Test Report for FCC FCC ID: TKWXP2-MDPB | | | | | | 10010 | TINVANI Z IVIDI D | | | | |---------------------|--|------------|---|-------------------|-------------|-------------------|--|--|--| | Report Number | | ESTRF | ESTRFC1905-002 | | | | | | | | | Company name | Suprem | Suprema Inc | | | | | | | | Applicant | Address | | 16F, Parkview Office Tower, 248, Jeongjail-ro, Bundang-gu, Seongnam-si, Gyeonggi, South Korea | | | | | | | | | Telephone | +82-31 | +82-31-710-4908 | | | | | | | | | Product name | Xpass : | 2 | | | | | | | | Product | Model No. | XF | P2-MDPB | Manufacturer | Supre | ma Inc | | | | | | Serial No. | | NONE | Country of origin | KOREA | | | | | | Test date | 07-May- | 19 ~ 09-N | ∕ay-19 | Date of issue | 28-N | 1ay-19 | | | | | Testing
location | 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si,
Gyeonggi-do 467-811, R. O. Korea | | | | | | | | | | Standard | F | CC PART | 15 Subpart C(15 | 5.209), ANSI C 63 | .10(2013) | | | | | | Test item | ■ Conducted (| Emission | □ Class A | ■ Class B | Test result | OK | | | | | rest item | ■ Radiated Em | nission | ☐ Class A | ■ Class B | Test result | ОК | | | | | Measurement | facility registration | number | 659627 | | | | | | | | Tested by | Engin | eer H.G. L | _ee | (Signature) | | | | | | | Reviewed by | Engineering | Manager | I.K. Hong | (Signature) | | | | | | | Abbreviation | OK, Pass = Com | plied, Fa | il = Failed, N/A | = not applicable | | | | | | | | | | | | | | | | | * Note - This test report is not permitted to copy partly without our permission - This test result is dependent on only equipment to be used - This test result based on a single evaluation of one sample of the above mentioned - There are two power sources, one of which is selected and tested(12 V) ## Contents | 1. | . Laboratory Information | 3 | |----|--|----| | 2. | . Description of EUT | 4 | | 3. | . Test Standards ······ | 6 | | 4. | . Measurement condition | 7 | | 5. | . Measurement of radiated emission | 9 | | | 5.1 Radiated emission limits, general requirements | 9 | | | 5.2 Measurement equipment | 9 | | | 5.3 Environmental conditions | 9 | | | 5.4 Test data | 10 | | 6. | . Measurement of conducted emission | 12 | | | 6.1 Measurement equipment | 12 | | | 6.2 Environmental conditions | 12 | | | 6.3 Test data | 13 | | 7. | . Photographs of test setup | 14 | | 8. | . Photographs of EUT | 16 | Appendix 1. Special diagram Appendix 2. Antenna Requirement # 1. Laboratory Information #### 1.1 General This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd. ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. #### 1.2 Test Lab. Corporation Name: ESTECH Co., Ltd. Head Office: Suite 1015 World Meridian II, 123 Gasan Digital 2-ro, Geumcheon-gu, Seoul 153-759, R. O. Korea EMC/Telecom/Safety Test Lab: 347-69, Jungbu-daero 147beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do 467-811, R. O. Korea ## 1.3 Official Qualification(s) Report Number: ESTRFC1905-002 KCC: Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC FCC: Filed Laboratory at Federal Communications Commission VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE # 2. Description of EUT ### 2.1 Summary of Equipment Under Test Product : Xpass 2 Model Number : XP2-MDPB Serial Number : NONE Manufacturer : Suprema Inc. Country of origin : KOREA Operating Frequency : 135.4 kHz Antenna Type : PCB Antenna Modulation Type : ASK Channel Spacing : 1 INPUT: AC(100 - 240) V, (50-60)Hz, 1.0 A Power Rating OUTPUT: DC 12 V, 2.5 A Receipt Date : 25-Mar-19 Report Number: ESTRFC1905-002 X-tal list(s) or : The highest operating frequency is NFC 135.4 kHz 2.2 General descriptions of EUT | Category | Feature | Specification | | | | |------------|--------------------------------------|---|--|--|--| | | LF card option | EM | | | | | | HF card option | MIFARE, MIFARE Plus, DESFire/EV1, FeliCa | | | | | Credential | NFC card | Supported | | | | | | BLE card | Supported | | | | | | RF read range* | MIFARE/DESFire/ISOFire: 50 mm, EM/FeliCa: 30 mm | | | | | | CPU | 1.0 GHz | | | | | | Memory | 4GB Flash + 64MB RAM | | | | | General | LED | Multi-color | | | | | | Sound | Multi-tone Buzzer | | | | | | Operating temperature | ∍-35 °C ~ 65 °C | | | | | | Storage temperature | -40 °C ~ 70 °C | | | | | | Operating humidity | 0 % - 95 %, non-condensed | | | | | | Dimension (W x H x D) | 48 mm x 145 mm x 27 mm (Bottom) | | | | | | Weight | · · | | | | | | Ethernet | Supported (10/100 Mbps, auto MDI/MDI-X) | | | | | | RS-485 | 1 ch Master / Slave (Selectable) | | | | | Et RS Wi | Wiegand | 1 ch Input / Output (Selectable) | | | | | interface | TTL input | 2 ch Input | | | | | | Relay | 1 Relay | | | | | | Tamper | Supported | | | | | | Power | Voltage: DC 12 V ~ DC 24 V, Current: Max. 500 mA
* Use 12 VDC, 1 A or 24 VDC, 0.5 A power supply | | | | | | Switch input VIH | Min. 3V, Max. 5V | | | | | | Switch input VIL | Max. 1V | | | | | Electrical | Wiegand output
Pull-up resistance | Internally pulled-up with 1 kΩ | | | | | | Switch Pull-up resistance | 4.7kΩ (The input ports are pulled up with 4.7kΩ.) | | | | | | Relay | Voltage: Max. 30 VDC, Current: Max. 2A | | | | ### 3. Test Standards Test Standard: FCC PART 15 This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices. #### Test Method: ANSI C 63.10 (2013) This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units #### Summary of Test Results | Applied Satandard: 47 CFR Part 15, Subpart C | | | | | | | | | |--|-----------------------------|--------|----------------------|--|--|--|--|--| | Standard | Test Type | Remark | Limit | | | | | | | 15.203 | Antenna Requirement | Pass | See Appendix 2 | | | | | | | 15.207 | AC Power Conducted Emission | Pass | Meet the requirement | | | | | | | 15.209 | Radiated Emission | Pass | Meet the requirement | | | | | | # 4. Measurement Condition # 4.1 EUT Operation. - -The EUT was tested, under transmission / receiving - 1. Normal communication with RF OUT Frequeny(135.4 kHz). - 2. Monitoring the operation status of frequency by using RF CARD. ## 4.2 Configuration and Peripherals # 4.3 EUT and Support equipment | Equipment Name | Model Name | S/N | Manufacturer | Remark
(FCC ID) | |----------------|-----------------|------|-------------------|--------------------| | Xpass 2 | XP2-MDPB | NONE | Suprema Inc | EUT | | Adapter | JPW128KA1200N05 | NONE | BridgePower Corp. | | | RF CARD | NONE | NONE | Suprema Inc | # 4.4 Cable Connecting | Start Equi | Start Equipment | | End Equipment | | | Damanık | |------------|-------------------------|---------|-------------------------|--------|------------|---------| | Name | I/O port | Name | I/O port | Length | Shielded | Remark | | Xpass 2 | Power | Adapter | - | 2 | Unshielded | | | Xpass 2 | Wireless
(135.4 kHz) | RF CARD | Wireless
(135.4 kHz) | - | - | ### 5. Measurement of radiated disturbance The EUT was placed on the top of a rotating table 0.8 m above the ground at a 3 m Open test site. The table was rotated 360 ° to determine the position of the highest radiation. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 ° to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. ### 5.1 Radiated emission limits, general requirements Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | Frequency
(MHz) | Field Strength(microvolt/meter) | Distance(meter) | |--------------------|---------------------------------|-----------------| | 0.009-0.490 | 2400/F(KHz) | 300 | | 0.490-1.705 | 24000/F(KHz) | 30 | | 1.705-30 | 30 | 30 | | 30-88 | 100** | 3 | | 88-216 | 150** | 3 | | 216-960 | 200** | 3 | | Above 960 | 500 | 3 | ^{*} dBuV/m=20*log(uV/m) * Distance factor=40dB / decade(15.31(f)) ## 5.2 Measurement equipments | Equipment Name | Type | Manufacturer | Serial No. | Next
Calibration date | |---|------------------------------|-------------------|---------------------------|--------------------------| | TEST Receiver | ESCI7 | ROHDE & SCHWARZ | 100916 | 22-Oct-19 | | Logbicon Antenna | VULB 9168 | SCHWARZBECK | 193 | 15-Oct-19 | | Turn Table | DT3000-2t | Innco System GmbH | N/A | - | | Antenna Mast | MA4000-EP | Innco System GmbH | N/A | - | | Antenna Master &
Turn table controller | CO2000-P Innco System GmbH I | | CO2000/641
/28051111/L | - | | Loop Antenna | HFH2-Z2 | ROHDE & SCHWARZ | 100188 | 30-Apr-19 | #### 5.3 Environmental Condition Test Place 10 m Semi-anechoic chamber Temperature (°C) : 22.8 °C Humidity (%) : 43.7 % R.H. Report Number: ESTRFC1905-002 EST-P25-IO2-F04 (2016.01.01) Page 9 of 16 # 5.4 Test data (9 kHz \sim 30 MHz) Test Date: 8-May-19 Measurement Distance: 3 m | Frequency | Reading | Vertical | Height | Correction | n Factor | Result | Result Value(Qeas-Peak) | | | | |-----------|---|---------------------|--------|-----------------|---------------|-------------------|-------------------------|----------------|--|--| | (kHz) | neading
(dB₩) | Position
[Angle] | (m) | Ant Factor (dB) | Cable
(dB) | Limit
(dB#V/m) | Result (dB#V/m) | Margin
(dB) | | | | 135.40 | 45.61 | 320 ° | 8.0 | 19.58 | 0.5 | 105.7 | 65.69 | -39.98 | Remark | H: Horizontal, V: Vertical There did not measure any radiated spurious emission in the range 9 kHz to 30 MHz *There is no found Restricted bands. *The 300 m limit was converted to 3m Limit using square factor(x) as it was found by measurements as follows; 3 m Limit(dBuV/m) = 20log(2400/F(KHz))+40log(300/3)= 20log(2400/135.4)+40log(300/3) | | | | | | | | | | ## 5.4 Test data(30 MHz ~ 1 000 MHz) Test Date: 8-May-18 Measurement Distance: 3 m | Frequency | Reading | Position | Position Height | Correction | Correction Factor | | alue(Quasi-pe | eak) | |-----------|---------|----------|-----------------|--------------------|-------------------|-------------------|--------------------|----------------| | (MHz) | (dB≠V) | (V/H) | (m) | Ant Factor
(dB) | Cable
(dB) | Limit
(dB#V/m) | Result
(dB#V/m) | Margin
(dB) | | 30.20 | 18.25 | V | 1.4 | 11.41 | 0.81 | 40.00 | 30.47 | 9.53 | | 168.80 | 12.01 | V | 1.2 | 11.68 | 1.97 | 43.50 | 25.65 | 17.85 | | 350.00 | 12.98 | Н | 1.4 | 14.72 | 2.93 | 46.00 | 30.62 | 15.38 | | 375.00 | 11.57 | Н | 1.4 | 15.36 | 3.05 | 46.00 | 29.97 | 16.03 | | 400.00 | 26.00 | Н | 1.6 | 16.00 | 3.16 | 46.00 | 45.16 | 0.84 | | 406.80 | 16.10 | Н | 1.6 | 16.14 | 3.18 | 46.00 | 35.42 | 10.58 | H: Horizontal, V: Vertical *Result Value = Reading + Antenna + Cable loss Remark ^{*}Correction Factor = Ant Factor + Cable ^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection ### 6. Measurement of conducted disturbance The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC Part 15 & ANSI C 63.10 (2013) The test setup was made according to FCC Part 15 & ANSI C 63.10 (2013) in a shielded Room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16. ### 6.1 Measurement equipments | Equipment Name | Type Manufacturer | | Serial No. | Next Calibration date | |----------------|-------------------|-----------------|------------|-----------------------| | TEST Receiver | ESHS 30 | Rohde & Schwarz | 828765/002 | 24-Oct-19 | | LISN | ESH2-Z5 | Rohde & Schwarz | 836679/025 | 24-Oct-19 | | Pulse Limiter | ESH3-Z2 | Rohde & Schwarz | NONE | 23-Oct-19 | #### 6.2 Environmental Condition Test Place : Shielded Room Temperature (°C) : 23.1 ℃ Report Number: ESTRFC1905-002 Humidity (% R.H.) : 42.5 % R.H. ### 6.3 Test data Test Date: 7-May-19 | Frequency | Correction | on Factor | Line | Qı | uasi-peak Val | lue | , | Average Value | e | |-----------|------------------------------|---------------|-------|-----------------|-------------------|------------------|-----------------|------------------|----------------| | (MHz) | Lisn
(dB) | Cable
(dB) | (H/N) | Limit
(dB#V) | Reading
(dB#V) | Result
(dB#V) | Limit
(dB#V) | Reading
(dBW) | Result
(dB) | | 0.20 | 0.61 | 0.27 | Н | 63.82 | 36.33 | 37.21 | 53.82 | 28.99 | 29.87 | | 0.26 | 0.44 | 0.27 | N | 61.40 | 36.60 | 37.31 | 51.40 | 26.22 | 26.93 | | 0.32 | 0.45 | 0.27 | N | 59.60 | 32.49 | 33.22 | 49.60 | 23.42 | 24.15 | | 0.52 | 0.49 | 0.28 | N | 56.00 | 31.54 | 32.31 | 46.00 | 24.16 | 24.93 | | 0.59 | 0.68 | 0.28 | Н | 56.00 | 31.76 | 32.73 | 46.00 | 25.20 | 26.17 | | 0.66 | 0.50 | 0.28 | Ν | 56.00 | 35.27 | 36.05 | 46.00 | 28.80 | 29.58 | ı | | | ı | | | | H: Hot Line, N: Neutral Line | | | | | | | | | Remark H: Hot Line, N: Neutral Line *Correction Factor = Lisn + Cable *Result = Correction Factor + Reading # 7. Photographs of test setup ## 7.1 Setup for Radiated Test # 7.3 Setup for Conducted Test : 0.15 MHz \sim 30 MHz [Front] [Rear] # 8.0 Photographs of EUT Report Number: ESTRFC1905-002 [Front] [Rear] # Appendix 1. Special diagram Comment: XP2-MDPB_125K_HOT ### *NEUTRAL LINE RBW 9 kHz MT 1 s Att 10 dB AUTO PREAMP OFF Comment: XP2-MDPB_125k_NEUTRAL ## Appendix 2. Antenna Requirement ## Regulation According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### Result -Complied The transmitter has an integral Loop PCB antenna.