Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA24121600902

FCC ID.....: 2BCQD-T8

Compiled by

(position+printed name+signature) .: File administrators Xudong Zhang

Supervised by

(position+printed name+signature) .: Project Engineer Zoey Cao

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Dec. 25, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Aimson Technology Co.,Ltd

District, Shenzhen, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Mini PC

Trade Mark N/A

Manufacturer Shenzhen Aimson Technology Co.,Ltd

Model/Type reference T8

Listed Models Refer to page 2

Modulation GFSK, Π/4DQPSK, 8DPSK

Frequency From 2402MHz to 2480MHz

Rating DC 19.0V From external circuit

Result: PASS

Report No.: CTA24121600902 Page 2 of 45

TEST REPORT

Equipment under Test Mini PC

Model /Type **T8**

T10, T8 PLUS, T8 PRO, M8, M8 PLUS, M8 PRO, P8, P8 PLUS, P8 PRO, Listed Models

> M10, M10 PLUS, M10 PRO, T10 PLUS, T10 PRO, P10, P10 PLUS, P10 PRO, G7, X6, X5, T6, X7, x8, T11, T16, T18, M11, G11, M20, M21, M118, M119, M10003, 10R, 80R, A10, A80, W12, W100, W812, W8100

CTATESTING Model difference The PCB board, circuit, structure and internal of these models are the

same, Only model number and colour is different for these model.

Applicant Shenzhen Aimson Technology Co.,Ltd

Address 2nd Floor, Building B, Huafeng 1st Technology Zone, Bao'an

District, Shenzhen, China

Manufacturer Shenzhen Aimson Technology Co.,Ltd

Address 2nd Floor, Building B, Huafeng 1st Technology Zone, Bao'an

District, Shenzhen, China

		Carrier C.	CTATE
NG	Test Result:	PASS	(4)

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTATESTING laboratory.

Page 3 of 45 Report No.: CTA24121600902

Contents

		Co Co	ntents	
		TATA		
	11	TEST STANDARDS	<u> </u>	4
		CIA		
	<u>2</u>	SUMMARY	~<5\``	5
	_		a crair	
	2.4	Canaval Damayka		-
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test	T (EUT)	5
	2.4	Short description of the Equipment under	r Test (EUT)	
	2.5	EUT configuration		5
CTA	2.6	EUT operation mode		6
	2.7	Block Diagram of Test Setup		6
1	2.8	Related Submittal(s) / Grant (s)		6
	2.9	Modifications		6
	<u>3</u>	TEST ENVIRONMENT	- c(P)	7
	_			TES!
	0.4	A I Inches of the dead left and and	CTI CTI	_
	3.1	Address of the test laboratory	Carlo Cit	7
	3.2	Test Facility		<u>′</u>
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertain	ity	8
	3.6	Equipments Used during the Test		9
		TAIL		
	4	TEST CONDITIONS AND RESU	LTS	11
		TATE	CTA TESTING	
		LOD OF THE STATE O		4.4
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emission	CTA	14
	4.3	Maximum Peak Output Power		20
	4.4	20dB Bandwidth		21
	4.5	Frequency Separation		25
	4.6	Number of hopping frequency		27
	4.7	Time of Occupancy (Dwell Time)		29
	4.8	Out-of-band Emissions		33
	4.9	Pseudorandom Frequency Hopping Sequ	reuce	42
	4.10	Antenna Requirement		43
		CTA		
	<u>5</u>	TEST SETUP PHOTOS OF THE	EUTS	44
	_		TAIL	-10
	^	DUOTOS OF THE FUT	CV	ETIN
	6	PHOTOS OF THE EUT	C 11 1 2	45

Page 4 of 45 Report No.: CTA24121600902

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 45 Report No.: CTA24121600902

SUMMARY

2.1 General Remarks

Date of receipt of test sample		Dec. 16, 2024
Testing commenced on	2 California	Dec. 16, 2024
Testing concluded on	:	Dec. 25, 2024

2.2 Product Description

	Dec. 16, 2024	-		
:	Dec. 25, 2024	22 300		
ion				
Mini PC	G			
T8				
DC 19.0V F	rom external circuit	STING		
Input: AC 1	00-240V 50/60Hz 1.5A	TES	TATESTING	
V1.0			GW CV	
V1.0				
Bluetooth B	BR/EDR		C.	
GFSK, π/4[DQPSK, 8DPSK	-5	STING	
2402MHz~2	2480MHz	CTATT		
79		CVP		
1MHz			(ETA)	
PIFA anten	na			
3.89 dBi	G			
	Mini PC T8 DC 19.0V F Model: QLC Input: AC 1 Output: DC V1.0 V1.0 CTA241216 CTA241216 GFSK, π/4l 2402MHz~2 79 1MHz PIFA anten	Mini PC T8 DC 19.0V From external circuit Model: QL065GaN-1903420U Input: AC 100-240V 50/60Hz 1.5A Output: DC 19.0V 3.42A 64.98W V1.0 V1.0 CTA241216009-1# (Engineer sam CTA241216009-2# (Normal sample) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz PIFA antenna	Mini PC T8 DC 19.0V From external circuit Model: QL065GaN-1903420U Input: AC 100-240V 50/60Hz 1.5A Output: DC 19.0V 3.42A 64.98W V1.0 V1.0 CTA241216009-1# (Engineer sample) CTA241216009-2# (Normal sample) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz PIFA antenna	Mini PC T8 DC 19.0V From external circuit Model: QL065GaN-1903420U Input: AC 100-240V 50/60Hz 1.5A Output: DC 19.0V 3.42A 64.98W V1.0 V1.0 CTA241216009-1# (Engineer sample) CTA241216009-2# (Normal sample) Bluetooth BR/EDR GFSK, π/4DQPSK, 8DPSK 2402MHz~2480MHz 79 1MHz PIFA antenna

2.3 Equipment Under Test

TATES			10	
2.3 Equipment Under Test		TESTI		
Power supply system utilised	d	CTAIL		-1
Power supply voltage	: 0	230V / 50 Hz	0	120V / 60Hz
	0	12V DC	0	24V DC
	•	Other (specified in blank bel	ow	

DC 19.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Mini PC.

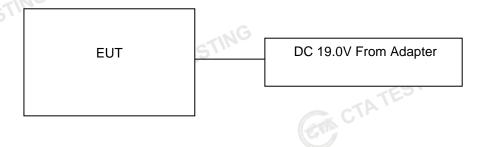
For more details, refer to the user's manual of the EUT.

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer

Page 6 of 45 Report No.: CTA24121600902


EUT operation mode 2.6

The Applicant provides communication tools software(AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01G	2403
E TES	i i
38	2440
39	2441
40	2442
	TES
77	2479
78	2480

Block Diagram of Test Setup

Related Submittal(s) / Grant (s) 2.8

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

CTA TESTING No modifications were implemented to meet testing criteria.

Page 7 of 45 Report No.: CTA24121600902

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

tadiated Elilicolorii	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
TES.	/ 1.	
Humidity:	46 %	
	-EST	
Atmospheric pressure:	950-1050mbar	
Conducted testing:	GW CV	
, and the second		
Temperature:	25 ° C	

Conducted testina:

enaactaa taatiing.	
Temperature:	25 ° C
Humidity:	44 %
Training.	,
Atmospheric pressure:	950-1050mbar
CTATESIN	STIN

Page 8 of 45 Report No.: CTA24121600902

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
	§15.247(a)(1)	Carrier Frequency separation	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK Π/4DQPSK 8DPSK		Compliant
	§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
	§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
CTATE	§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
	§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
	§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
G	§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK		GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
	§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK Π/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant
	§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK		GFSK	⊠ Middle	Compliant
	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)

Page 9 of 45 Report No.: CTA24121600902

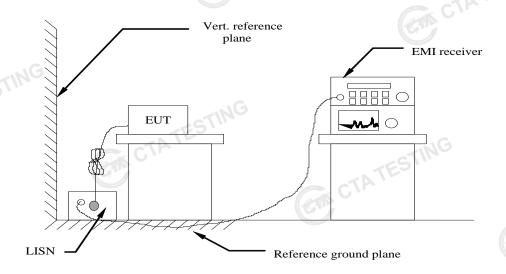
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	_				Com C	ı
Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date	
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02	
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02	
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02)
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02	
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02	
Spectrum Analyzer	G R&S	FSU	CTA-337	2024/08/03	2025/08/02	
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02	
Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02	
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02	
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02	TA
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16	
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12	
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16	
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16	
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02	
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02]
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02]
High-Pass Filter	S XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02]
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02]
Automated filter bank	Tonscend	JRUQI-MH8R06- F	CTA-404	2024/08/03	2025/08/02	
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02	!
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02	

Report No.: CTA24121600902 Page 10 of 45


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A

Report No.: CTA24121600902 Page 11 of 45

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

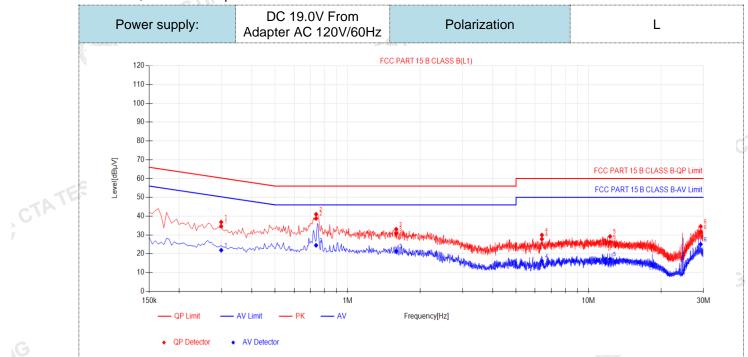
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Fraguenov rango (MHz)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequen	ncy.				

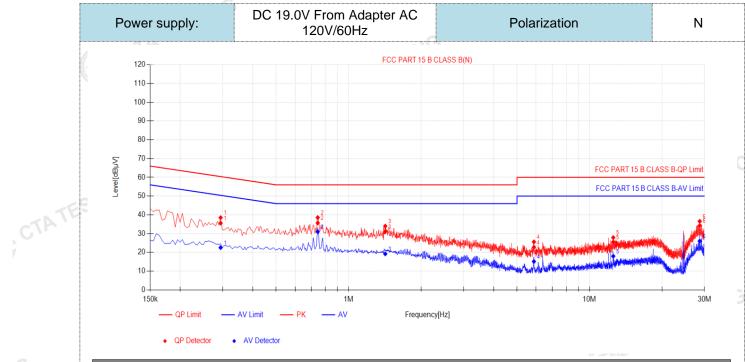

TEST RESULTS

Remark:

1. All modes of GFSK, $\Pi/4$ DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA24121600902

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


Final	Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.2985	9.95	24.64	34.59	60.28	25.69	11.93	21.88	50.28	28.40	PASS	
2	0.7395	9.93	28.82	38.75	56.00	17.25	14.53	24.46	46.00	21.54	PASS	
3	1.59	9.91	20.91	30.82	56.00	25.18	11.46	21.37	46.00	24.63	PASS	
4	6.405	10.21	17.59	27.80	60.00	32.20	5.92	16.13	50.00	33.87	PASS	
5	12.291	10.28	15.96	26.24	60.00	33.76	6.85	17.13	50.00	32.87	PASS	
6	29.2335	10.60	21.02	31.62	60.00	28.38	14.44	25.04	50.00	24.96	PASS	
Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)										CLV ,,		
2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)												
3). QPI	Margin(dB)) = QP Li	mit (dBu	V) - QP	Value (dl	BuV)						

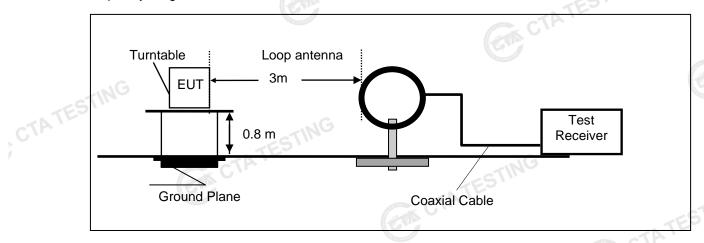
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$

CTATES

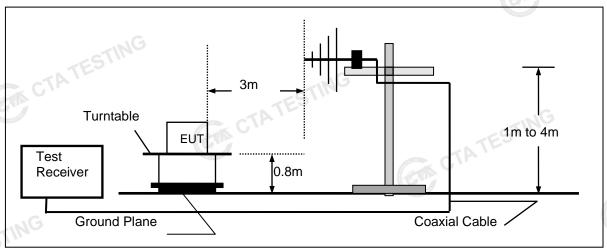
4). AVMargin(dB) = AV Limit (dBμV) - AV Value (dBμV)

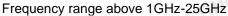
Page 13 of 45 Report No.: CTA24121600902

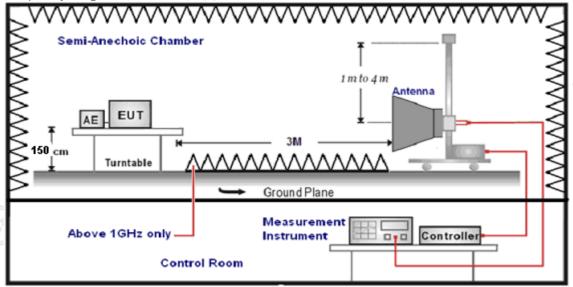
F	-inal	Data Lis	st										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict	
	1	0.294	9.88	25.73	35.61	60.41	24.80	12.67	22.55	50.41	27.86	PASS	
	2	0.744	10.09	25.58	35.67	56.00	20.33	20.94	31.03	46.00	14.97	PASS	
	3	1.419	10.14	20.96	31.10	56.00	24.90	9.07	19.21	46.00	26.79	PASS	
L	4	5.8785	10.23	12.57	22.80	60.00	37.20	4.92	15.15	50.00	34.85	PASS	
	5	12.552	10.41	15.15	25.56	60.00	34.44	7.57	17.98	50.00	32.02	PASS	
	6	28.6845	10.81	23.51	34.32	60.00	25.68	15.20	26.01	50.00	23.99	PASS	
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)									CTAT				
,		, ,			, ,		•)					
3).	QPI	Margin(dB)) = QP Li	mit (dBµ	V) - QP	Value (d	BµV)						
17	4).	AVMargin	n(dB) = A	V Limit (dBµV) -	AV Valu	e (dBµV))					


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTATESTING

Page 14 of 45 Report No.: CTA24121600902


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Page 15 of 45 Report No.: CTA24121600902

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	12 112-12
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1047 40047	SHz-40GHz Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz,	
IGHZ-40GHZ		
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

sample calculation is as follows:	STING
FS = RA + AF + CL - AG	CTATES
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	Car

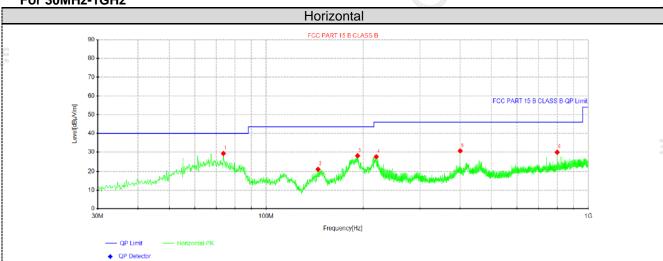
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

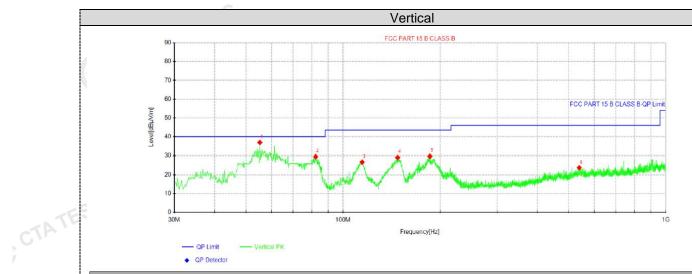

Page 16 of 45 Report No.: CTA24121600902

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK, π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel. 3.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



Suspe	Suspected Data List										
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	73.65	45.01	29.31	-15.70	40.00	10.69	100	357	Horizontal		
2	144.823	36.67	21.12	-15.55	43.50	22.38	100	0	Horizontal		
3	192.232	41.46	28.07	-13.39	43.50	15.43	100	338	Horizontal		
4	219.635	40.03	27.54	-12.49	46.00	18.46	100	10	Horizontal		
5	400.055	40.79	30.70	-10.09	46.00	15.30	100	130	Horizontal		
6	800.058	34.60	29.95	-4.65	46.00	16.05	100	153	Horizontal		

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTA TESTING

Report No.: CTA24121600902 Page 17 of 45

CTATE

Susp	Suspected Data List										
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	55.22	48.56	36.96	-11.60	40.00	3.04	100	3	Vertical		
2	82.2588	45.88	29.52	-16.36	40.00	10.48	100	102	Vertical		
3	114.632	40.36	26.74	-13.62	43.50	16.76	100	207	Vertical		
4	147.612	44.60	29.13	-15.47	43.50	14.37	100	46	Vertical		
5	185.806	43.84	29.72	-14.12	43.50	13.78	100	219	Vertical		
6	539.25	32.63	23.77	-8.86	46.00	22.23	100	355	Vertical		

CTA TE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA24121600902 Page 18 of 45

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Frequency(MHz):		2402		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.91	PK	74	12.09	66.18	32.33	5.12	41.72	-4.27
4804.00	45.14	AV	54	8.86	49.41	32.33	5.12	41.72	-4.27
7206.00	53.87	PK	74	20.13	54.39	36.6	6.49	43.61	-0.52
7206.00	43.29	ΑV	54	10.71	43.81	36.6	6.49	43.61	-0.52

	Frequency(MHz):			2402		Polarity:		VERTICAL			
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
	4804.00	60.05	PK	74	13.95	64.32	32.33	5.12	41.72	-4.27	
	4804.00	42.75	AV	54	11.25	47.02	32.33	5.12	41.72	-4.27	
	7206.00	51.67	PK	74	22.33	52.19	36.6	6.49	43.61	-0.52	
Ī	7206.00	41.54	AV	54	12.46	42.06	36.6	6.49	43.61	-0.52	

Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	61.36	PK	74	12.64	65.24	32.6	5.34	41.82	-3.88
4882.00	44.42	AV	54	9.58	48.30	32.6	5.34	41.82	-3.88
7323.00	53.15	PK	74	20.85	53.26	36.8	6.81	43.72	-0.11
7323.00	42.76	AV	54	11.24	42.87	36.8	6.81	343.72	-0.11
	1920.00 12.10 711 01 01 11121						GTIN		

	Frequency(MHz):		2441		Polarity:		VERTICAL				
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
	4882.00	59.49	PK	74	14.51	63.37	32.6	5.34	41.82	-3.88	
Γ	4882.00	42.32	AV	54	11.68	46.20	32.6	5.34	41.82	-3.88	
1	7323.00	51.51	PK	74	22.49	51.62	36.8	6.81	43.72	-0.11	
Ī	7323.00	40.63	AV	54	13.37	40.74	36.8	6.81	43.72	-0.11	

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.57	PK	74	13.43	63.65	32.73	5.66	41.47	-3.08
4960.00	43.64	AV	54	10.36	46.72	32.73	5.66	41.47	-3.08
7440.00	52.54	PK	74	21.46	52.09	37.04	7.25	43.84	0.45
7440.00	42.26	PK	54	11.74	41.81	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	58.66	PK	74	15.34	61.74	32.73	5.66	41.47	-3.08	
4960.00	41.56	AV	54	12.44	44.64	32.73	5.66	41.47	-3.08	
7440.00	50.99	PK	74	23.01	50.54	37.04	7.25	43.84	0.45	
7440.00	40.40	PK	54	13.60	39.95	37.04	7.25	43.84	0.45	

Page 19 of 45 Report No.: CTA24121600902

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Frequency(MHz):		24	2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.90	PK	74	12.10	72.32	27.42	4.31	42.15	-10.42
2390.00	43.51	AV	54	10.49	53.93	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.96	PK	74	14.04	70.38	27.42	4.31	42.15	-10.42
2390.00	41.74	AV	54	12.26	52.16	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2480		Pola	rity:	Н	ORIZONTA	\L
_	Emis	sion			Daw	Antenna	Cable	Pre-	Correction
Frequency (MHz)	Le _v	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)
	Le	vel		•	Value	Factor	Factor	amplifier	Factor
(MHz)	Le [,] (dBu	vel V/m)	(dBuV/m)	(dB)	Value (dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)
(MHz) 2483.50 2483.50	Le ^v (dBu 61.14	vel V/m) PK AV	(dBuV/m)	(dB) 12.86 11.20	Value (dBuV) 71.25	Factor (dB/m) 27.7 27.7	Factor (dB) 4.47 4.47	amplifier (dB) 42.28	Factor (dB/m) -10.11
(MHz) 2483.50 2483.50	Le ⁴ (dBu 61.14 42.80	vel V/m) PK AV : ssion vel	(dBuV/m) 74 54	(dB) 12.86 11.20	Value (dBuV) 71.25 52.91	Factor (dB/m) 27.7 27.7	Factor (dB) 4.47 4.47	amplifier (dB) 42.28 42.28	Factor (dB/m) -10.11
2483.50 2483.50 Freque Frequency	Lev (dBu 61.14 42.80 ncy(MHz) Emis Lev	vel V/m) PK AV : ssion vel	(dBuV/m) 74 54 24 Limit	(dB) 12.86 11.20 80 Margin	Value (dBuV) 71.25 52.91 Pola Raw Value	Factor (dB/m) 27.7 27.7 rity: Antenna Factor	Factor (dB) 4.47 4.47 Cable Factor	amplifier (dB) 42.28 42.28 VERTICAL Preamplifier	Factor (dB/m) -10.11 -10.11 Correction Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- CTA TESTING 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 20 of 45 Report No.: CTA24121600902

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

Type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-1.18		TES
GFSK	39	-1.23	20.97	Pass
	78	-1.63		
-110	G 00	0.15		
π/4DQPSK	39	-0.20	20.97	Pass
CTA	78	-0.66		
	00	0.29	TING	
8DPSK	39	-0.14	20.97	Pass
	78	-0.64	CIL	

Page 21 of 45 Report No.: CTA24121600902

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results

Test Results		ANALYZER	CTATESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
ING	CH00	1.017	
GFSK	CH39	1.020	
CTA.	CH78	0.960	
	CH00	1.326	NG
π/4DQPSK	CH39	1.278	Pass
	CH78	1.281	
	CH00	1.317	
8DPSK	CH39	1.299	C
-ING	CH78	1.320	CALL.

Test plot as follows:

Report No.: CTA24121600902

Page 25 of 45 Report No.: CTA24121600902

Frequency Separation

LIMIT

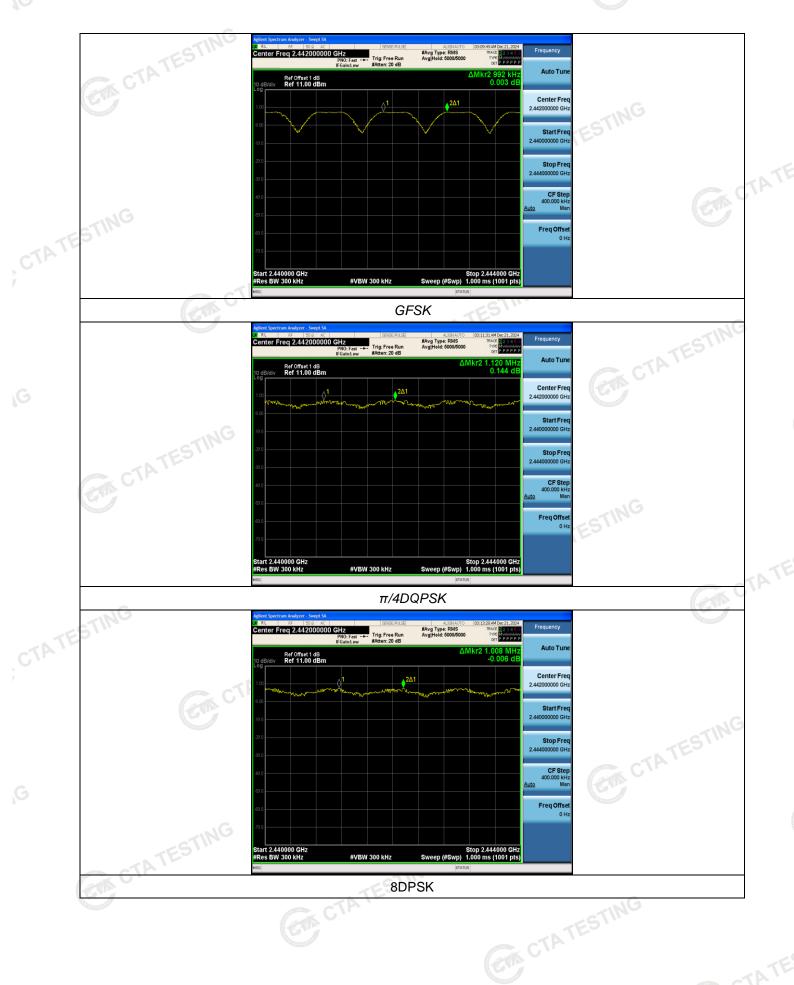
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


TEST RESULTS		CTATES CTATES		TESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	0.992	25KHz or 2/3*20dB	Pass
Grak	CH39	0.992	bandwidth	FdSS
π/4DQPSK	CH38	1.120	25KHz or 2/3*20dB	Pass
II/4DQF3K	CH39	1.120	bandwidth	FdSS
8DPSK	CH38	1,000	25KHz or 2/3*20dB	Door
ODPSK	CH39	1.008	bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTING

Page 26 of 45 Report No.: CTA24121600902

Page 27 of 45 Report No.: CTA24121600902

Number of hopping frequency

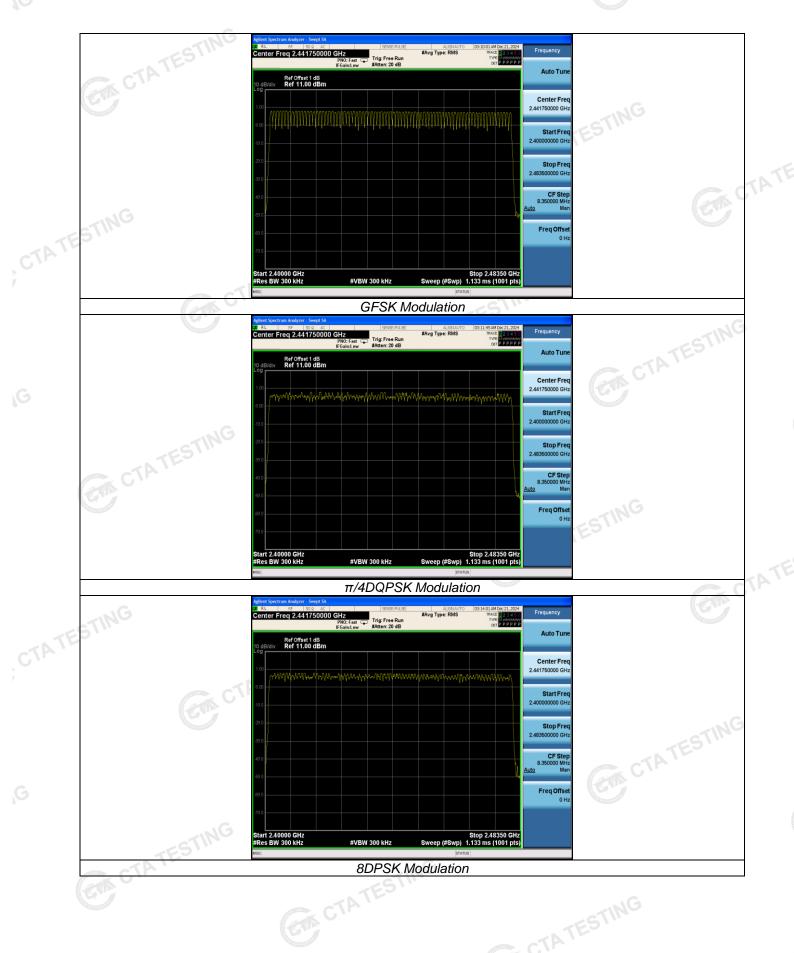
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results		CTATES			
Modulation	Number of Hopping Channel	Limit	Result		
GFSK	79				
π/4DQPSK	79	≥15	Pass		
8DPSK	79				

Test plot as follows:

Page 28 of 45 Report No.: CTA24121600902

Page 29 of 45 Report No.: CTA24121600902

Time of Occupancy (Dwell Time)

Limit

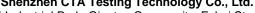
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

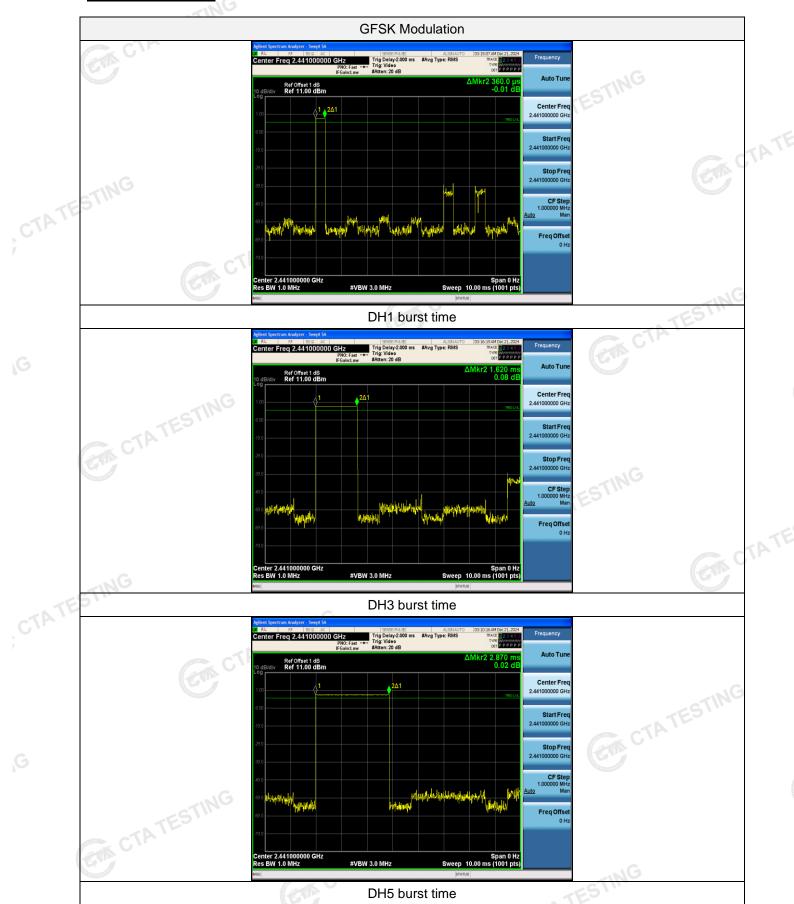
Test Configuration

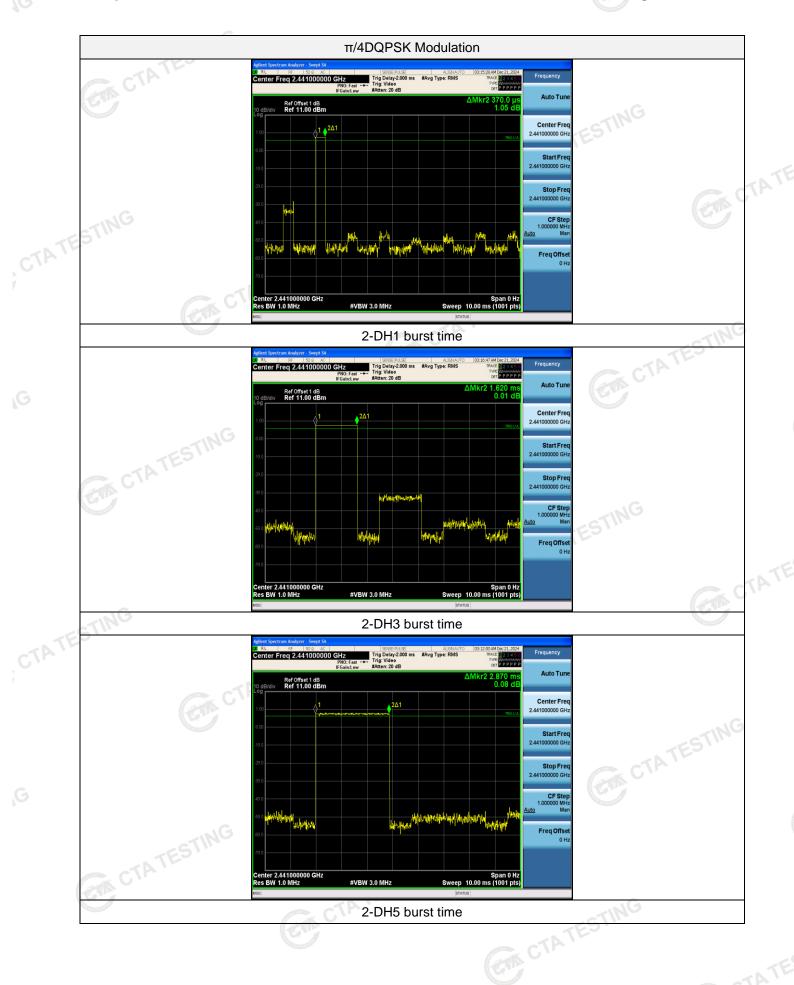
Test Results

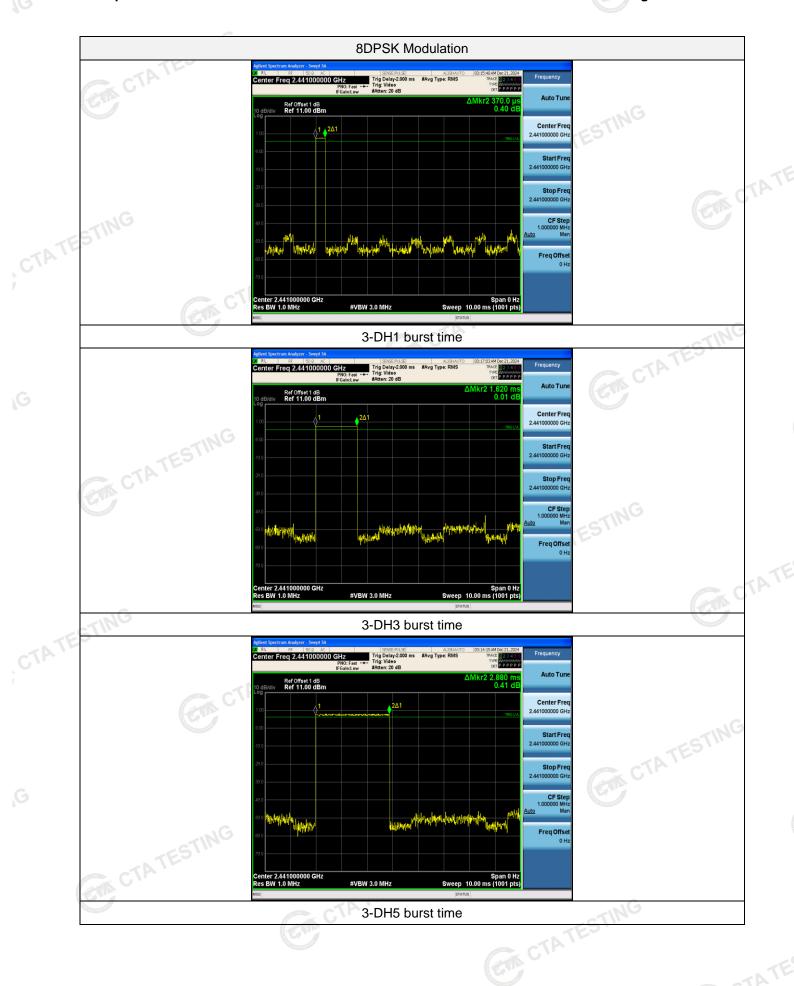

Test Results			CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.360	0.115		
GFSK	DH3	1.620	0.259	0.40	Pass
TATES	DH5	2.870	0.306		
C	2-DH1	0.370	0.118		
π/4DQPSK	2-DH3	1.620	0.259	0.40	Pass
	2-DH5	2.870	0.306	TES!"	
	3-DH1	0.370	0.118	CIA	
8DPSK	3-DH3	1.620	0.259	0.40	Pass
	3-DH5	2.880	0.307		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5 CTA TESTING

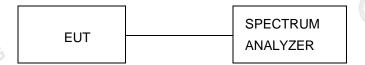


Page 30 of 45 Report No.: CTA24121600902

Test plot as follows:

Report No.: CTA24121600902 Page 33 of 45

Out-of-band Emissions 4.8

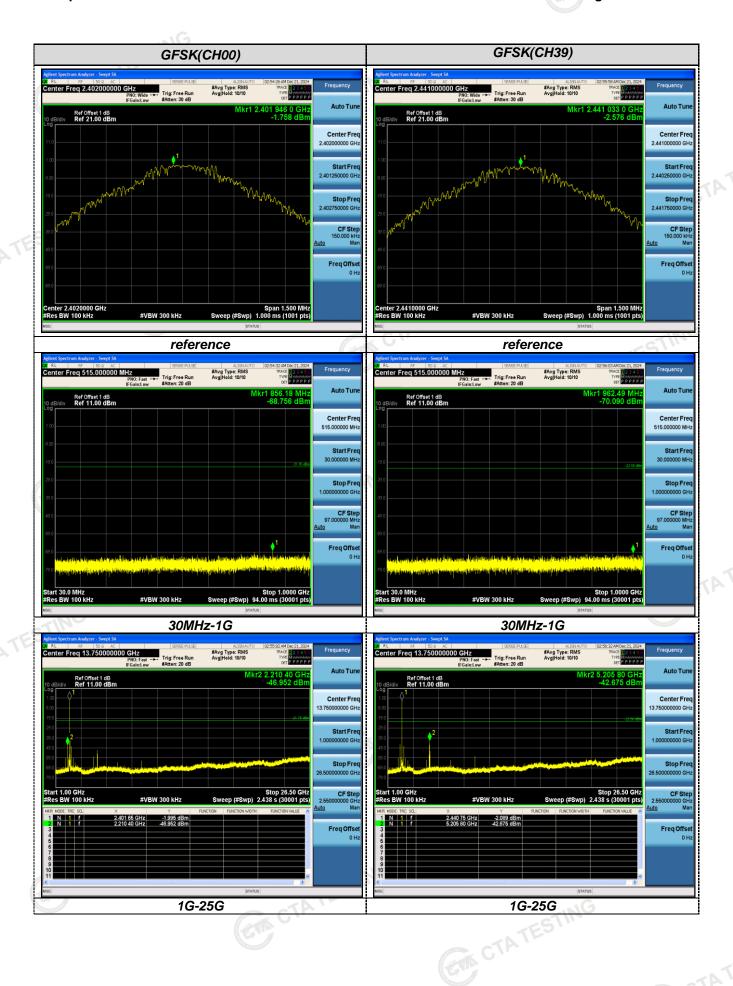

Limit (

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

