE 802.11n_40	3	-19.820		PASS
	6	-19.130		PASS
	9	-19.380		PASS

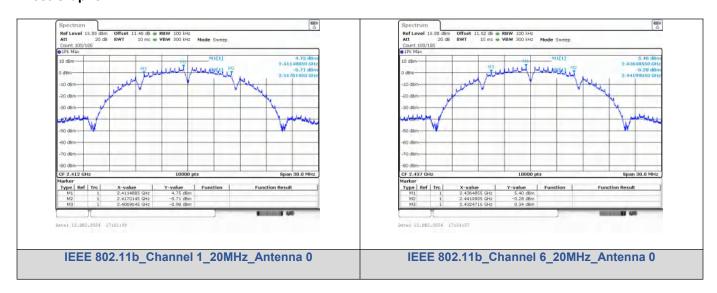

Test Graphs

Conducted Peak Output Power

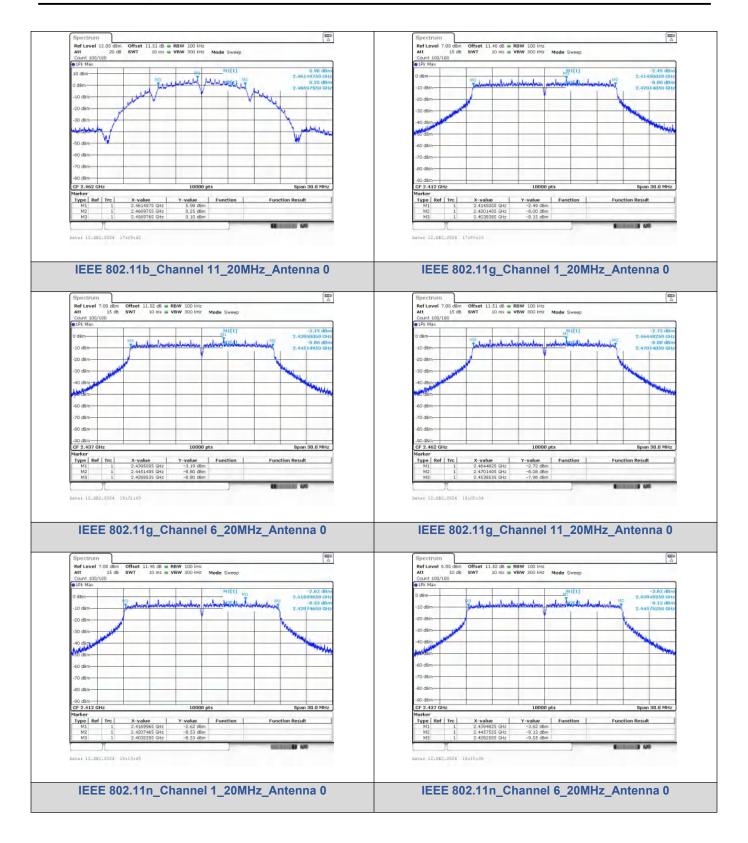
Test Result

Conducted Output Power

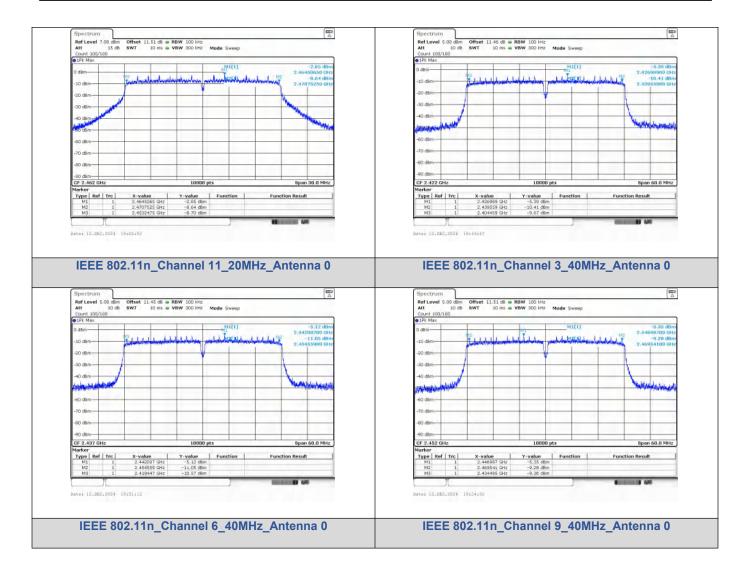
Mode	Channel	Ant. 0 (dBm)	Limit (dBm)	Result
	1	17.74	≤30	PASS
IEEE 802.11b	6	17.08	≤30	PASS
	11	17.49	≤30	PASS
	1	16.83	≤30	PASS
IEEE 802.11g	6	16.15	≤30	PASS
	11	16.66	≤30	PASS
	1	16.77	≤30	PASS
IEEE 802.11n_20	6	16.65	≤30	PASS
	11	16.63	≤30	PASS
	3	16.57	≤30	PASS
IEEE 802.11n_40	6	16.99	≤30	PASS
	9	16.57	≤30	PASS

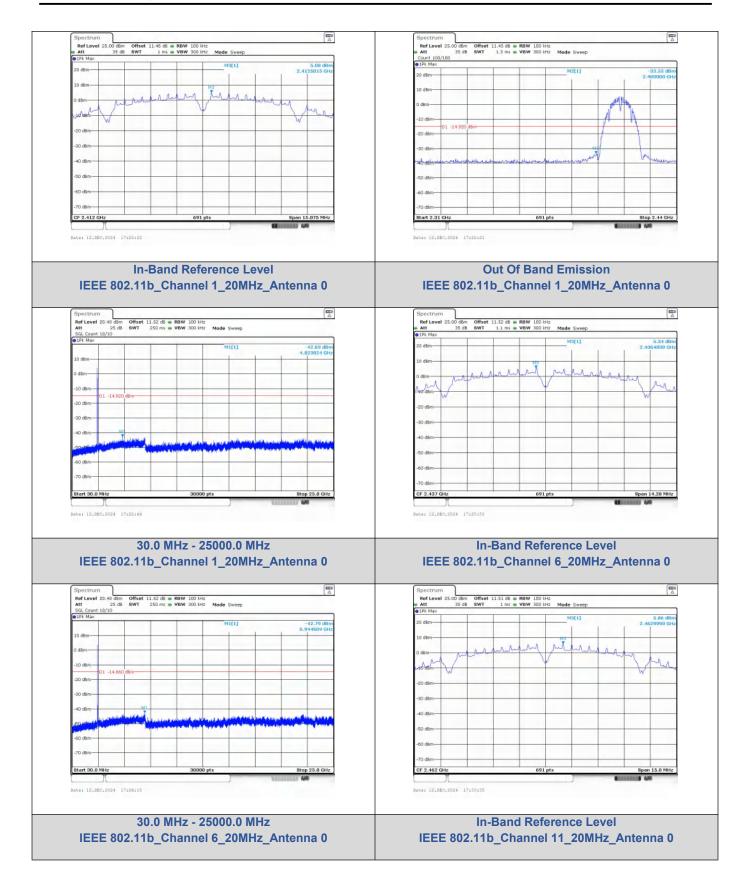


6dB Bandwidth

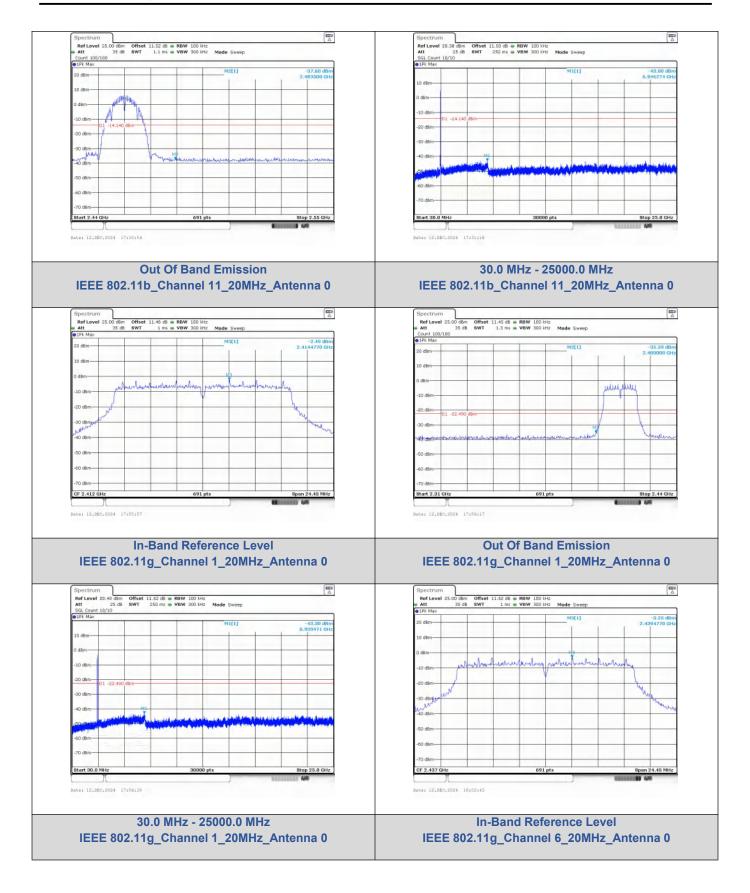

Test Result

Mode	Channel	Ant.	Center Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result
IEEE 802.11b	1		2412	10.05		PASS
	6		2437	9.520		PASS
	11		2462	10.00		PASS
IEEE 802.11g	1		2412	16.30		PASS
	6	0	2437	16.30	≥0.5	PASS
	11		2462	16.29		PASS
IEEE 802.11n_20	1		2412	17.52		PASS
	6		2437	17.50		PASS
	11		2462	17.50		PASS
IEEE 802.11n_40	3		2422	35.10		PASS
	6		2437	35.11		PASS
	9		2452	35.05		PASS

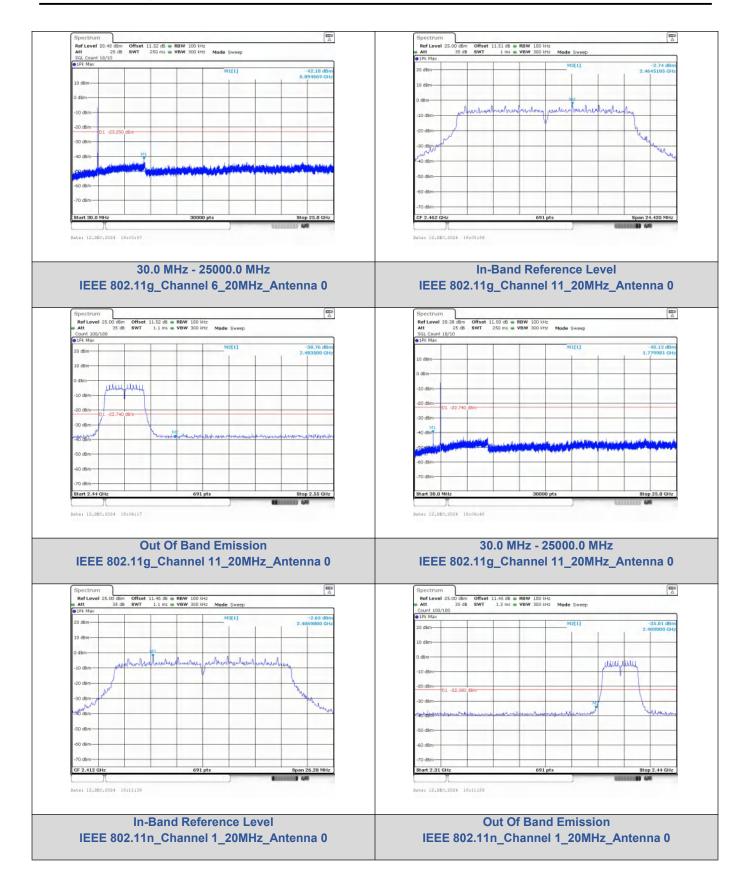

Test Graphs

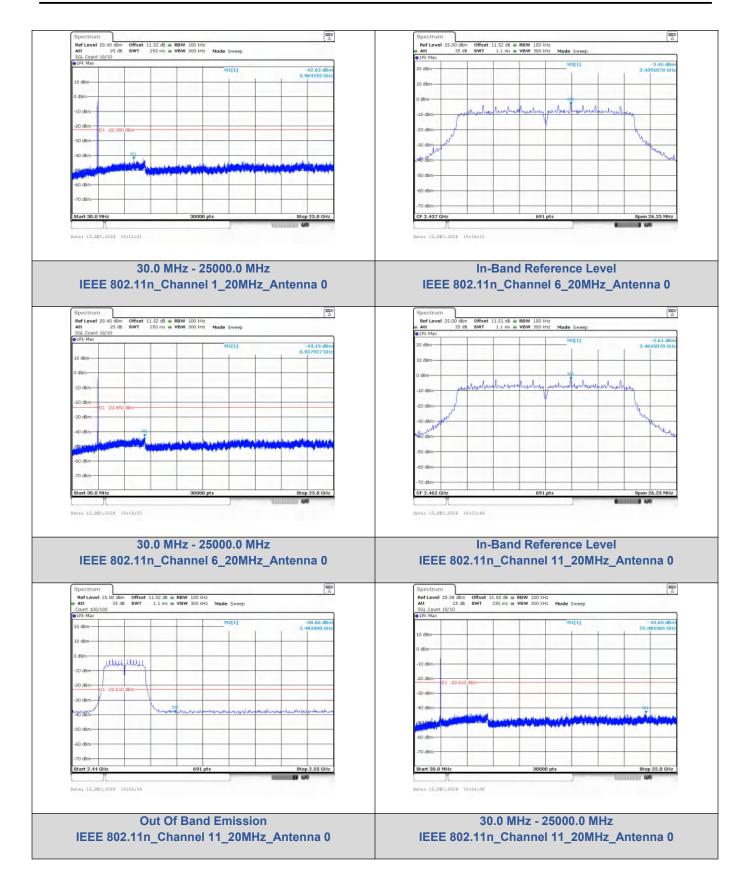

Conducted Out Of Band Emission

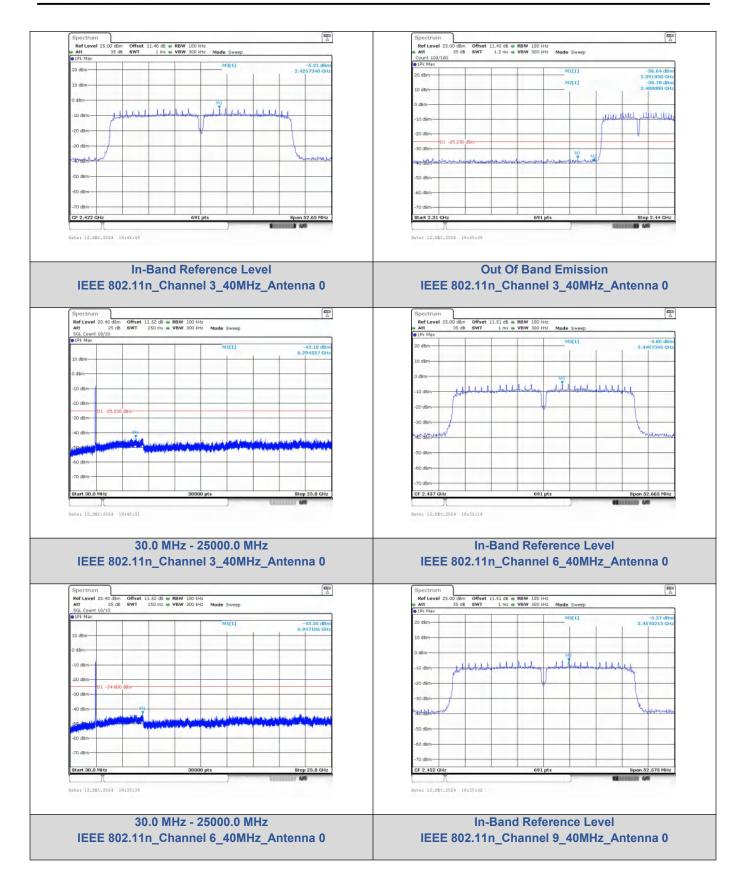
Test Result

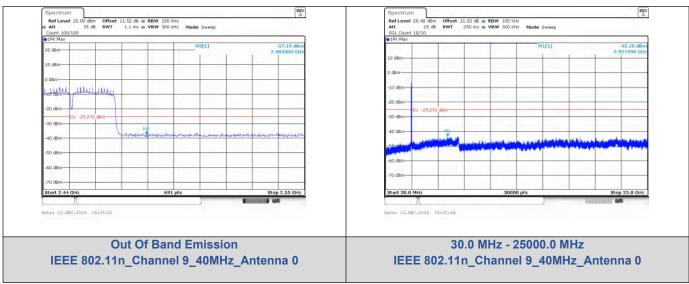

Mode	Channel	Ant.	OOB Emission Frequency (MHz)	OOB Emission Level (dBm)	Limit (dBm)	Over Limit (dB)	Result
IEEE	1		2400.00	-33.550	-14.92	-18.630	PASS
			4823.82	-42.693	-14.92	-27.773	PASS
802.11b	6		6944.61	-42.792	-14.66	-28.132	PASS
	11	0	2483.50	-37.600	-14.14	-23.460	PASS
			6946.27	-42.999	-14.14	-28.859	PASS
	1		2400.00	-35.590	-22.49	-13.100	PASS
IEEE			6920.47	-43.300	-22.49	-20.810	PASS
802.11g	6		6894.67	-42.179	-23.25	-18.929	PASS
	11		1779.98	-40.133	-22.74	-17.393	PASS
			2483.50	-38.760	-22.74	-16.020	PASS
	1		2400.00	-35.010	-22.38	-12.630	PASS
IEEE			5904.19	-42.625	-22.38	-20.245	PASS
IEEE 802.11n_20	6		6957.93	-43.189	-23.45	-19.739	PASS
	11		2483.50	-38.660	-22.61	-16.050	PASS
			22085.6	-43.693	-22.61	-21.083	PASS
IEEE 802.11n_40	3		2391.93	-36.642	-25.23	-11.412	PASS
			2400.00	-38.780	-25.23	-13.550	PASS
			6294.60	-43.178	-25.23	-17.948	PASS
	6		6947.11	-43.353	-24.8	-18.553	PASS
	9		2483.50	-37.190	-25.27	-11.920	PASS
			5927.50	-43.178	-25.27	-17.908	PASS

Test Graphs









-----End of the report-----