

TEST REPORT

Product Name	:	Smart keypad
Model Number	:	KP2001
FCC ID	:	2BB7K-KP2001

Prepared for Address	::	Anona Security Technology Limited. 8 The Green,Ste A Dover DE 19901 · America
Prepared by Address	:	EMTEK (SHENZHEN) CO., LTD. Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Tel: (0755) 26954280 Fax: (0755) 26954282
Report Number Date(s) of Tests Date of issue	:	ENS2306300117W00201R July 3, 2023 to August 20, 2023 August 26, 2023

\$二维码\$

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

TABLE OF CONTENTS

1 TEST RESULT CERTIFICATION	3
2 EUT TECHNICAL DESCRIPTION	5
3 SUMMARY OF TEST RESULT	6
4 TEST METHODOLOGY	7
4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS 4.2 MEASUREMENT EQUIPMENT USED 4.3 DESCRIPTION OF TEST MODES	7
5 FACILITIES AND ACCREDITATIONS	9
5.1 FACILITIES 5.2 LABORATORY ACCREDITATIONS AND LISTINGS	9
6 TEST SYSTEM UNCERTAINTY	
7 SETUP OF EQUIPMENT UNDER TEST	
7.1 RADIO FREQUENCY TEST SETUP 1 7.2 RADIO FREQUENCY TEST SETUP 2 7.3 CONDUCTED EMISSION TEST SETUP 7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM 7.5 SUPPORT EQUIPMENT	11 13 14 14
8 TEST REQUIREMENTS	-
 8.1 DTS 6DB BANDWIDTH 8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER	19 23 27 39 52

1 TEST RESULT CERTIFICATION

Applicant	:	Anona Security Technology Limited.			
Address	:	8 The Green,Ste A Dover DE 19901 \cdot America			
Manufacturer	:	Anona Security Technology Limited.			
Address	:	8 The Green,Ste A Dover DE 19901 \cdot America			
EUT	:	Smart keypad			
Model Name	:	KP2001			
Trademark	:	Anona			

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2 , Subpart J FCC 47 CFR Part 15, Subpart C	PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247

The test results of this report relate only to the tested sample identified in this report

Date of Test :	: July 3, 2023 to August 20, 2023			
Prepared by :	Una Yu Una Yu/Editor			
Reviewer :	Jue Ha SHENZHEN, Joe Xia/Supervisor			
Approved & Authorized Signer :	Lisa Wang/Manager			

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

Modified Information

Version	Report No.	Revision Date	Summary	
Ver.1.0 ENS2306300117W00201R		/	Original Report	

2 EUT TECHNICAL DESCRIPTION

Product	Smart keypad	
Model Number	KP2001	
Device Type	BLE V5.2	
Data Rate :	1Mbps 2Mbps	
Modulation:	GFSK	
Operating Frequency Range:	2402-2480MHz	
Number of Channels:	40 Channels	
Antenna Type:	PCB Antenna	
Antenna Gain:	1.18 dBi	
Power Supply	DC 4.5V	
Temperature Range:	-10°C ~ 55°C	

Note: for more details, please refer to the user's manual of the EUT.

FCC Part Clause	Test Parameter	Verdict	Remark	
15.247(a)(2)	DTS (6dB) Bandwidth	PASS		
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS		
15.247(e)	Maximum Power Spectral Density Level	PASS		
15.247(d)	Unwanted Emission Into Non-Restricted Frequency Bands	PASS		
15.247(d) 15.209	Unwanted Emission Into Restricted Frequency Bands (conducted)	PASS		
15.247(d) 15.209	Radiated Spurious Emission	PASS		
15.207	Conducted Emission Test	N/A		
15.247(b)	Antenna Application PASS			
NOTE1: N/A (Not Applicable) NOTE2: According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.				

3 SUMMARY OF TEST RESULT

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2BB7K-KP2001 filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 15.247 Meas Guidance v05r02

4.2 MEASUREMENT EQUIPMENT USED

For Conducted Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESCI	101045	2023/5/13	1Year
PULSE LIMTER	Rohde & Schwarz	ESH3-Z2	100107	2023/5/13	1Year
AMN	Rohde & Schwarz	ESH3-Z5	100191	2023/5/10	1Year
AMN	Schwarzbeck	NNLK 8129	8129203	2023/5/13	1Year
V-Network	Rohde & Schwarz	ESH3-Z6	100011	2023/5/11	1Year
V-Network	Rohde & Schwarz	ESH3-Z6	100253	2023/5/11	1Year

For Spurious Emissions Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Pre-Amplifier	HP	8447F	2944A07999	2023/5/13	1Year
EMI Test Receiver	Rohde & Schwarz	ESCI	101414	2023/5/13	1Year
Bilog Antenna	Schwarzbeck	VULB9163	712	2023/7/2	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1178	2021/8/22	2 Year
Pre-Amplifie	CDSI	PAP-1.0G18	23589	2023/5/10	1Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	2023/5/10	1Year
Horn antenna	Schwarzbeck	BBHA9170	9170-399	2023/5/12	2 Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	2023/5/12	2 Year

For other test items:

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Signal Analyzer	Agilent	N9010A	MY53470879	2023/5/10	1Year
Vector Signal Generater	Agilent	N5182B	MY53050878	2023/5/10	1Year
Analog Signal Generator	Agilent	N5171B	MY53050553	2023/5/10	1Year
RF Control Unit(Power Meter)	Tonscend	JS0806-2	١	2023/5/13	1Year
Temperature&Hum idity Chamber	ESPEC	EL-02KA	12107166	2023/5/10	1Year

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	19	2440		
1	2404	20	2442	37	2476
2	2406	21	2444	38	2478
				39	2480
Note: fc=2402M	Hz+k×1MHz k=1	to 39			

Frequency and Channel list:

Test Frequency and channel:

Lowest F	Lowest Frequency		requency	Highest Frequency		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
0	2402	19	2440	39	2480	

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
EMC Lab.	: Accredited by CNAS
	The Certificate Registration Number is L2291
	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01 (identical to ISO/IEC 17025:2017)
	Accredited by FCC
	Designation Number: CN1204
	Test Firm Registration Number: 882943
	Accredited by A2LA
	The Certificate Number is 4321.01
	Accredited by Industry Canada
	The Conformity Assessment Body Identifier is CN0008
Name of Firm	: EMTEK (SHENZHEN) CO., LTD.
Site Location	: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen,
	Guangdong, China

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Parameter	Measurement Uncertainty
RF Output Power	±1.0%
Power Spectral Density	±0.9%
Duty Cycle and Tx-Sequence and Tx-Gap	±1.3%
Medium Utilisation Factor	±1.5%
Occupied Channel Bandwidth	±2.3%
Transmitter Unwanted Emission in the Out-of Band	±1.2%
Transmitter Unwanted Emissions in the Spurious Domain	±2.7%
Receiver Spurious Emissions	±2.7%
Temperature	±3.2%
Humidity	±2.5%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

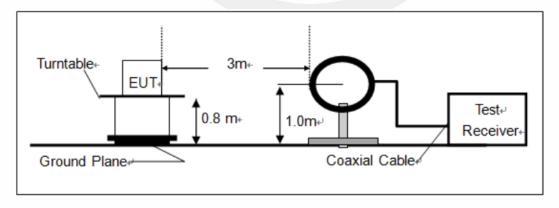
The BLE component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

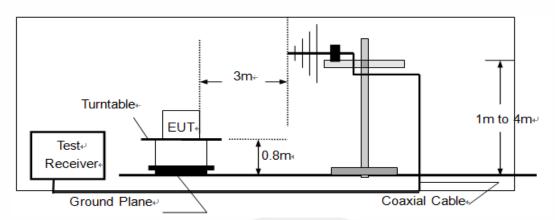
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

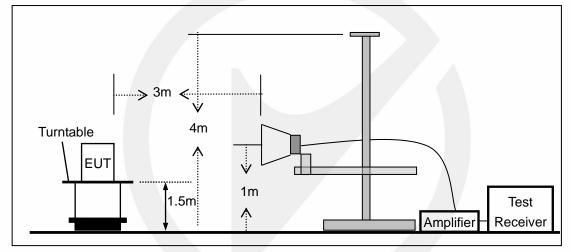

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

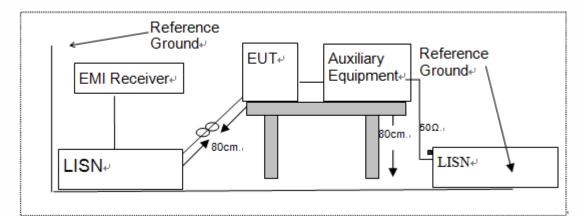

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz


深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

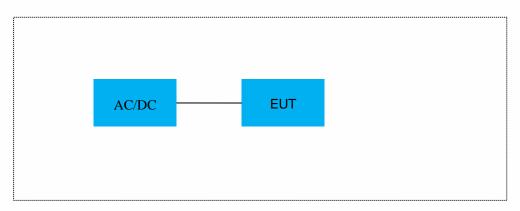
(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
	V		

Auxiliary Cable List and Deta	ils		
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite

Auxiliary Equipment List and Details			
Description	Manufacturer	Model	Serial Number
AAA Battery	Panasonic	R03PNU	/

Notes:

1.All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test. 2.Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS 6DB BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in BLE mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300 kHz.

Set Span=2 times OBW

Set Detector = Peak.

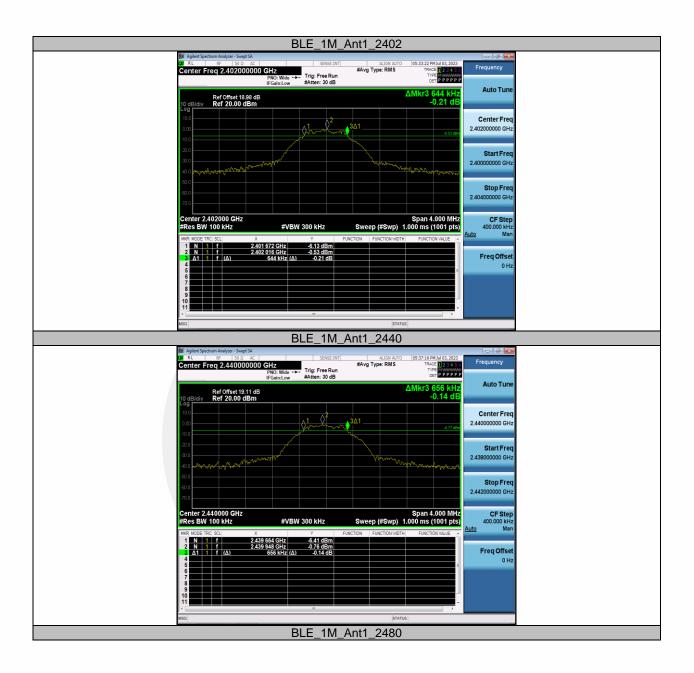
Set Trace mode = max hold.

Set Sweep = auto couple.

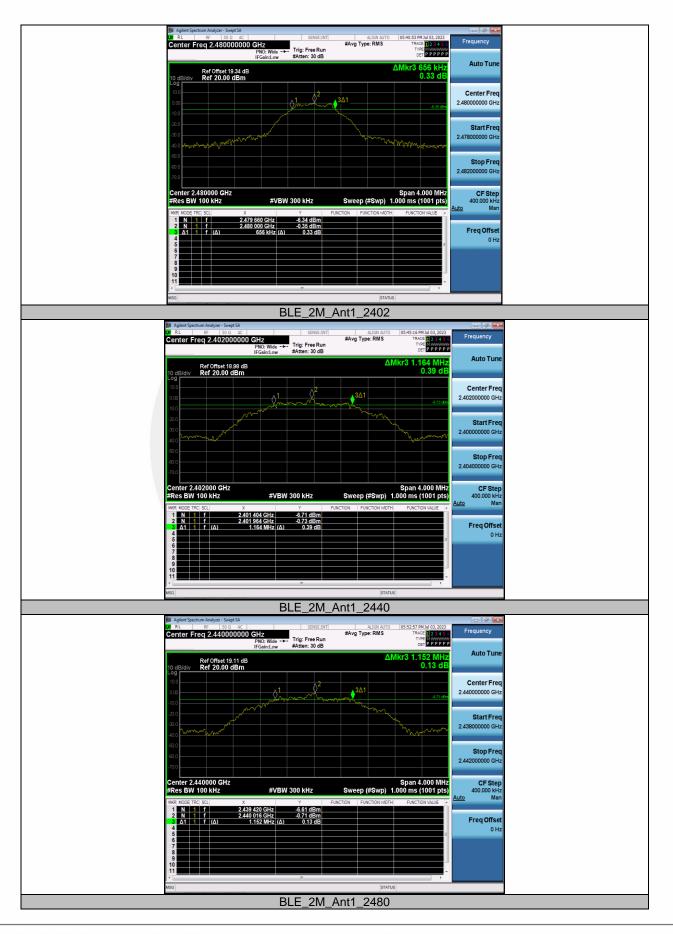
Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.


Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar


TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.644	2401.672	2402.316	0.5	PASS
BLE_1M	Ant1	2440	0.656	2439.664	2440.320	0.5	PASS
		2480	0.656	2479.660	2480.316	0.5	PASS
		2402	1.164	2401.404	2402.568	0.5	PASS
BLE_2M	Ant1	2440	1.152	2439.420	2440.572	0.5	PASS
		2480	1.144	2479.432	2480.576	0.5	PASS

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

According to FCC Part15.247(b)(3)

As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. For smart system, Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Set the RBW \geq DTS bandwidth(about 1MHz).

Set VBW =3*RBW(about 3MHz)

Set the span ≥3*RBW

Set Sweep time = auto couple.

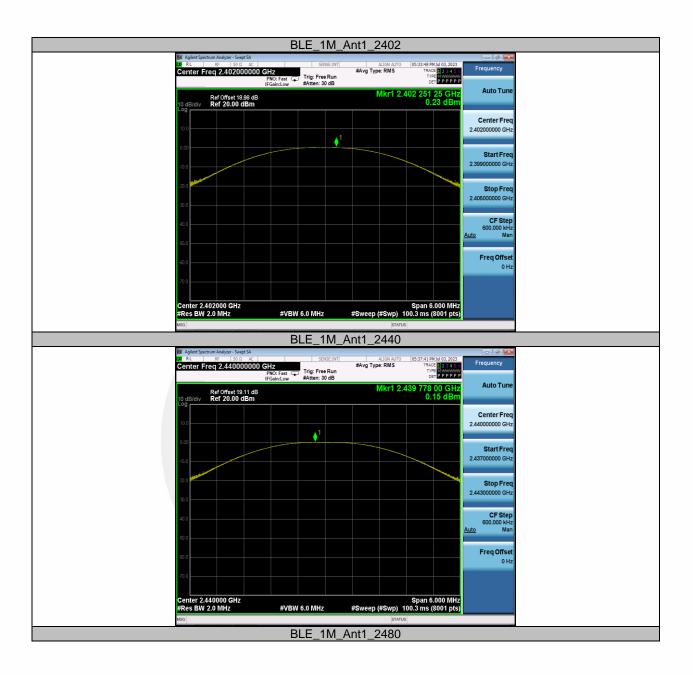
Set Detector = peak.

Set Trace mode = max hold.

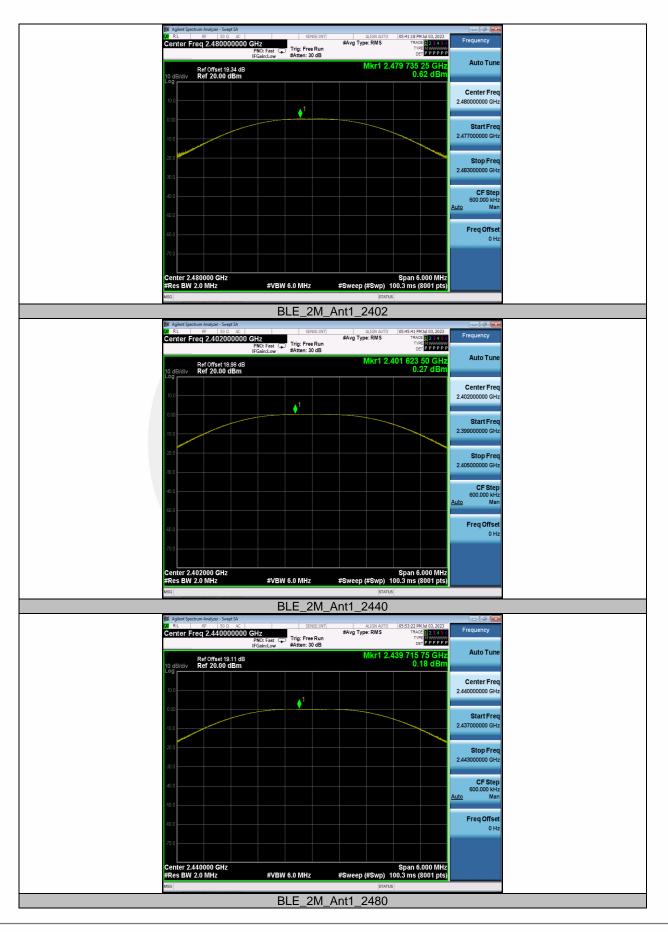
Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar


TestMode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
		2402	0.23	≤30	1.41	≤36	PASS
BLE_1M	Ant1	2440	0.15	≤30	1.33	≤36	PASS
		2480	0.62	≤30	1.80	≤36	PASS
		2402	0.27	≤30	1.45	≤36	PASS
BLE_2M	Ant1	2440	0.18	≤30	1.36	≤36	PASS
		2480	0.76	≤30	1.94	≤36	PASS

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

🚺 Agilent Sj	pectrum Analyzer - Swept SA					- 0 💌
Center	RF 50 Ω AC Freg 2.480000000 GH	7	SENSE:INT	ALIGN AUTO #Avg Type: RMS	TRACE 1 2 3 4 5 (Frequency
Contor	P	NO: Fast Trig:	Free Run n: 30 dB		DET PPPPF	
10 dB/div Log	Ref Offset 19.34 dB Ref 20.00 dBm			Mkr1 2.	480 002 25 GHz 0.76 dBm	Auto Tune
10.0			1			Center Freq 2.48000000 GHz
-10.0						Start Freq 2.477000000 GHz
-20.0						Stop Freq 2.483000000 GHz
-40.0						CF Step 600.000 kHz <u>Auto</u> Man
-60.0						Freq Offset 0 Hz
-70.0						
	2.480000 GHz V 2.0 MHz	#VBW 6.0 M	Hz ;	#Sweep (#Swp)	Span 6.000 MHz 100.3 ms (8001 pts)	
MSG				STATU	JS	

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency.

Set the span to 1.5 times the DTS bandwidth.

Set the RBW to: 3 kHz

Set the VBW to: 10 kHz.

Set Detector = peak.

Set Sweep time = auto couple.

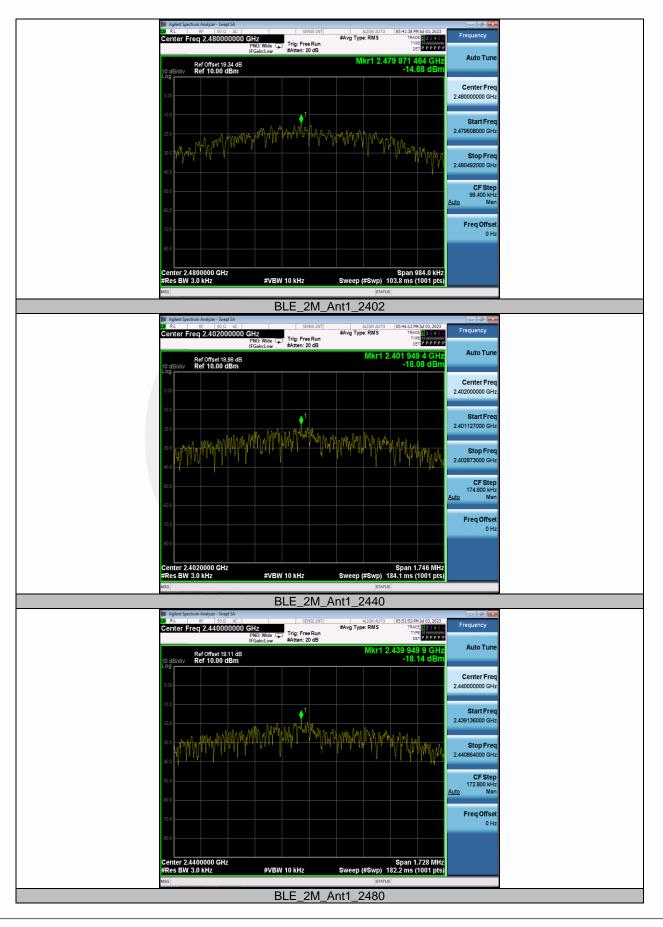
Set Trace mode = max hold.

Allow trace to fully stabilize.

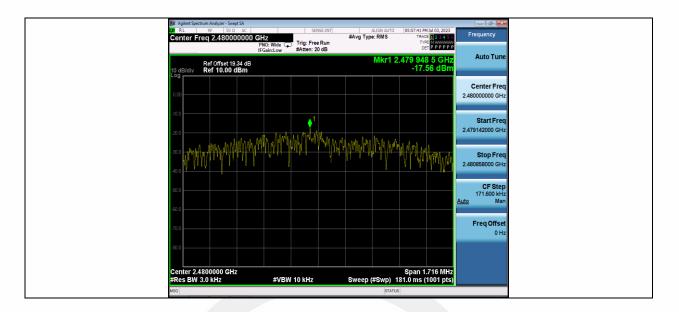
Use the peak marker function to determine the maximum amplitude level within the RBW.

8.3.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar


TestMode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-15.06	≤8.00	PASS
BLE_1M	Ant1	2440	-15.17	≤8.00	PASS
		2480	-14.68	≤8.00	PASS
		2402	-18.08	≤8.00	PASS
BLE_2M	Ant1	2440	-18.14	≤8.00	PASS
		2480	-17.56	≤8.00	PASS

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn



8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to = 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

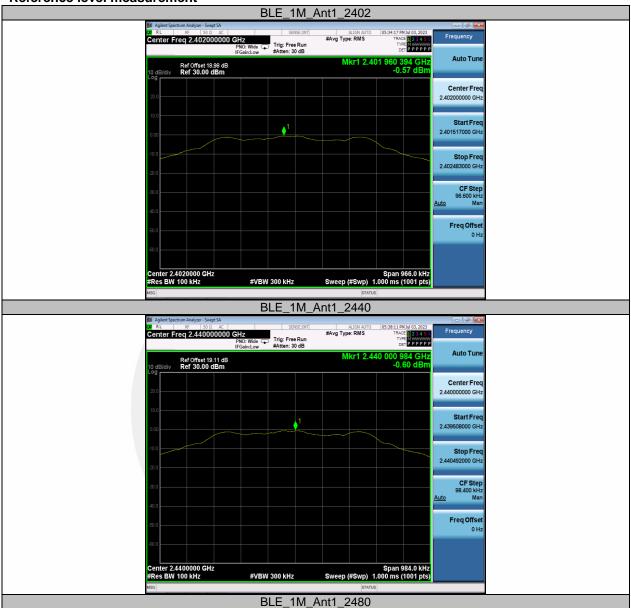
8.4.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

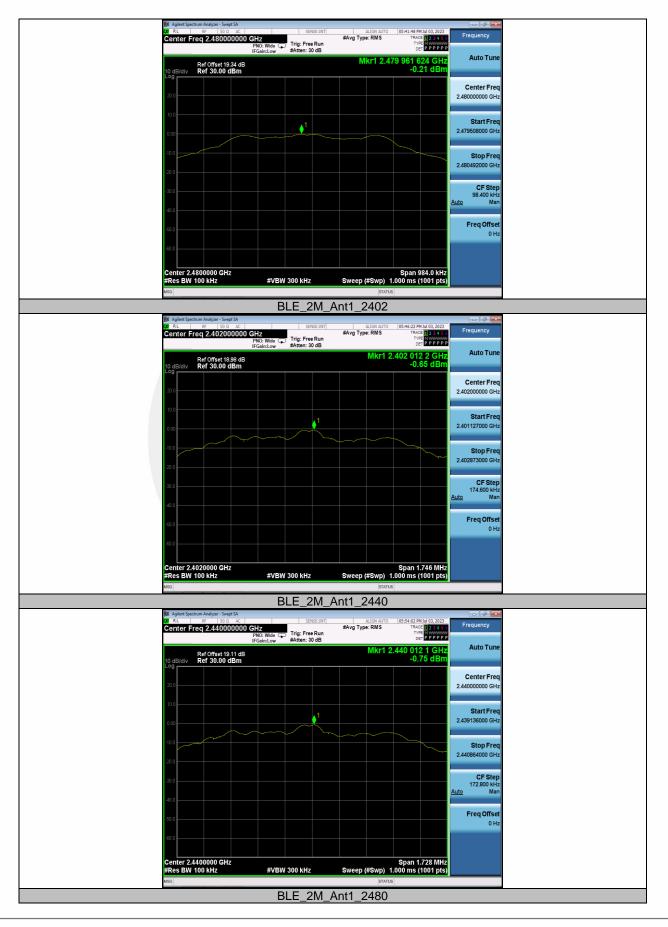
Reference level measurement

TestMode	Antenna	Freq(MHz)	Max.Point[MHz]	Result[dBm]
		2402	2401.96	-0.57
BLE_1M	Ant1	2440	2440.00	-0.60
		2480	2479.96	-0.21
		2402	2402.01	-0.65
BLE_2M	Ant1	2440	2440.01	-0.75
		2480	2479.96	-0.21


Band edge measurements

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE 1M	Ant1	Low	2402	-0.57	-36.21	≤-20.57	PASS
	Anti	High	2480	-0.21	-35.74	≤-20.21	PASS
BLE 2M	Ant1	Low	2402	-0.65	-31.45	≤-20.65	PASS
	Anti	High	2480	-0.21	-36.13	≤-20.21	PASS

Conducted Spurious Emission

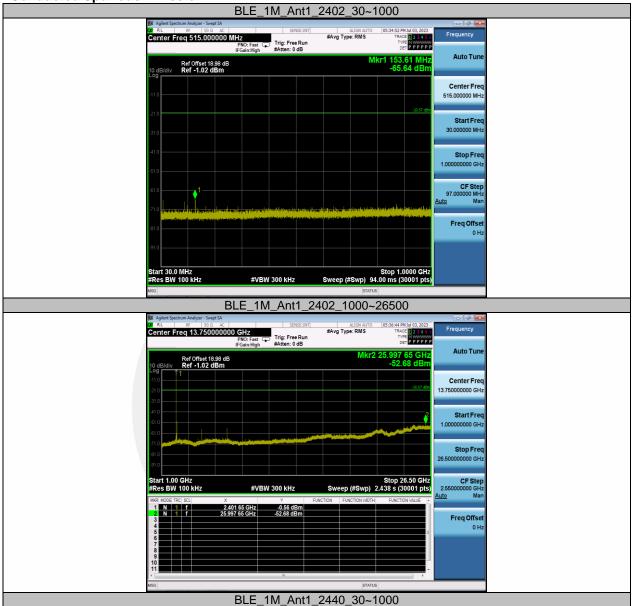

TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
		2402	30~1000	-0.57	-65.64	≤-20.57	PASS
		2402	1000~26500	-0.57	-52.68	≤-20.57	PASS
BLE_1M	Ant1	2440	30~1000	-0.60	-65.52	≤-20.6	PASS
DLC_1W	Anti	2440	1000~26500	-0.60	-52.73	≤-20.6	PASS
		2480	30~1000	-0.21	-65.49	≤-20.21	PASS
		2400	1000~26500	-0.21	-52.19	≤-20.21	PASS
		2402	30~1000	-0.65	-65.49	≤-20.65	PASS
		2402	1000~26500	-0.65	-52.65	≤-20.65	PASS
BLE 2M	Ant1	2440	30~1000	-0.75	-65.05	≤-20.75	PASS
DLC_2IVI	Anti	2440	1000~26500	-0.75	-52.48	≤-20.75	PASS
		2480	30~1000	-0.21	-65.19	≤-20.21	PASS
		2400	1000~26500	-0.21	-51.49	≤-20.21	PASS

Reference level measurement

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

BLE_1M_Ant1_Low_2402 R R RL RF 50.0 AC SETUCATION OF THE STOCK OF THE #Avg Type: RMS Frequency 12345 MWWWW PPPPP Auto Tun Ref Offset 18.98 dB Ref 20.00 dBm u5 460 C -36.21 d Center Freq 2.352500000 GH Start Free ♦ ♦ 2.30000000 GH Stop Freq 2.40500000 GHz Stop 2.40500 GHz 10.07 ms (1001 pts) CF Step 10.500000 MH t 2.30000 GH #VBW 300 kHz Sweep (#Swp) M Freq Offse 0 H BLE_1M_Ant1_High_2480 Tagent Spactum Anaryme and Arc Rt 8 ≠ 10.0 Arc PNC: Fast PNC: Fast #Crain-Low #Atten: 30 dB #Avg Type: RMS Frequency 1 2 3 4 5 M P P P P P F Auto Tun Ref Offset 19.34 dB Ref 20.00 dBm 527 92 (-35.74 d Center Freq 2.51000000 GH Start Freq **♦**⁴ 2.47000000 GH $\langle \rangle^2$ Stop Freq 2 55000000 GH Stop 2.55000 GHz Sweep (#Swp) 7.667 ms (1001 pts) 2.47000 GHz CF Step 8.000000 MH #VBW 300 kHz M⊦ Ma -38.65 dE -38.92 dE -35.74 dE 2.483 50 GHz 2.500 00 GHz 2.527 92 GHz Freq Offse 0 H BLE_2M_Ant1_Low_2402

Band edge measurements



💓 Agilent Spectrum Analyzer - Swept SA			- 6 💌
Center Freq 2.35250000	O CHZ PNO: Fast Tig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO 05:46:40 PM Jul 03, 2023 #Avg Type: RMS TRACE 0 2:34 S TYPE TYPE DET P P P P	Frequency
Ref Offset 18.98 di 10 dB/div Ref 20.00 dBm		Mkr5 2.399 960 GH -31.45 dBn	Auto Tune
10.0 0.00		6	Center Freq 2.352500000 GHz
-10.0 -20.0 -30.0			Start Freq 2.30000000 GHz
-400 -500 -600			Stop Freq 2.40500000 GHz
700 Start 2.30000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.40500 GH Sweep (#Swp) 10.07 ms (1001 pts	10.500000 MHz
MKR MODE TRC SCL X 1 1 1 2 2 1 1 2 4 1 1 2 3 1 1 2 3 1 1 2 3 1 1 1 2 3 3 1 1 1 1 1 1 1 3 3 1 1 1 1 1 3 3 1 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 3 3 1 1 1 1 1 1 3 3 1	Y FUI 00 000 GHz 31.45 dBm 90 000 GHz -38.57 dBm 10 000 GHz -38.24 dBm	NCTION FUNCTION WIDTH FUNCTION VALUE	Freq Offset
5 N 1 f 23 6 7 7 8 9	99 960 GHz -31.45 dBm		0 Hz
			-
MSG	BLE_2M_Ant1	status I_High_2480	
Agilent Spectrum Analyzer - Swept SA			- 3 💌
02 RL RF 500 AC Center Freq 2.51000000	O CHZ PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO 05:58:10 PMJau 03, 2023 #Avg Type: RMS TRACE 12:34 5 TYPE DET P.P.P.P. DET P.P.P.P.	6 Frequency
Ref Offset 19.34 di 10 dB/div Ref 20.00 dBm		Mkr4 2.532 64 GH -36.13 dBn	Auto Tune
			Center Freq 2.510000000 GHz
-20.0	3 ³ 1	4	Start Freq 2.470000000 GHz
-40.0 -50.0 -60.0			Stop Freq 2.55000000 GHz
70.0 Start 2.47000 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.55000 GH Sweep (#Swp) 7.667 ms (1001 pts	Z CF Step 8.000000 MHz
MKR MODE TRC Scl. X 1 N 1 f 2 3 N 1 f 2		INCTION FUNCTION VIDTH FUNCTION VALUE	Auto Man
3 N 1 f 2 4 N 1 f 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	483 50 GHz 38.67 dBm 500 00 GHz 38.88 dBm 532 64 GHz 36.13 dBm		Freq Offset 0 Hz
8 9 10 11			
MSG		STATUS	

Report No. ENS2306300117W00201R

Ver. 1.0

Conducted Spurious Emission

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

 🛐 Agilet Spectrum Analyzer - Sweet SA
Agiter Spectrum Analyzer - Swept 5A Constraint ALION AUTO (65-44-13 PHJ) (63, 2023 Frequency Center Freq 13.750000000 GHz IFG6mithigh Trig: Free Run Truc: IF28.451 Truc: IF28.451 Frequency
Ref Offset 19.34 dB Mkr2 24.875 65 GHz Auto Tune 10 dB/div Ref -0.66 dBm -52.19 dBm
Log 1 107 507 307 3021 40 1375000000 GHz
507 507 507
50.7 Stop Freq 80.7 25.50000000 GHz
Start 1.00 GHz Stop 26.50 GHz CF Step
#Res BW 100 kHz #VBW 300 kHz Sweep (#Swp) 2.438 s (30001 pts) 2.550000000 GHz WRR MODE THCI SCL X Y FUNCTION I FUNCTION WOTH FUNCTION WALK IN Auto Man
1 N f 2.479 85 GHz -0.23 dBm 2 N 1 f 24.875 65 GHz -52.19 dBm 3
BLE_2M_Ant1_2402_30~1000
Agient Spetum Adupter - Swept SA Second Social State Second Social State Second Social State Second Social State Frequency R RL Sp Social State Sp Social State Trig: Free Run Trig: Free Run
Ref Offset 15.98 dB 10 dB/dity Ref -1.02 dBm Log
Log Center Freq 515.00000 MHz
-21.0
5310 Start Freq 30.00000 MHz
4110 Stop Freq 1.00000000 GHz
910
Start 30.0 MHz Stop 1.0000 GHz #Res BW 100 KHz #VBW 300 kHz Sweep (#Swp) 94.00 ms (30001 pts)

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB 558074 D01 15.247 Meas Guidance v05r02

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 drt19.200, Restricted bands								
MHz	MHz	MHz	GHz					
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15					
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46					
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75					
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5					
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2					
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5					
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7					
6.26775-6.26825	123-138	2200-2300	14.47-14.5					
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2					
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4					
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12					
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0					
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8					
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5					
12.57675-12.57725	12.57675-12.57725 322-335.4		(2)					
13.36-13.41								

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted	Field Strength (µV/m)	Field Strength	Measurement
Frequency(MHz)		(dBµV/m)	Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for f \geq 1 GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz) VBW \geq RBW

深圳信测标准技术服务股份有限公司地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

Sweep = auto Detector function = peak Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data.

Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

Temperature:	26° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

Spurious Emission below 30MHz (9KHz to 30MHz)

Freq.				Limit 3m	(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	ÁV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

BLE mode have been tested, and the worst result was report as below:

Test mode:	BLE(1M)	Freque	ency: Ch	annel 0: 2402MHz	
	•	1		1	
Freq.	Ant.Pol.	Emission	Limit	Over(dB)	Detector
(MHz)		Level(dBuV/m)	3m(dBuV/m)		
4803.75	V	51.74	74.00	22.26	peak
7205.62	V	56.37	74.00	17.63	peak
17632.5	V	68.93	74.00	5.07	peak
4803.789	V	46.29	54.00	7.71	AVG
7205.671	V	53.17	54.00	0.83	AVG
17632.5	V	47.76	54.00	6.24	AVG
4803.75	Н	51.43	74.00	22.57	peak
7205.62	Н	58.03	74.00	15.97	peak
17623.1	Н	70.63	74.00	3.37	peak
4803.772	Н	46.76	54.00	7.24	AVG
7205.674	Н	52.35	54.00	1.65	AVG
17623.12	Н	47.95	54.00	6.05	AVG

Test mode: BLE(1M) Frequency: Channel 19: 2440MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
4880.62	V	51.53	74.00	22.47	peak
7320	V	55.61	74.00	18.39	peak
17623.1	V	69.15	74.00	4.85	peak
4880.588	V	44.53	54.00	9.47	AVG
7320.014	V	49.03	54.00	4.97	AVG
17623.12	V	50.08	54.00	3.92	AVG
4878.75	Н	50.87	74.00	23.13	peak
7318.12	Н	56.03	74.00	17.97	peak
17623.1	Н	69.31	74.00	4.69	peak
4878.799	Н	43.14	54.00	10.86	AVG
7318.172	Н	48.75	54.00	5.25	AVG
17623.12	Н	50.04	54.00	3.96	AVG

Test mode:

BLE(1M)

Frequency:

Channel 39: 2480MHz

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
4959.37	V	50.24	74.00	23.76	peak
7440	V	53.56	74.00	20.44	peak
17595	V	70.10	74.00	3.90	peak
4959.418	V	44.89	54.00	9.11	AVG
7439.969	V	46.08	54.00	7.92	AVG
17595	V	50.56	54.00	3.44	AVG
4959.37	Н	48.51	74.00	25.49	peak
7440	Н	53.62	74.00	20.38	peak
17647.5	Н	69.57	74.00	4.43	peak
4959.411	Н	42.31	54.00	11.69	AVG
7440.005	Н	48.95	54.00	5.05	AVG
17647.5	Н	50.27	54.00	3.73	AVG

深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn

EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

- Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).
 - (2) Emission Level= Reading Level+Correct Factor +Cable Loss.
 - (3) Correct Factor= Ant_F + Cab_L Preamp
 - (4)Data of measurement within this frequency range shown "-- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Test mode:	BLE(1M)	Frequency: Ch		annel 0: 2402MHz		
	1	ſ		1		
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector	
2353.94	V	45.70	74.00	28.30	peak	
2353.94	V	43.57	54.00	10.43	AVG	
2344.89	Н	45.46	74.00	28.54	peak	
2344.89	Н	43.54	54.00	10.46	AVG	

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

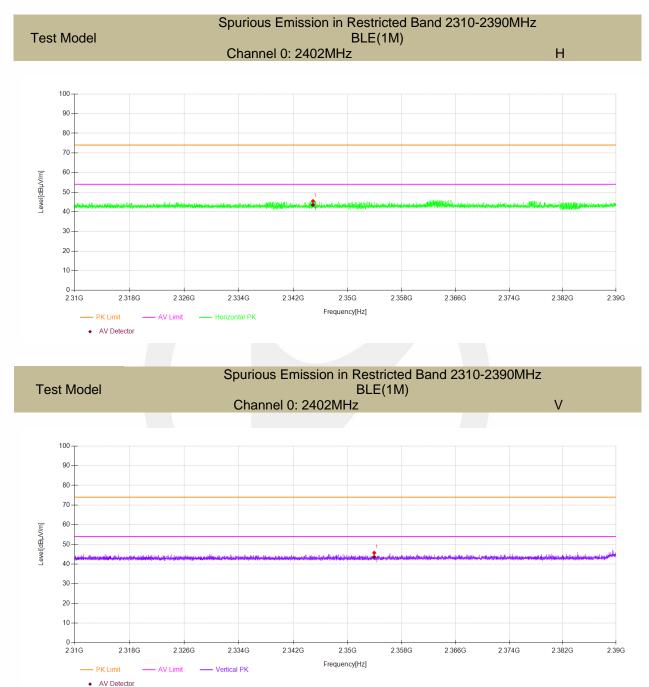
Test mode:

BLE(1M)

Frequency:

Channel 39: 2480MHz

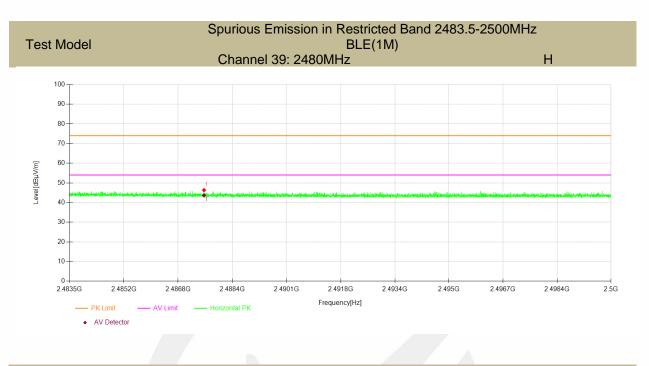
Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Over(dB)	Detector
2486.74	V	46.46	74.00	27.54	peak
2486.74	V	43.67	54.00	10.33	AVG
2487.58	Н	46.31	74.00	27.69	peak
2487.58	Н	43.63	54.00	10.37	AVG

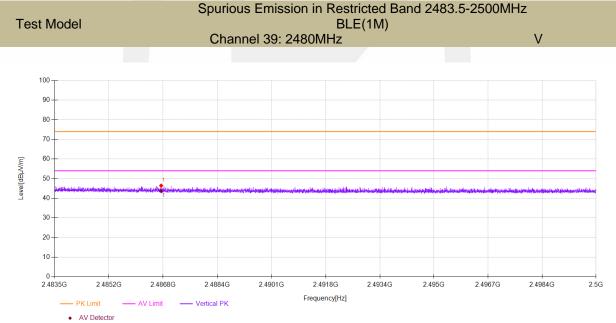

Note: (1) All Readings are Peak Value (VBW=3MHz) and Peak Value (VBW=10Hz).

(2) Emission Level= Reading Level+Correct Factor +Cable Loss.

(3) Correct Factor= Ant_F + Cab_L - Preamp

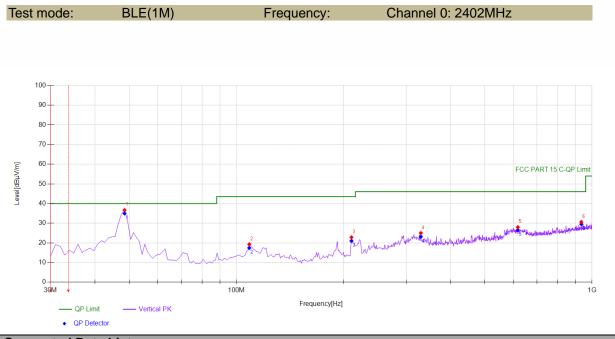
(4) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

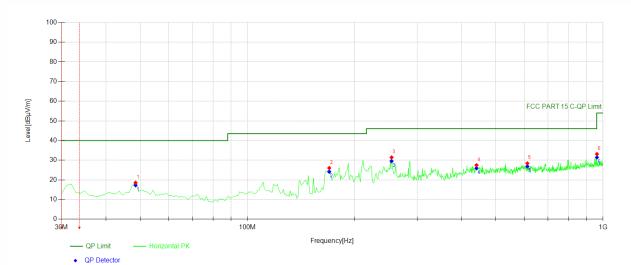



All the modulation modes were tested, the data of the worst mode are described in the following table

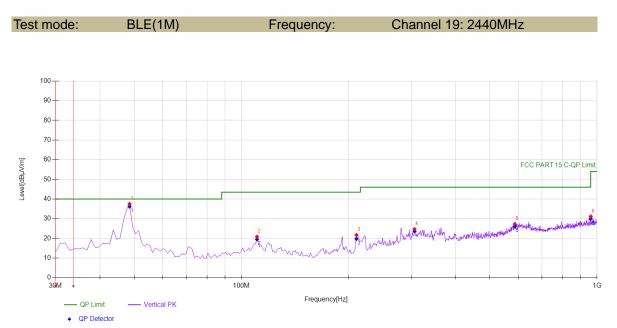
深圳信测标准技术服务股份有限公司 地址:广东省深圳市南山区马家龙工业区69栋 网址:Http://www.emtek.com.cn 邮箱:cs.rep@emtek.com.cn EMTEK (Shenzhen) Co., Ltd. Add: Building 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China Http://www.emtek.com.cn E-mail: cs.rep@emtek.com.cn

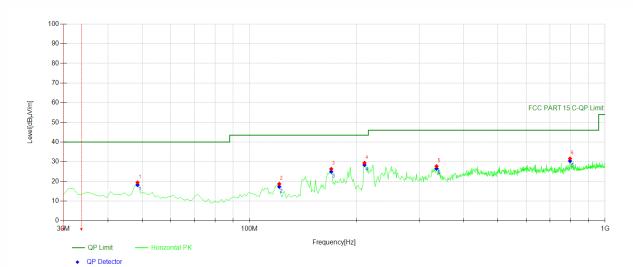
Report No. ENS2306300117W00201R

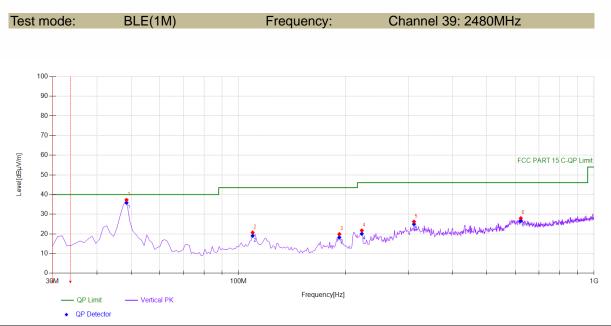



Spurious Emission below 1GHz (30MHz to 1GHz)

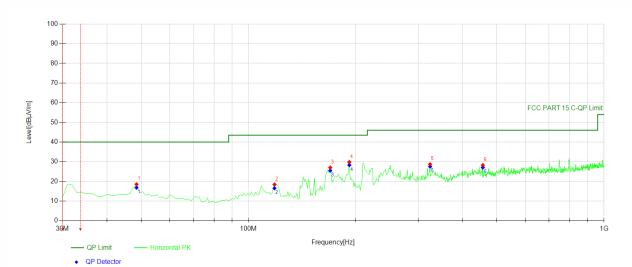
All modes have been tested, and the worst result recorded was report as below:


Suspe	Suspected Data List											
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity				
1	48.4484	53.98	-17.32	36.66	PK	40.00	3.34	Vertical				
2	108.648	36.55	-17.25	19.30	PK	43.50	24.20	Vertical				
3	210.600	39.98	-17.13	22.85	PK	43.50	20.65	Vertical				
4	330.03	38.76	-13.76	25.00	PK	46.00	21.00	Vertical				
5	618.408	35.11	-7.11	28.00	PK	46.00	18.00	Vertical				
6	933.003	33.19	-2.56	30.63	PK	46.00	15.37	Vertical				


Suspe	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity					
1	48.4484	35.86	-17.32	18.54	PK	40.00	21.46	Horizontal					
2	169.819	45.01	-18.97	26.04	PK	43.50	17.46	Horizontal					
3	254.294	46.61	-15.17	31.44	PK	46.00	14.56	Horizontal					
4	440.720	38.67	-11.18	27.49	PK	46.00	18.51	Horizontal					
5	612.582	35.49	-7.09	28.40	PK	46.00	17.60	Horizontal					
6	961.161	35.38	-2.25	33.13	PK	54.00	20.87	Horizontal					


Suspe	Suspected Data List												
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity					
1	48.4484	54.80	-17.32	37.48	PK	40.00	2.52	Vertical					
2	110.590	38.17	-17.35	20.82	PK	43.50	22.68	Vertical					
3	210.600	38.86	-17.13	21.73	PK	43.50	21.77	Vertical					
4	306.726	38.85	-14.15	24.70	PK	46.00	21.30	Vertical					
5	587.337	34.43	-7.14	27.29	PK	46.00	18.71	Vertical					
6	960.190	33.39	-2.28	31.11	PK	54.00	22.89	Vertical					

Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity
1	48.4484	36.74	-17.32	19.42	PK	40.00	20.58	Horizontal
2	121.271	36.77	-18.06	18.71	PK	43.50	24.79	Horizontal
3	169.819	45.29	-18.97	26.32	PK	43.50	17.18	Horizontal
4	210.600	46.53	-17.13	29.40	PK	43.50	14.10	Horizontal
5	335.855	41.25	-13.57	27.68	PK	46.00	18.32	Horizontal
6	797.067	36.03	-4.45	31.58	PK	46.00	14.42	Horizontal



Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity
1	48.4484	54.60	-17.32	37.28	PK	40.00	2.72	Vertical
2	109.619	37.98	-17.30	20.68	PK	43.50	22.82	Vertical
3	192.152	37.48	-17.61	19.87	PK	43.50	23.63	Vertical
4	222.252	38.61	-16.89	21.72	PK	46.00	24.28	Vertical
5	311.581	40.39	-14.15	26.24	PK	46.00	19.76	Vertical
6	622.292	35.00	-7.03	27.97	PK	46.00	18.03	Vertical

Report No. ENS2306300117W00201R

Ver. 1.0

Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB/m]	Level [dBµV/m]	Detector	Limit [dBµV/m]	Margin [dB]	Polarity
1	48.4484	35.83	-17.32	18.51	PK	40.00	21.49	Horizontal
2	118.358	36.21	-17.83	18.38	PK	43.50	25.12	Horizontal
3	169.819	45.97	-18.97	27.00	PK	43.50	16.50	Horizontal
4	192.152	47.41	-17.61	29.80	PK	43.50	13.70	Horizontal
5	324.204	42.65	-13.97	28.68	PK	46.00	17.32	Horizontal
6	456.256	39.31	-11.07	28.24	PK	46.00	17.76	Horizontal

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

Conducted Emission Limit					
Frequency(MHz)	Quasi-peak	Average			
0.15-0.5	66-56	56-46			
0.5-5.0	56	46			
5.0-30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.6.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

8.6.4 Test Procedure

The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

Not applicable, since EUT is DC power.

8.7 ANTENNA APPLICATION

8.7.1 **Antenna Requirement**

Standard FCC CRF Part 15.203	Requirement An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

 \square

PASS.

The EUT is integrated antenna, the antenna gain is 1.18 dBi.

Note:

Antenna use a permanently attached antenna which is not replaceable. Not using a standard antenna jack or electrical connector for antenna replacement The antenna has to be professionally installed (please provide method of installation)

which in accordance to section 15.203, please refer to the internal photos.

Detail of factor for rac				
Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	1	20.63
0.15	20.7	0.1	\	20.8
1	20.9	0.15	\	21.05
10	20.1	0.28	\	20.38
30	18.8	0.45	\	19.25
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5

Detail of factor for radiated emission

--- End of Report ---