

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong.

Telephone: (852) 2173 8888 Facsimile: (852) 2785 5487

www.intertek.com

TEST REPORT

Report Number: 22120988HKG-002

Application for Original Grant of 47 CFR Part 15 Certification

Single New Application of RSS-247 Issue 2 Equipment

This report contains the data of 2.4GHz wireless portion only.

FCC ID: 2AVPR-4533

IC: 25872-4533C

Prepared and Checked by:

Approved by:

Signed On File Wong Cheuk Ho, Herbert Assistant Supervisor

Wong Kwok Yeung, Kenneth Assistant Manager

Date: September 04, 2023

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

GENERAL INFORMATION

Applicant Name: Nacon (HK) Limited

Applicant Address: 17/F. 148 Electric Road, North Point, Hong Kong

FCC Specification Standard: FCC Part 15, October 1, 2021 Edition

FCC ID: 2AVPR-4533 **FCC Model(s):** NC4533

IC Specification Standard: RSS-247 Issue 2, February 2017

RSS-Gen Issue 5 Amendment 2, February 2021

IC: 25872-4533C

HVIN: 4533C **PMN:** NC4533

Type of EUT: Spread Spectrum Transmitter

Description of EUT: Revolution 5 PRO

(Controller)

Sample Receipt Date: July 28, 2023

Date of Test: July 31, 2023 to August 08, 2023

Report Date: September 04, 2023

Environmental Conditions: Temperature: +10 to 40°C

Humidity: 10 to 90%

Conclusion: Test was conducted by client submitted sample. The submitted

sample as received complied with the 47 CFR Part 15 / RSS-247

Issue 2 Certification.

TABLE OF CONTENTS

TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE	4
1.1 Summary of Test Results	4
•	
112 State Me Tre Compilation	
GENERAL DESCRIPTION	5
2.1 Product Description	5
6 ,	
2.4 Related Submittal(s) Grants	
SYSTEM TEST CONFIGURATION	7
3.1 Justification	7
-	
3.4 Measurement Uncertainty	
TEST RESULTS	10
4.1 Maximum Conducted Output Power at Antenna Terminals	10
·	
,	
•	
· ·	
<u> </u>	
·	
4.8 Occupied Bandwidth	
EQUIPMENT LIST	44
	1.1 Summary of Test Results 1.2 Statement of Compliance GENERAL DESCRIPTION 2.1 Product Description 2.2 Test Methodology 2.3 Test Facility 2.4 Related Submittal(s) Grants SYSTEM TEST CONFIGURATION 3.1 Justification 3.2 EUT Exercising Software 3.3 Details of EUT and Description of Accessories 3.4 Measurement Uncertainty TEST RESULTS 4.1 Maximum Conducted Output Power at Antenna Terminals 4.2 Minimum 6dB RF Bandwidth 4.3 Maximum Power Spectral Density 4.4 Out of Band Conducted Emissions 4.5 Field Strength Calculation 4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions 4.6.1 Radiated Emission Configuration Photograph 4.6.2 Radiated Emission Test Setup 4.6.3 Radiated Emission Test Setup 4.6.4 Transmitter Duty Cycle Calculation 4.7 AC Power Line Conducted Emission 4.8 Occupied Bandwidth

1.0 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

1.1 Summary of Test Results

Test Items	FCC Part 15 Section	RSS-247/ RSS-Gen# Section	Results	Details See Section
Antenna Requirement	15.203	7.1.2#	Pass	2.1
Max. Conducted Output Power (Peak)	15.247(b)(3)&(4)	5.4(4)	Pass	4.1
Min. 6dB RF Bandwidth	15.247(a)(2)	5.2(1)	Pass	4.2
Max. Power Density (average)	15.247(e)	5.2(2)	Pass	4.3
Out of Band Antenna Conducted Emission	15.247(d)	5.5	Pass	4.4
Radiated Emission in Restricted Bands and Spurious Emissions	15.247(d), 15.209 & 15.109	5.5	Pass	4.6
AC Power Line Conducted Emission	15.207 & 15.107	7.2.4#	N/A	4.7

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standard:

FCC Part 15, October 1, 2021 Edition RSS-247 Issue 2, February 2017 RSS-Gen Issue 5 Amendment 2, February 2021

2.0 GENERAL DESCRIPTION

2.1 Product Description

The Equipment Under Test (EUT) (NC4533) is a composite device which consists of 2.4GHz wireless and Bluetooth 3.0 functions.

The 2.4GHz wireless portion is using two antenna with frequency range between 2402MHz and 2479MHz.

The EUT is powered by DC 3.7V internal rechargeable battery.

The antenna(s) used in the EUT is internal, integral, and the test sample is a prototype. Peak Antenna Gain = 3.03 dBi (Antenna 1 of 2.4GHz wireless portion)

Peak Antenna Gain = 2.64 dBi (Antenna 2 of 2.4GHz wireless portion)

This report contains the data of 2.4GHz wireless portion only.

The circuit description is saved with filename: descri.pdf.

2.2 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.10 (2013). Preliminary radiated scans and all radiated measurements were performed in radiated emission test sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application. Antenna port conducted measurements were performed according to ANSI C63.10 (2013) and KDB Publication No.558074 D01 v05r02 (02-April-2019) All other measurements were made in accordance with the procedures in 47 CFR Part 2 and RSS-Gen Issue 5 Amendment 2, February 2021.

2.3 Test Facility

The radiated emission test site and antenna port conducted measurement facility used to collect the radiated data and conductive data are at Shenzhen UnionTrust Quality and Technology Co., Ltd. at 16/F., Block A, Building 6, Baoneng Science and Technology Park, Qingxiang Road No.1, Longhua New District, Shenzhen, China 518109. This test facility and site measurement data have been fully placed on file with the FCC and Industry Canada No.: 21600, CABID "HKAP01", "CN0023".

2.4 Related Submittal(s) Grants

This is a single application for certification of a transceiver (2.4GHz wireless portion only).

3.0 SYSTEM TEST CONFIGURATION

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit / receive continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by fully charged DC 3.7V internal rechargeable battery during test.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the base unit attached to peripherals, they were connected and operational (as typical as possible).

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

Radiated emission measurement for transmitter were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209 / RSS-247 2.5. Digital circuitries used to control additional functions other than the operation of the transmitter are subject to FCC Part 15 Section 15.109 / RSS-247 Section 5.5 Limits.

3.1 Justification – Cont'd

Detector function for radiated emissions was in peak mode. Average readings, when required, were taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings. A detailed description for the calculation of the average factor can be found in section 4.8.3.

Determination of pulse desensitization was made according to *Hewlett Packard Application Note 150-2, Spectrum Analysis... Pulsed RF.* The effective period (Teff) was referred to Exhibit 4.8.3. With the resolution bandwidth 3MHz and spectrum analyzer IF bandwidth 3dB, the pulse desensitization factor was 0dB.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All connecting cables of EUT and peripherals were manipulated to find the maximum emission.

Different data rates have been tested. Worst case is reported only.

All relevant operation modes have been tested, and the worst-case data is included in this report.

For simultaneous transmission, both 2.4GHz wireless and Bluetooth 3.0 portions are also switched on when taking radiated emission for determining worst-case spurious emission.

3.2 EUT Exercising Software

The EUT exercise program (if any) used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

3.3	Details of FUT	and Description	of Accessories

N/A

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test at a level of confidence of 95% has been considered. The values of the Measurement uncertainty for radiated emission test and RF conducted measurement test are \pm 5.3dB and \pm 0.99dB respectively. The value of the Measurement uncertainty for conducted emission test is \pm 4.2dB.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

4.0 TEST RESULTS

4.1 Maximum Conducted (peak) Output Power at Antenna Terminals

RF Conduct Measurement Test Setup

The figure below shows the test setup, which is utilized to make these measurements.

The antenna port of the EUT was connected to the input of a spectrum analyzer.

\boxtimes	The antenna port the EUT was connected to the input of a power meter. Power was read
	directly and cable loss correction was added to the reading to the obtain power at the EUT
	antenna terminals. The measurement procedure 9.1.2 was used.

The EUT should be configured to transmit continuously (at a minimum duty cycle of 98%) at full power over the measurement duration. The measurement procedure AVG1 was used.

Ant1:

Antenna Gain = 3.03 dBi

Frequency (MHz)		Output in dBm	Output in mWatt
Low Channel:	2402	5.75	3.8
Middle Channel:	2440	5.95	3.9
High Channel:	2479	5.92	3.9

Ant2:

Antenna Gain = 2.64 dBi

Frequency (MHz)		Output in dBm	Output in mWatt		
Low Channel:	2402	4.80	3.0		
Middle Channel:	2440	4.94	3.1		
High Channel:	2479	4.97	3.1		

Cable loss: 0.5 dB External Attenuation: 0 dB

Cable loss, external attenuation: included in OFFSET function added to SA raw reading

Max. conducted (peak) output level = <u>5.95</u> dBm (Ant 1)

Max. conducted (peak) output level = 4.97 dBm (Ant 2)

Tested by: Rain Wang

Lim	its:		
\boxtimes	1W	(30dBr	n) for antennas with gains of 6dBi or less
		•	,
		W (dBm) for antennas with gains more than 6dBi

4.2 Minimum 6dB RF Bandwidth

The antenna port of the EUT was connected to the input of a spectrum analyzer. The EBW measurement procedure was used. A PEAK output reading was taken, a DISPLAY line was drawn 6dB lower than PEAK level. The 6dB bandwidth was determined from where the channel output spectrum intersected the display line.

Ant1:

Frequency (MHz)		6dB Bandwidth (MHz)
Low Channel:	2402	1.373
Middle Channel:	2440	1.344
High Channel:	2479	1.409

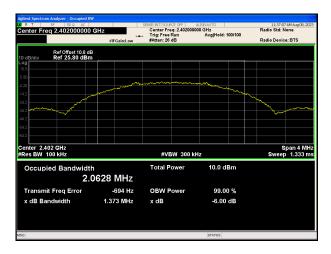
Ant2:

Frequency (MHz)		6dB Bandwidth (MHz)		
Low Channel:	2402	1.334		
Middle Channel:	2440	1.392		
High Channel:	2479	1.412		

Limits

6 dB bandwidth shall be at least 500kHz

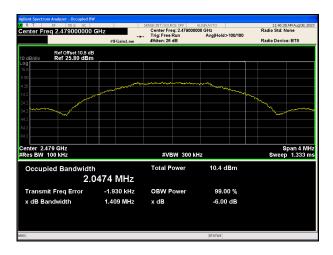
Tested by: Rain Wang


The plots of 6dB RF bandwidth are saved as below.

PLOTS OF 6dB RF BANDWIDTH

Ant1:

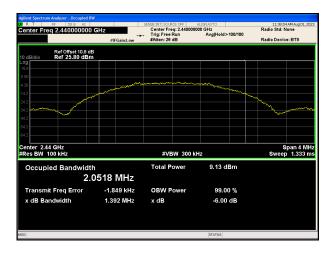
Lowest Channel

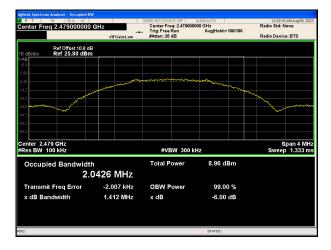

Middle Channel


PLOTS OF 6dB RF BANDWIDTH

Highest Channel

Ant2:


Lowest Channel



PLOTS OF 6dB RF BANDWIDTH

Middle Channel

Highest Channel

4.3 Maximum Power Spectral Density

Antenna output of the EUT was coupled directly to spectrum analyzer. The measurement procedure 10.2 PKPSD was used. If an external attenuator and/or cable was used, these losses are compensated for using the OFFSET function of the analyser.

Ant1:

Frequency (MHz)		PSD in 3kHz (dBm)
Low Channel:	2402	-10.864
Middle Channel:	2440	-9.911
High Channel:	2479	-10.166

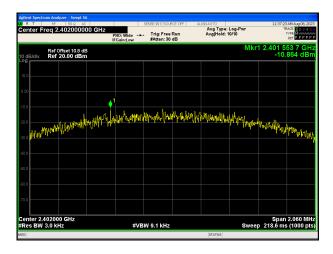
Ant2:

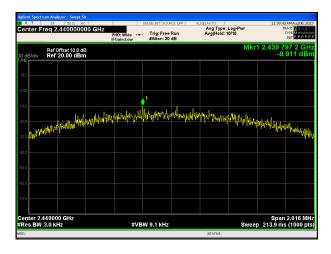
Frequency	(MHz)	PSD in 3kHz (dBm)
Low Channel:	2402	-12.493
Middle Channel:	2440	-12.812
High Channel:	2479	-13.215

Cable Loss: 0.5 dB

Limit: 8dBm

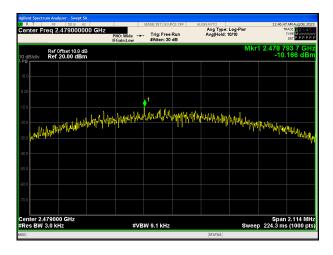
Tested by: Rain Wang

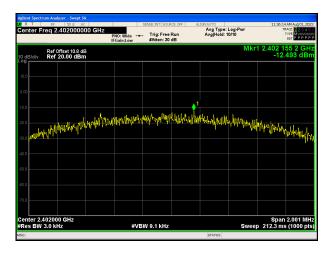

The plots of power spectral density are as below.


PLOTS OF POWER SPECTRAL DENSITY

Ant1:

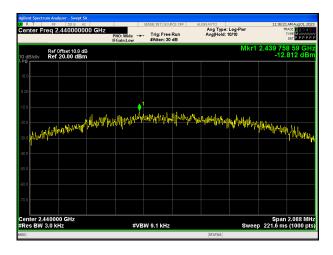
Lowest channel

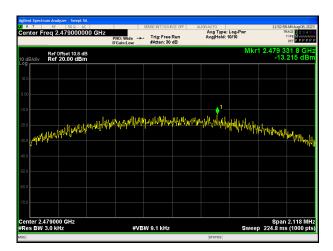

Middle channel


PLOTS OF POWER SPECTRAL DENSITY

Highest channel

Ant2:


Lowest channel



PLOTS OF POWER SPECTRAL DENSITY

Middle channel

Highest channel

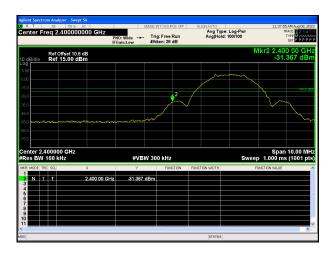
4.4 Out of Band Conducted Emissions

For 2.4GHz wireless portion, the maximum conducted (peak) output power was used to demonstrate compliance as described in 9.1. Then the display line (in red) shown in the following plots denotes the limit at 20dB below maximum measured in-band peak PSD level in 100 KHz bandwidth for 2.4GHz wireless portion.

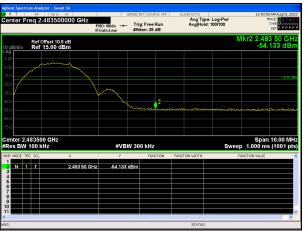
The measurement procedures under sections 11 of KDB558074 D01 v05r01 (11-February-2019) were used.

Furthermore, delta measurement technique for measuring bandedge emissions was incorporated in the test of the edge at 2483.5MHz.

Limits:


All spurious emission and up to the tenth harmonic was measured and they were found to be at least 20dB below the maximum measured in-band peak PSD level for 2.4GHz wireless portion.

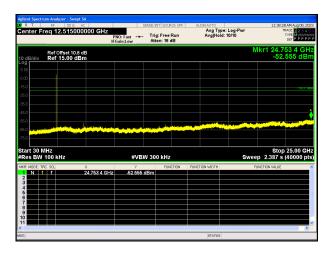
Tested by: Rain Wang



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 1)

Lowest Channel, Bandedge

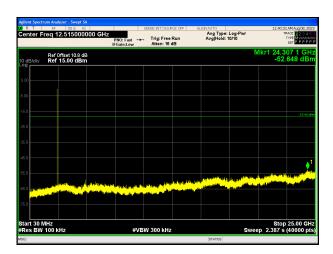
Highest Channel, Bandedge



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 1)

Lowest Channel, Plot A

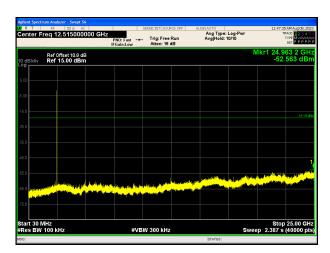

Lowest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 2)

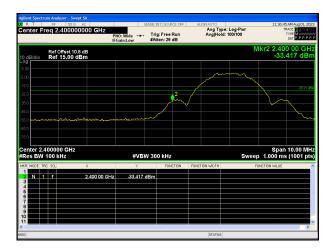
Middle Channel, Plot A

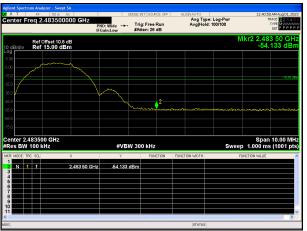

Middle Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 2)

Highest Channel, Plot A

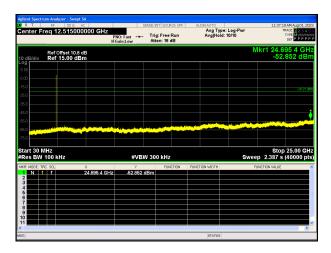

Highest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 2)

Lowest Channel, Bandedge

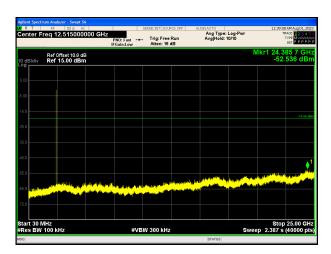
Highest Channel, Bandedge



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 2)

Lowest Channel, Plot A

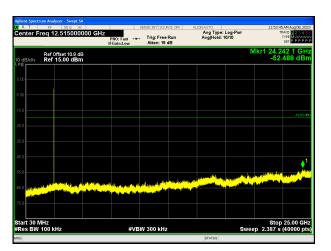

Lowest Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 2)

Middle Channel, Plot A

Middle Channel, Plot B



PLOTS OF OUT OF BAND CONDUCTED EMISSIONS (Ant 2)

Highest Channel, Plot A

Highest Channel, Plot B

4.5 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

Where FS = Field Strength in dBuV/m

RA = Receiver Amplitude (including preamplifier) in dBμV

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

PD = Pulse Desensitization in dB

AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflect the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29.0 dB is subtracted. The pulse desensitization factor of the spectrum analyzer is 0.0 dB, and the resultant average factor is -10.0 dB. The net field strength for comparison to the appropriate emission limit is 32.0 dB μ V/m. This value in dB μ V/m is converted to its corresponding level in μ V/m.

 $RA = 62.0 dB\mu V$

AF = 7.4 dB

CF = 1.6 dB

AG = 29.0 dB

PD = 0.0 dB

AV = -10 dB

 $FS = 62.0 + 7.4 + 1.6 - 29.0 + 0.0 + (-10.0) = 32.0 \text{ dB}\mu\text{V/m}$

Level in μ V/m = Common Antilogarithm [(32.0 dB μ V/m)/20] = 39.8 μ V/m

4.6 Transmitter Radiated Emissions in Restricted Bands and Spurious Emissions

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

The data on the following pages list the significant emission frequencies, the limit and the margin of compliance.

4.6.1 Radiated Emission Configuration Photograph

Worst Case Restricted Band Radiated Emission at

51.536 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.6.2 Radiated Emission Data

The data in tables 1-4 list the significant emission frequencies, the limit and the margin of compliance.

Tested by: Andy Lin

Judgement -

Passed by 9.0 dB margin

RADIATED EMISSION DATA

Mode: TX-Channel 00

Table 1

Ant1:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	2390.00	52.80	-8.22	44.58	74.00	-29.42	Peak	Horizontal
2	2390.00	39.41	-8.22	31.19	54.00	-22.81	Average	Horizontal
3	4804.00	42.89	-1.56	41.33	74.00	-32.67	Peak	Horizontal
4	4804.00	28.72	-1.56	27.16	54.00	-26.84	Average	Horizontal
5	7206.00	38.28	2.28	40.56	74.00	-33.44	Peak	Horizontal
6	7206.00	26.69	2.28	28.97	54.00	-25.03	Average	Horizontal
7	2390.00	54.72	-8.22	46.50	74.00	-27.50	Peak	Vertical
8	2390.00	39.26	-8.22	31.04	54.00	-22.96	Average	Vertical
9	4804.00	47.58	-1.56	46.02	74.00	-27.98	Peak	Vertical
10	4804.00	30.13	-1.56	28.57	54.00	-25.43	Average	Vertical
11	7206.00	39.05	2.28	41.33	74.00	-32.67	Peak	Vertical
12	7206.00	26.60	2.28	28.88	54.00	-25.12	Average	Vertical

Ant2:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	2390.00	54.37	-8.22	46.15	74.00	-27.85	Peak	Horizontal
2	2390.00	40.59	-8.22	32.37	54.00	-21.63	Average	Horizontal
3	4804.00	43.54	-1.56	41.98	74.00	-32.02	Peak	Horizontal
4	4804.00	27.65	-1.56	26.09	54.00	-27.91	Average	Horizontal
5	7206.00	38.36	2.28	40.64	74.00	-33.36	Peak	Horizontal
6	7206.00	26.08	2.28	28.36	54.00	-25.64	Average	Horizontal
7	2390.00	54.49	-8.22	46.27	74.00	-27.73	Peak	Vertical
8	2390.00	39.32	-8.22	31.10	54.00	-22.90	Average	Vertical
9	4804.00	47.07	-1.56	45.51	74.00	-28.49	Peak	Vertical
10	4804.00	27.44	-1.56	25.88	54.00	-28.12	Average	Vertical
11	7206.00	37.75	2.28	40.03	74.00	-33.97	Peak	Vertical
12	7206.00	26.17	2.28	28.45	54.00	-25.55	Average	Vertical

NOTES: 1. Peak detector is used for the emission measurement. Average detector is used for the average data of emission measurement

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

Mode: TX-Channel 19

Table 2

Ant1:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4880.00	30.70	-1.47	29.23	54.00	-24.77	Average	Horizontal
2	4880.00	46.92	-1.47	45.45	74.00	-28.55	Peak	Horizontal
3	7320.00	26.79	2.32	29.11	54.00	-24.89	Average	Horizontal
4	7320.00	39.27	2.32	41.59	74.00	-32.41	Peak	Horizontal
5	4880.00	31.34	-1.47	29.87	54.00	-24.13	Average	Vertical
6	4880.00	48.99	-1.47	47.52	74.00	-26.48	Peak	Vertical
7	7320.00	26.63	2.32	28.95	54.00	-25.05	Average	Vertical
8	7320.00	38.13	2.32	40.45	74.00	-33.55	Peak	Vertical

Ant2:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4880.00	30.94	-1.47	29.47	54.00	-24.53	Average	Horizontal
2	4880.00	46.67	-1.47	45.20	74.00	-28.80	Peak	Horizontal
3	7320.00	26.27	2.32	28.59	54.00	-25.41	Average	Horizontal
4	7320.00	38.70	2.32	41.02	74.00	-32.98	Peak	Horizontal
5	4880.00	32.02	-1.47	30.55	54.00	-23.45	Average	Vertical
6	4880.00	48.80	-1.47	47.33	74.00	-26.67	Peak	Vertical
7	7320.00	25.81	2.32	28.13	54.00	-25.87	Average	Vertical
8	7320.00	38.49	2.32	40.81	74.00	-33.19	Peak	Vertical

- NOTES: 1. Peak detector is used for the emission measurement. Average detector is used for the average data of emission measurement
 - 2. All measurements were made at 3 meters.
 - 3. Negative value in the margin column shows emission below limit.
 - 4. Horn antenna is used for the emission over 1000MHz.
 - 5. Emission within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

Mode: TX-Channel 38

Table 3

Ant1:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	2483.50	54.03	-7.65	46.38	74.00	-27.62	Peak	Horizontal
2	2483.50	43.49	-7.65	35.84	54.00	-18.16	Average	Horizontal
3	4958.00	44.84	-1.38	43.46	74.00	-30.54	Peak	Horizontal
4	4958.00	28.40	-1.38	27.02	54.00	-26.98	Average	Horizontal
5	7437.00	37.35	2.38	39.73	74.00	-34.27	Peak	Horizontal
6	7437.00	26.00	2.38	28.38	54.00	-25.62	Average	Horizontal
7	2483.50	52.16	-7.65	44.51	74.00	-29.49	Peak	Vertical
8	2483.50	40.53	-7.65	32.88	54.00	-21.12	Average	Vertical
9	4958.00	46.01	-1.38	44.63	74.00	-29.37	Peak	Vertical
10	4958.00	28.98	-1.38	27.60	54.00	-26.40	Average	Vertical
11	7437.00	35.57	2.38	37.95	74.00	-36.05	Peak	Vertical
12	7437.00	24.25	2.38	26.63	54.00	-27.37	Average	Vertical

Ant2:

No.	Frequency (MHz)	Reading (dBuV/m)	Correction factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Polaxis
1	2483.50	52.48	-7.65	44.83	74.00	-29.17	Peak	Horizontal
2	2483.50	39.41	-7.65	31.76	54.00	-22.24	Average	Horizontal
3	4958.00	44.74	-1.38	43.36	74.00	-30.64	Peak	Horizontal
4	4958.00	28.72	-1.38	27.34	54.00	-26.66	Average	Horizontal
5	7437.00	37.45	2.38	39.83	74.00	-34.17	Peak	Horizontal
6	7437.00	25.63	2.38	28.01	54.00	-25.99	Average	Horizontal
7	2483.50	52.15	-7.65	44.50	74.00	-29.50	Peak	Vertical
8	2483.50	38.76	-7.65	31.11	54.00	-22.89	Average	Vertical
9	4958.00	45.93	-1.38	44.55	74.00	-29.45	Peak	Vertical
10	4958.00	28.88	-1.38	27.50	54.00	-26.50	Average	Vertical
11	7437.00	37.59	2.38	39.97	74.00	-34.03	Peak	Vertical
12	7437.00	24.84	2.38	27.22	54.00	-26.78	Average	Vertical

NOTES: 1. Peak detector is used for the emission measurement. Average detector is used for the average data of emission measurement

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.

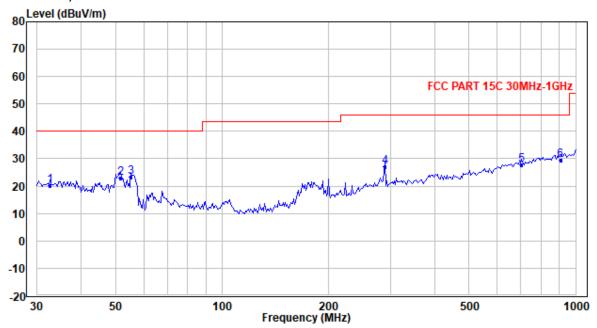
Mode: Transmit simultaneously

Table 4-Horizontal

	Frequency (MHz)	Reading (dBuV)	Correctio n factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	32.640	25.39	-5.19	20.20	40.00	-19.80	QP
2	51.536	38.23	-15.30	22.93	40.00	-17.07	QP
3	55.288	39.91	-16.77	23.14	40.00	-16.86	QP
4	288.284	34.07	-7.05	27.02	46.00	-18.98	QP
5	703.731	25.38	2.31	27.69	46.00	-18.31	QP
6	906.304	24.68	4.81	29.49	46.00	-16.51	QP

NOTES: 1. Quasi-Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Emission within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.



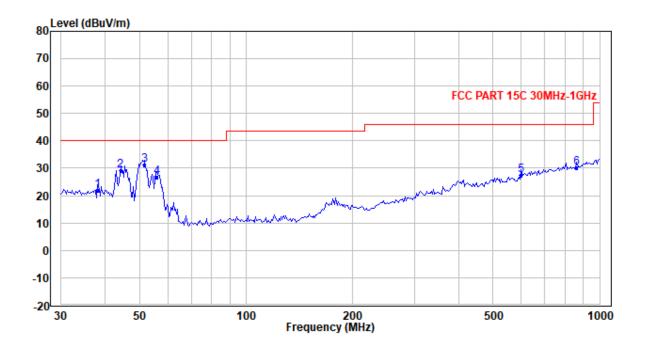
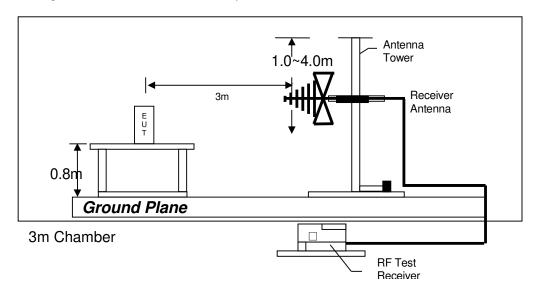
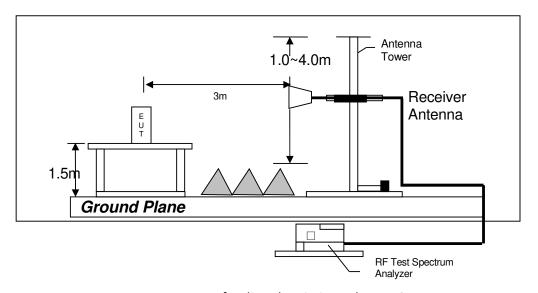


Table 5-Vertical

No.	Frequency (MHz)	Reading (dBuV)	Correctio n factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	38.096	28.42	-6.50	21.92	40.00	-18.08	QP
2	44.154	39.79	-10.81	28.98	40.00	-11.02	QP
3	51.536	46.35	-15.30	31.05	40.00	-8.95	QP
4	56.071	43.87	-16.99	26.88	40.00	-13.12	QP
5	598.707	27.21	0.17	27.38	46.00	-18.62	QP
6	862.802	26.47	3.76	30.23	46.00	-15.77	QP

NOTES: 1. Quasi-Peak detector is used for the emission measurement.


- 2. All measurements were made at 3 meters.
- 3. Negative value in the margin column shows emission below limit.
- 4. Emission within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-Gen Section 8.10.



4.6.3 Radiated Emission Test Setup

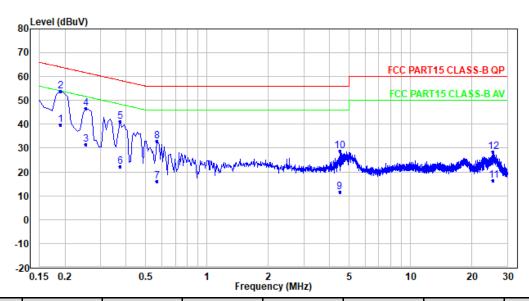
The figure below shows the test setup, which is utilized to make these measurements.

Test setup of radiated emissions up to 1GHz

Test setup of radiated emissions above 1GHz

4.6.4 Transmitter Duty Cycle Calculation

Not applicable – No average factor is required.

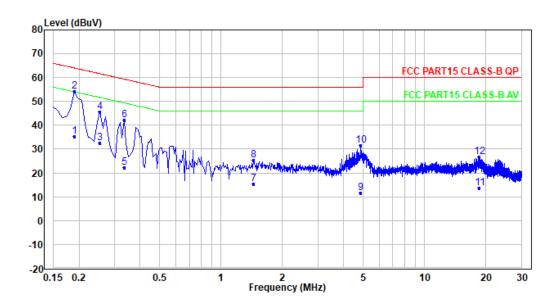

1.7 AC Power Line Conducted Emission
Not applicable – EUT is only powered by battery for operation.
EUT connects to AC power line. Emission Data is listed in following pages.
Base Unit connects to AC power line and has transmission. Handset connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.
4.7.1 AC Power Line Conducted Emission Configuration Photograph
Worst Case Line-Conducted Configuration at
0.190 MHz
The worst-case line conducted configuration photographs are attached in the Appendix and saved with filename: config photos.pdf
4.7.2 AC Power Line Conducted Emission Data
The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.
Passed by 9.8 dB margin
Гested by: Yana Zeng

AC POWER LINE CONDUCTED EMISSION

Worst Case: Transmit simultaneously

Line:

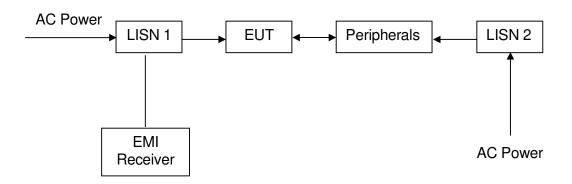
No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.190	29.75	10.02	39.77	54.04	-14.27	Average
2	0.190	43.75	10.02	53.77	64.04	-10.27	QP
3	0.254	21.61	10.03	31.64	51.63	-19.99	Average
4	0.254	36.61	10.03	46.64	61.63	-14.99	QP
5	0.374	31.22	10.04	41.26	58.41	-17.15	Average
6	0.374	12.22	10.04	22.26	48.41	-26.15	QP
7	0.566	5.97	10.05	16.02	46.00	-29.98	Average
8	0.566	22.97	10.05	33.02	56.00	-22.98	QP
9	4.493	1.48	10.30	11.78	46.00	-34.22	Average
10	4.493	18.48	10.30	28.78	56.00	-27.22	QP
11	25.553	5.07	11.45	16.52	50.00	-33.48	Average
12	25.553	17.07	11.45	28.52	60.00	-31.48	QP


Remark:

- 1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.
- 2. Result = Reading + Correct Factor.
- 3. Margin = Limit –Result
- 4. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Worst Case: Transmit simultaneously

Neatrul:

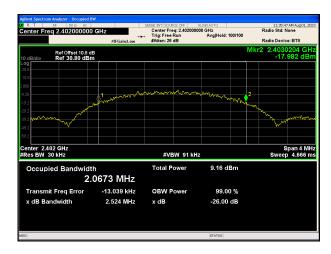

No.	Frequency (MHz)	Reading (dBuV)	Correction factor (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Remark
1	0.190	25.26	10.00	35.26	54.04	-18.78	Average
2	0.190	44.26	10.00	54.26	64.04	-9.78	QP
3	0.254	22.59	10.01	32.60	51.63	-19.03	Average
4	0.254	35.59	10.01	45.60	61.63	-16.03	QP
5	0.334	12.25	10.02	22.27	49.35	-27.08	Average
6	0.334	32.25	10.02	42.27	59.35	-17.08	QP
7	1.446	5.44	10.07	15.51	46.00	-30.49	Average
8	1.446	15.44	10.07	25.51	56.00	-30.49	QP
9	4.861	1.27	10.32	11.59	46.00	-34.41	Average
10	4.861	21.27	10.32	31.59	56.00	-24.41	QP
11	18.658	2.68	11.06	13.74	50.00	-36.26	Average
12	18.658	15.68	11.06	26.74	60.00	-33.26	QP

Remark:

- 1. Correct Factor = LISN Factor + Cable Loss + Pulse Limiter Factor, the value was added to Original Receiver Reading by the software automatically.
- 2. Result = Reading + Correct Factor.
- 3. Margin = Limit –Result
- 4. An initial pre-scan was performed on the Phase and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

4.7.3 Conducted Emission Test Setup

4.8 Occupied Bandwidth


Occupied Bandwidth Results:

Ant1:

Bluetooth (MHz)		Occupied Bandwidth (MHz)
Low Channel:	2402	2.0673
Middle Channel:	2440	2.0598
High Channel:	2480	2.0188

Tested by: Rain Wang

The worst case is shown as below



Ant2:

Bluetooth (MHz)		Occupied Bandwidth (MHz)
Low Channel:	2402	2.0771
Middle Channel:	2440	2.0327
High Channel:	2480	2.0475

Tested by: Rain Wang

The worst case is shown as below

5.0 EQUIPMENT LIST

1) Radiated Emissions Test

Equipment	Manufacturer	Model No.	Serial Number	Cal. Due date
3m SAC	ETS-LINDGREN	3m	N/A	Jan. 21, 2024
Receiver	R&S	ESIB26	100114	Nov. 2, 2023
Broadband Antenna	ETS-LINDGREN	3142E	00201566	Dec.12, 2023
6dB Attenuator	Talent	RA6A5-N-18	18103001	Dec.12, 2023
Preamplifier	HP	8447F	2805A02960	Oct. 31, 2023
Double-Ridged Waveguide Horn	ETS-LINDGREN	3117-PA	00201541	Apr. 16, 2024
Antenna				
(Pre-amplifier)	ETS-LINDGREN	00118385	00201874	Oct. 31, 2023
Multi device	ETS-LINDGREN	7006-001	00160105	N/A
Controller				
Test Software	Audix	e3	Software Version:	
			9.160323	

2) Conducted Emissions Test

Equipment	Manufacturer	Model No.	Serial Number	Cal. Due date
Receiver	R&S	ESR7	101181	Oct. 31, 2023
Pulse Limiter	R&S	ESH3-Z2	0357.8810.54	Oct. 31, 2023
LISN	R&S	ESH2-Z5	860014/024	Oct. 31, 2023
Toot Coftwore	Audix	e3	Software Version:	
Test Software			9.20151119i	

3) RF Test

Equipment	Manufacturer	Model No.	Serial Number	Cal. Due date
EXA Spectrum	KEYSIGHT	N9010A	MY51440197	Apr. 13, 2024
Analyzer				
USB Wideband	KEYSIGHT	U2021XA	MY55430035	Nov. 02, 2023
Power Sensor				

END OF TEST REPORT