FCC CLASS B

TEST REPORT

of

Keyboard

Model

6300

Applied by:

BEHAVIOR TECH COMPUTER CORP. 2F,51,Tung Hsing Rd., Taipei 110, Taiwan, R. O. C.

Hsichih LAB	(V) Lung-Tan LAB		
Site Registration No.: (NVLAP Lab. Code: 200234-0)	Site Registration No.: (NVLAP Lab. Code: 200234-0)		
No. 65, Ku Dai Keng St.	No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd.		
Hsichih, Taipei Hsien 22117	Lung-Tan Hsiang, Tao Yuan County 325		
Taiwan, R.O.C.	Taiwan, R.O.C		
Tel:(02)2646-2550	Tel:(03)407-1718		
Fax:(02)2646-4641	Fax:(03)407-1738		

Report Number: ISL-04LE123FB

Issue Date: 2004/04/29

Contents of Report

1. G	eneral	1
1.1	Certification of Accuracy of Test Data	1
1.2	Applicant Information	2
	Operation Environment	
2. P	owerline Conducted Emissions	3
2.1	Configuration and Procedure	3
2.1.1	EUT Configuration	
2.1.2		
2.1.3		
2.2	Test Data: Test Mode One	4
3. O	pen Field Radiated Emissions	6
3.1	Configuration and Procedure	6
3.1.1	EUT Configuration	
3.1.2	Test Procedure	
3.1.3	Spectrum Analyzer Configuration (for the frequencies tested)	
3.2	Test Data:.Test Mode One	7
4. A	ppendix	9
4.1	Appendix A: Warning Labels	9
4.2	Appendix B: Warning Statement	0
4.3	Appendix C: Measurement Procedure for Powerline Conducted Emissions	1
	Appendix D: Test Procedure for Radiated Emissions	
	Appendix E: Test Equipment	
4.5.1	Test Equipment List	
4.5.2	Software for Controlling Spectrum/Receiver and Calculating Test Data	
4.6	Appendix F: Layout of EUT and Support Equipment1	5
4.6.1	General Conducted Test Configuration	15
4.6.2	General Radiation Test Configuration	
4.7	Appendix G: Description of Support Equipment1	
4.7.1	Description of Support Equipment	
4.7.2	Software for Controlling Support Unit	
4.7.3	I/O Cable Condition of EUT and Support Units	
	Appendix H: Description of Equipment Under Test	
	Appendix I: Uncertainty of Measurement	
4.10	Appendix J: Photographs of EUT Configuration Test Set Up	
4.11	Appendix K: Photographs of EUT	2

International Standards Laboratory

Report Number: ISL-04LE123FB

1. General

1.1 Certification of Accuracy of Test Data

Standards:

ANSI C63.4-2001, CFR 47 Part 15 Subpart B or EN55022:1998/A1:2000 Industry Canada Interference-Causing Equipment Standard ICES-003 Issue 4: 2004

Equipment Tested:

Model/Type/Machine Type:

Applied by

Sample received Date:

Final test Date :

Test Engineer:

refer to the date of test data

BEHAVIOR TECH COMPUTER CORP.

Angus Chu

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the radiated and power line conducted electromagnetic emissions generated by sample equipment under test at the time of the test.

The sample equipment tested as described in this report is in compliance with the limits of above standards.

Approve & Signature

Eddy Hsiung/Director

Test results given in this report apply only to the specific sample(s) tested under stated test conditions. This report shall not be reproduced other than in full without the explicit written consent of ISL. This report totally contains 34 pages, including 1 cover page, 1 contents page, and 32 pages for the test description. This report must not be use to claim product endorsement by NVLAP or any agency of the U.S. Government.

This test data shown below is traceable to NIST or national or international standard. International Standards Laboratory certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

International Standards Laboratory

Report Number: ISL-04LE123FB

HC LAB: NVLAP: 200234-0; VCCI: R-341, C-354; NEMKO: ELA 113a, 113c; BSMI: SL2-IN-E-0037, SL2-R1-E-0037; CNLA:1178 LT LAB: NVLAP: 200234-0; VCCI: R-1435, C-1440; NEMKO: ELA 113b, 113d; BSMI: SL2-IN-E-0013; CNLA:0997

Keyboard

2004/04/21

6300

1.2 Applicant Information

```
Applicant:BEHAVIOR TECH COMPUTER CORP.<br/>2F,51,Tung Hsing Rd.,Taipei,<br/>Taiwan, R. O. C.
```

1.3 Operation Environment

Test Site:	Chamber 02; Conduction 02	
Temperature Humidity:	refer to each site test data refer to each site test data	
input power:	Conduction input power: Radiation input power:	AC 110 V / 60 Hz AC 110 V / 60 Hz

Report Number: ISL-04LE123FB

2. Powerline Conducted Emissions

2.1 Configuration and Procedure

2.1.1 EUT Configuration

The EUT was set up on the non-conductive table that is 1.0 by 1.5 meter, 80cm above ground. The wall was 40cm to the rear of the EUT.

Power to the EUT was provided through the LISN. The impedance vs. frequency characteristic of the LISN is complied with the limit of standards used.

Both lines (neutral and hot) were connected to the LISN in series at testing. A coaxial-type connector which provides one 50 ohms impedance termination was connected to the test instrument. The excess length of the power cord was folded back and forth at the center of the lead to form a bundle 30cm to 40cm in length.

Any changes made to the configuration or modifications made to EUT during testing, are noted in the following test record.

If EUT has an extra auxiliary AC outlet which can provide power to an external monitor, all measurements will be made with the monitor power from EUT-mounted AC outlet and then from floor-mounted AC outlet.

2.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The main power line conducted EMI tests were run on both hot and neutral conductors of the power cord and the results were recorded. The effect of varying the position of the interface cables has been investigated to find the configuration that produces maximum emission.

At the frequencies where the peak values of the emissions were higher than 6dß below the applicable limits, the emissions were also measured with the quasi-peak detectors. At the frequencies where the quasi-peak values of the emissions were higher than 6dß below the applicable average limits, the emissions were also measured with the average detectors.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

2.1.3 EMI Receiver/Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range: Detector Function: Resolution Bandwidth: 150KHz~30MHz Quasi-Peak / Average Mode 9KHz

International Standards Laboratory

Report Number: ISL-04LE123FB

2.2 Test Data: Test Mode One

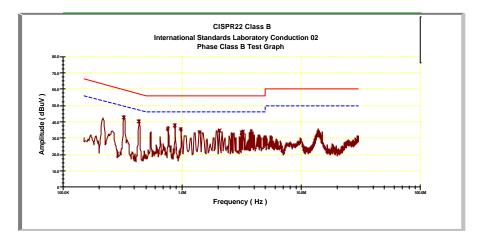
Table 2.2.1 Power Line Conducted Emissions (Hot)

10:32:24 AM, Thursday, April 22, 2004

Operator: Angus Chu Temperature (C): 24 Humidity (%): 54

Frequency	LISN Loss	Cable Loss	QP Corrct.	QP Limit	QP Margin	AVE Corrct.	AVE Limit	AVE Margin
MHz	(dB)	(dB)	Amp.(dBuV)	(dBuV)	(dB)	Amp.(dBuV)	(dBuV)	(dB)
0.32571	0.10	0.02	42.74	60.98	-18.24	42.48	50.98	-8.50
0.4347	0.11	0.03	40.18	57.87	-17.68	39.74	47.87	-8.12
0.75973	0.16	0.05	35.67	56.00	-20.33	34.84	46.00	-11.16
0.86886	0.18	0.06	37.89	56.00	-18.11	36.86	46.00	-9.14
0.97913	0.20	0.07	35.74	56.00	-20.26	34.87	46.00	-11.13
1.4136	0.38	0.08	33.89	56.00	-22.11	33.40	46.00	-12.60
2.06609	0.20	0.10	35.02	56.00	-20.98	33.89	46.00	-12.11
3.15168	0.26	0.11	33.44	56.00	-22.56	32.10	46.00	-13.90
3.26078	0.26	0.11	33.99	56.00	-22.01	32.90	46.00	-13.10
3.80298	0.29	0.12	34.00	56.00	-22.00	32.45	46.00	-13.55

* Note:


Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

Uncertainty of Measurement please to see report page 25

International Standards Laboratory

Report Number: ISL-04LE123FB

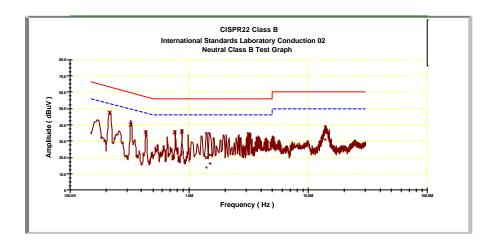
Table 2.2.2 Power Line Conducted Emissions (Neutral)

Operator: Angus Chu Temperature (C): 24 Humidity (%): 54

10:23:24 AM, Thursday, April 22, 2004

Frequency	LISN Loss	Cable Loss	QP Corrct.	QP Limit	QP Margin	AVE Corrct.	AVE Limit	AVE Margin
MHz	(dB)	(dB)	Amp.(dBuV)	(dBuV)	(dB)	Amp.(dBuV)	(dBuV)	(dB)
0.21716	0.10	0.02	47.50	64.08	-16.58	47.20	54.08	-6.88
0.32433	0.10	0.02	40.29	61.02	-20.73	39.87	51.02	-11.15
0.43475	0.11	0.03	35.42	57.86	-22.44	33.73	47.86	-14.14
0.75973	0.16	0.05	35.48	56.00	-20.52	34.59	46.00	-11.41
0.86848	0.18	0.06	36.23	56.00	-19.77	34.72	46.00	-11.28
1.40272	0.26	0.08	19.92	56.00	-36.08	13.99	46.00	-32.01
1.51266	0.25	0.09	21.60	56.00	-34.40	16.31	46.00	-29.69
3.15068	0.20	0.11	34.05	56.00	-21.95	32.76	46.00	-13.24
3.26041	0.20	0.11	33.88	56.00	-22.12	32.68	46.00	-13.32
13.886	0.38	0.27	35.46	60.00	-24.54	30.90	50.00	-19.10

* Note:


Margin = Corrected Amplitude - Limit

Corrected Amplitude = Receiver Reading + LISN Loss + Cable Loss

A margin of -8dB means that the emission is 8dB below the limit

Uncertainty of Measurement please to see report page 25

Graph 2.2.2 Power Line Conducted Emissions (Neutral)

International Standards Laboratory

Report Number: ISL-04LE123FB

3. Open Field Radiated Emissions

3.1 Configuration and Procedure

3.1.1 EUT Configuration

The equipment under test was set up on a non-conductive table 80cm above ground, on a 10 meter open field or 10 meter chamber. The excess length of the power cord was folded back and forth at the center of the lead to form a bundle 30cm to 40cm in length.

Any changes made to the configuration, or modifications made to the EUT, during testing are noted in the following test record.

If EUT has an extra auxiliary AC outlet which can provide power to an external monitor, all measurements will be made with the monitor power from EUT-mounted AC outlet and then from floor-mounted AC outlet.

3.1.2 Test Procedure

The system was set up as described above, with the EMI diagnostic software running. The maximum emission was measured by varying the height of antenna and then by rotating the turntable. Both polarization of antenna, horizontal and vertical, were measured.

The highest emissions between 30 MHz to 1000 MHz were analyzed in details by operating the spectrum analyzer and/or EMI receiver in quasi-peak mode to determine the precise amplitude of the emissions. While doing so, the interconnecting cables and major parts of the system were moved around, the antenna height was varied between one and four meters, is polarization was varied between vertical and horizontal, and the turntable was slowly rotated, to maximize the emission. The highest emissions of frequency higher than 1000 MHz was analyzed in peak mode and/or average mode to determine the precise amplitude of the emission.

3.1.3 Spectrum Analyzer Configuration (for the frequencies tested)

Frequency Range:	30MHz1000MHz
Detector Function:	Quasi-Peak Mode
Resolution Bandwidth:	120KHz
Frequency Range:	Above 1000Mhz
Detector Function:	Peak/Average Mode
Resolution Bandwidth:	1MHz

International Standards Laboratory

3.2 Test Data: Test Mode One

Table 3.2.1 Open Field Radiated Emissions (Horizontal)

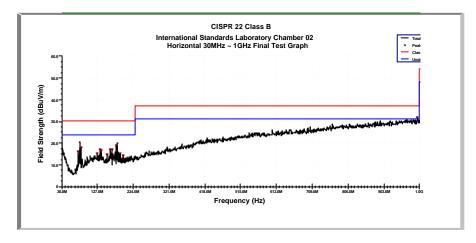
09:24:42 AM, Monday, April 26, 2004

Operator: Angus Temperature (C): 23 Humidity (%): 41

Frequency	Rx Amp.	Ant Fact	CableLoss	PreAmpGain	Corrct. Emi.	Limit	Margin	Ant. Pos.	Table Pos.
MHz	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg)
74.62	8.32	6.15	1.80	0.00	16.26	30.00	-13.74	396.00	300.00
78.5	11.62	6.69	1.86	0.00	20.17	30.00	-9.83	396.00	104.00
82.38	8.73	7.26	1.89	0.00	17.89	30.00	-12.11	396.00	283.00
133.79	3.65	11.16	2.12	0.00	16.92	30.00	-13.08	396.00	137.00
137.67	3.54	10.81	2.18	0.00	16.53	30.00	-13.47	396.00	154.00
161.92	5.90	8.68	2.58	0.00	17.16	30.00	-12.84	396.00	283.00
165.8	5.56	8.64	2.64	0.00	16.84	30.00	-13.16	396.00	267.00
177.44	7.66	8.67	2.63	0.00	18.96	30.00	-11.04	396.00	283.00
181.32	8.62	8.69	2.67	0.00	19.97	30.00	-10.03	396.00	300.00
994.18	2.30	20.87	7.81	0.00	30.98	37.00	-6.02	196.00	122.00

* Note:

Margin = Corrected Amplitude - Limit


Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss - Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz-18GHz

Uncertainty of Measurement please to see report page 28

Graph 3.2.1 Open Field Radiated Emissions (Horizontal)

International Standards Laboratory

Report Number: ISL-04LE123FB

Table 3.2.2 Open Field Radiated Emissions (Vertical)

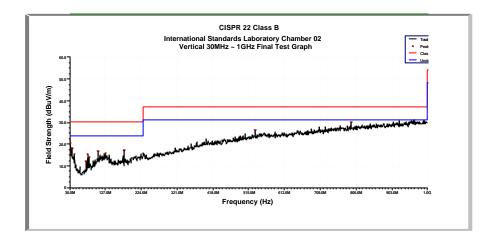
09:27:46 AM, Monday, April 26, 2004

Operator: Angus Temperature (C): 23 Humidity (%): 41

Frequency	Rx Amp.	Ant Fact	CableLoss	PreAmpGain	Corrct. Emi.	Limit	Margin	Ant.Pos.	Table Pos.
MHz	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(deg.)
31.94	2.40	17.07	1.00	0.00	20.47	30.00	-9.53	303.00	235.00
35.82	1.85	14.82	1.09	0.00	17.76	30.00	-12.24	396.00	70.00
42.61	2.91	11.09	1.28	0.00	15.28	30.00	-14.72	203.00	271.00
78.5	6.52	6.69	1.86	0.00	15.06	30.00	-14.94	203.00	92.00
106.63	3.42	11.30	1.93	0.00	16.65	30.00	-13.35	203.00	271.00
127	1.78	11.62	2.05	0.00	15.45	30.00	-14.55	102.00	40.00
177.44	5.52	8.67	2.63	0.00	16.82	30.00	-13.18	102.00	267.00
532.46	3.32	17.94	5.12	0.00	26.38	37.00	-10.62	303.00	235.00
792.42	3.54	19.87	6.70	0.00	30.11	37.00	-6.89	396.00	269.00
964.11	2.61	20.68	7.70	0.00	30.99	37.00	-6.01	303.00	89.00

* Note:

Margin = Corrected Amplitude – Limit


Corrected Amplitude = Radiated Amplitude + Antenna Correction Factor + Cable Loss – Pre-Amplifier Gain A margin of -8dB means that the emission is 8dB below the limit

BILOG Antenna Distance: 10 meter, Frequency: under 1000MHz

Horn Antenna Distance: 3 meter, Frequency: 1000MHz-18GHz

Uncertainty of Measurement please to see report page 28

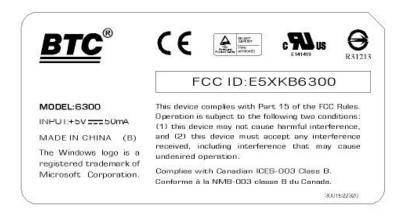
Graph 3.2.2 Open Field Radiated Emissions (Vertical)

International Standards Laboratory

Report Number: ISL-04LE123FB

4. Appendix

4.1 Appendix A: Warning Labels


Label Requirements

A Class B digital device subject to FCC shall carry a label which includes the following statement:

* * * W A R N I N G * * *

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The sample label shown shall be permanently affixed at a conspicuous location on the device and be readily visible to the user at the time of purchase.

International Standards Laboratory

Report Number: ISL-04LE123FB

4.2 Appendix B: Warning Statement

Statement Requirements

The operators manual for a Class B digital device shall contain the following statements or their equivalent:

* * * W A R N I N G * * *

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio TV technician for help.
- Notice: The changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equivalent.

* * * * * * * * *

If the EUT was tested with special shielded cables the operators manual for such product shall also contain the following statements or their equivalent:

Shielded interface cables and/or AC power cord, if any, must be used in order to comply with the emission limits.

International Standards Laboratory

Report Number: ISL-04LE123FB

4.3 Appendix C: Measurement Procedure for Powerline Conducted Emissions

The measurements are performed in a $3.5m \times 3.4m \times 2.5m$ shielded room, which referred as Conduction 01 test site, or a $3m \times 3m \times 2.3m$ test site, which referred as Conduction 02 test site. The EUT was placed on non-conduction 1.0m x 1.5m table, which is 0.8 meters above an earth-grounded.

Power to the EUT was provided through the LISN which has the Impedance (500hm/50uH) vs. Frequency Characteristic in accordance with the standard. Power to the LISNs were filtered to eliminate ambient signal interference and these filters were bonded to the ground plane. Peripheral equipment required to provide a functional system (support equipment) for EUT testing was powered from the second LISN through a ganged, metal power outlet box which is bonded to the ground plane at the LISN.

If the EUT is supplied with a flexible power cord, the power cord length in excess of the distance separating the EUT from the LISN shall be folded back and forth at the center of the lead so as to form a bundle not exceeding 40cm in length. If the EUT is provided with a permanently coiled power cord, bundling of the cord is not required. If the EUT is supplied without a power cord, the EUT shall be connected to the LISN by a power cord of the type specified by the manufacturer which shall not be longer than 1 meter. The excess power cord shall be bundled as described above. If a non-flexible power cord is provided with the EUT, it shall be cut to the length necessary to attach the EUT to the LISN and shall not be bundled.

The interconnecting cables were arranged and moved to get the maximum measurement. Both the line of power cord, hot and neutral, were measured.

The highest emissions were analyzed in details by operating the spectrum analyzer in fixed tuned mode to determine the nature of the emissions and to provide information which could be useful in reducing their amplitude.

International Standards Laboratory

4.4 Appendix D: Test Procedure for Radiated Emissions

Preliminary Measurements in the Anechoic Chamber

The radiated emissions are initially measured in the anechoic chamber at a measurement distance of 3 meters. Desktop EUT are placed on a wooden stand 0.8 meter in height. The measurement antenna is 3 meters from the EUT. The test setup in anechoic chamber is the same as open site. The turntable rotated 360°C. The antenna height is varied from 1-2.5m. The primary objective of the radiated measurements in the anechoic chamber is to identify the frequency spectrum in the absence of the electromagnetic environment existing on the open test site. The frequencies can then be pre-selected on the open test site to obtain the corresponding amplitude. The initial scan is made with the spectrum analyzer in automatic sweep mode. The spectrum peaks are then measured manually to determine the exact frequencies.

Measurements on the Open Site or 10m EMC Chamber

The radiated emissions test will then be repeated on the open site or 10m EMC chamber to measure the amplitudes accurately and without the multiple reflections existing in the shielded room. The EUT and support equipment are set up on the turntable of one of 3 or 10 meter open field sites. Desktop EUT are set up on a wooden stand 0.8 meter above the ground.

For the initial measurements, the receiving antenna is varied from 1-4 meter height and is changed in the vertical plane from vertical to horizontal polarization at each frequency. Both reading are recorded with the quasi-peak detector with 120KHz bandwidth. For frequency between 30 MHz and 1000MHz, the reading is recorded with peak detector or quasi-peak detector. For frequency above 1 GHz, the reading is recorded with peak detector or average detector with 1 MHz bandwidth.

At the highest amplitudes observed, the EUT is rotated in the horizontal plane while changing the antenna polarization in the vertical plane to maximize the reading. The interconnecting cables were arranged and moved to get the maximum measurement. Once the maximum reading is obtained, the antenna elevation and polarization will be varied between specified limits to maximize the readings.

International Standards Laboratory

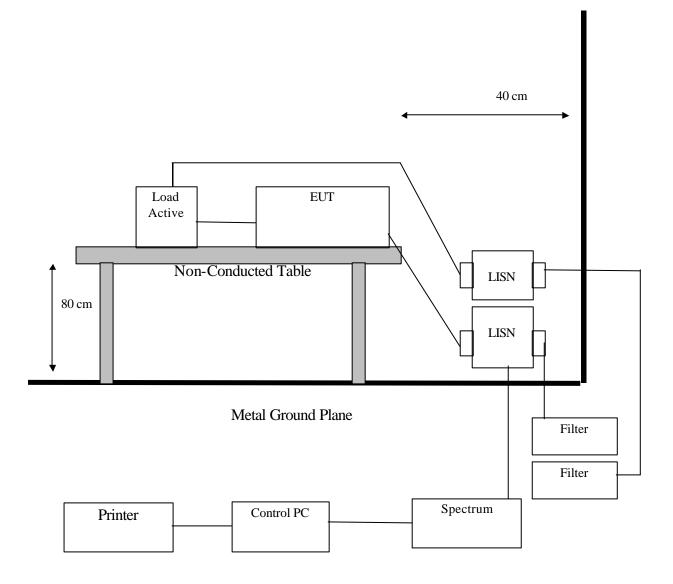
4.5 Appendix E: Test Equipment

4.5.1 Test Equipment List

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction	CDN T2 03	FCC Inc.	FCC-801-T2	02066	01/07/2004	01/07/2005
Conduction	CDN T4 04	FCC Inc.	FCC-801-T4	02069	01/07/2004	01/07/2005
Conduction	Coaxial Cable 1F-C2	Harbourindustr ies	RG400	1F-C2	06/02/2003	06/02/2004
Conduction	Current Probe	Schaffner	SMZ 11	18030	12/30/2003	12/30/2004
Conduction	Digital Hygro-Thermometer Conduct	MicroLife	HT-2126G	ISL-Conductio n02	12/04/2002	12/04/2004
Conduction	EMI Receiver 03	HP	85460A	3448A00209	01/08/2004	01/08/2005
Conduction	ISN T4	Schaffner	ISN T400	16593	12/19/2003	12/19/2004
Conduction	ISN T4 02	FCC	F-CMISN-CAT 5	02003	12/29/2003	12/29/2004
Conduction	LISN 01	R&S	ESH2-Z5	890485/013	04/30/2003	04/30/2004
Conduction	LISN 04	EMCO	3810/2	9604-1429	12/18/2003	12/18/2004
Radiation	BILOG Antenna 04	Schaffner	CBL6112B	2764	06/03/2003	06/03/2004
Radiation	Coaxial Cable Chmb 02-10M	Belden	RG-8/U	Chmb 02-10M	09/09/2003	09/09/2004
Radiation	Digital Hygro-Thermometer Chmb 02	MicroLife	HT-2126G	Chmb 02	12/04/2002	12/04/2004
Radiation	EMI Receiver 02	HP	85460A	3448A00183	10/02/2003	10/02/2004
Radiation	EMI Receiver 04	AFJ	ER 55CR	55390143233	05/20/2003	05/20/2004
Radiation	Loop Antenna 01	R&S	HFH2-Z2	881056/46	01/20/2004	01/20/2005
Radiation	Microwave Cable Chmb 02 3M	HUBER+SUHN ER AG.	Sucoflex 103	42731/3 & 42729/3	03/15/2004	03/15/2005
Radiation	Spectrum Analyzer 13	Advantest	R3132	121200411	02/12/2004	02/12/2005
Rad. Above 1Ghz	BILOG Antenna 07	Schaffner	CBL6112B	2755	12/19/2003	12/19/2006
Rad. Above 1Ghz	Digital Hygro-Thermometer Chmb 05	MicroLife	HT-2126G	Chmb 05	12/04/2002	12/04/2004
Rad. Above 1Ghz	High Pass Filter 01	HEWLETT-PA CKARD	84300-80038	001	N/A	N/A
Rad. Above 1Ghz	High Pass Filter 02	HEWLETT-PA CKARD	84300-80039	005	N/A	N/A
Rad. Above 1Ghz	Horn Antenna 02	Com-Power	AH-118	10088	02/17/2004	02/17/2005
Rad. Above 1Ghz	Horn Antenna 04	Com-Power	AH-826	081-001	01/07/2004	01/07/2005
Rad. Above 1Ghz	Horn Antenna 05	Com-Power	AH-640	100A	09/18/2003	09/18/2005

International Standards Laboratory

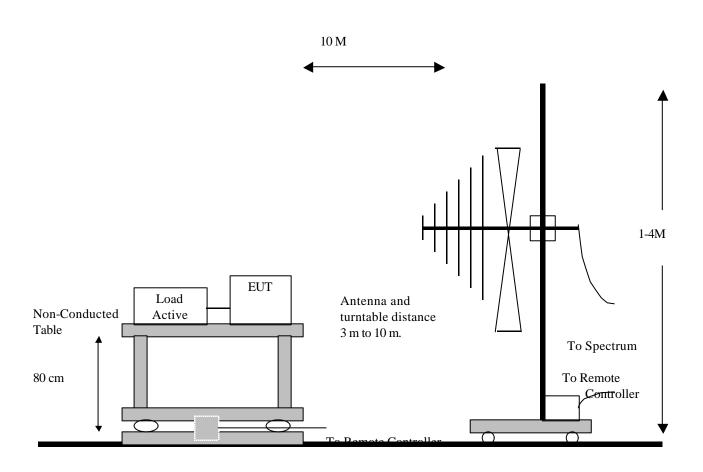
Report Number: ISL-04LE123FB

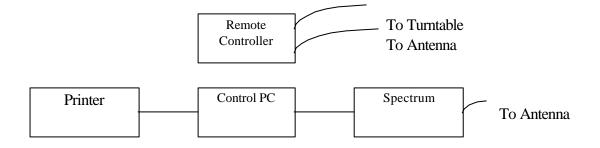

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Rad. Above	Microwave Cable RF	HUBER+SUHN	Sucoflex 102	22139/2	02/17/2004	02/17/2005
1Ghz	SK-01	ER AG.				
Rad. Above	Microwave Cable RF	HUBER+SUHN	Sucoflex 102	20085 /2	06/19/2003	06/19/2004
1Ghz	SK-03	ER AG.				
Rad. Above	Peak Power Analyzer	HP	8990A	3621A01269	01/02/2004	01/02/2005
1Ghz						
Rad. Above	Power Meter 01	HP	438A	3513U06187	01/07/2004	01/07/2005
1Ghz						
Rad. Above	Power Sensor -4-3/-6	HP	8482A	3318A29614	01/09/2004	01/09/2005
1Ghz						
Rad. Above	Power Sensor Radar	HP	84815A	3318A01828	01/02/2004	01/02/2006
1Ghz						
Rad. Above	Power Sensor RF 01	HP	8481H	MY41091048	06/17/2003	06/17/2004
1Ghz						
Rad. Above	Preamplifier 02	MITEQ	AFS44-0010265	728229	05/13/2003	05/13/2004
1Ghz			0-40-10P-44			
Rad. Above	Preamplifier 09	MITEQ	AFS44-0010265	858687	05/13/2003	05/13/2004
1Ghz			0-40-10P-44			
Rad. Above	Preamplifier 10	MITEQ	JS-26004000-27	818471	N/A	N/A
1Ghz			-5A			
Rad. Above	Spectrum Analyzer 07	Advantest	R3182	110600649	04/08/2004	04/08/2005
1Ghz						

4.5.2 Software for Controlling Spectrum/Receiver and Calculating Test Data

Radiation/Conduction	Filename	Version	Issued Date		
Conduction	Tile.exe	2.0.P	2/12/2002		
Radiation	Tile.exe	2.0.P	2/12/2002		

4.6 Appendix F: Layout of EUT and Support Equipment


4.6.1 General Conducted Test Configuration


International Standards Laboratory

Report Number: ISL-04LE123FB

Metal Full Soldered Ground Plane

International Standards Laboratory

Report Number: ISL-04LE123FB

4.7 Appendix G: Description of Support Equipment

4.7.1 Description of Support Equipment

Support Unit 1.

Description: Model Number: Serial Number: Power Supply Type: Power Cord: FCC ID: KOKA Headphone ST-304 N/A N/A N/A N/A

Support Unit 2.

Description:	KOKA Headphone
Model Number:	ST-304
Serial Number:	N/A
Power Supply Type:	N/A
Power Cord:	N/A
FCC ID:	N/A

Support Unit 3.

Description:	USB 2.0 Card Reader/Writer
Model Number:	UID12W
Serial Number:	N/A
Power Supply Type:	From USB Port
USB 2.0 Port:	one 4-pin
SD/MMC Card Slot:	one
SecureDigital Card (Option):	SD (Model: SD-M16B1) 16MB
USB Cable:	Shielded Detachable (With Cord)
SecureDigital Card (Option):	SD (Model: SD-M16B1) 16MB
USB Cable:	Shielded, Detachable (With Cord)
FCC ID:	(Comply with FCC DOC)

Support Unit 4.

Description: Model Number: Serial Number: Power Supply Type: USB 2.0 Port: SD/MMC Card Slot: SecureDigital Card (Option): USB Cable: FCC ID: USB 2.0 Card Reader/Writer UID12W N/A From USB Port one 4-pin one SD (Model: SD-M16B1) 16MB Shielded, Detachable (With Cord) (Comply with FCC DOC)

International Standards Laboratory

Report Number: ISL-04LE123FB

Support Unit 5.

Description: Model Number: Serial Number: Power Supply Type: Power Cord: FCC ID: BSMI ID:

Support Unit 6.

Description: Model Number: Serial Number: Power Supply Type: Power Cord: FCC ID:

Support Unit 7.

Description: Model Number: Serial Number: Power Supply Type: Power Cord:

Support Unit 8.

Description: Model Number: Serial Number: Power Supply Type: Power Cord: Data Cable: FCC ID:

Support Unit 9.

Description: Model Number: Serial Number: Power Supply Type: Power Cord: FCC ID: N/A C3KMGP1 3862A202

KOKA Microphone DM-510 N/A N/A N/A N/A

Coson radio cassette player C-2087 N/A N/A N/A

HP Printer (for parallel interface port) C2642A TH84T1N3J3 AC Adaptor (HP Model: C2175A) Non-shielded, Detachable Shielded, Detachable, With Metal Hood B94C2642X

DELL Mouse M-SAW34 LZE24108086 N/A N/A DZL211029

International Standards Laboratory

Report Number: ISL-04LE123FB

HC LAB: NVLAP: 200234-0; VCCI: R-341, C-354; NEMKO: ELA 113a, 113c; BSMI: SL2-IN-E-0037, SL2-R1-E-0037; CNLA:1178 LT LAB: NVLAP: 200234-0; VCCI: R-1435, C-1440; NEMKO: ELA 113b,113d; BSMI: SL2-IN-E-0013; CNLA:0997

90873

N/A

02132661

Microsoft Joy Stick

Support Unit 10.

Description:

Model Number: Serial Number: Power Supply Type:

Power Cord: FCC ID:

Support Unit 11.

Description:

Model Number: Serial Number: Power Supply Type:

Power Cord: FCC ID:

Support Unit 12.

Description: Model: Serial Number: Power Cord: FCC ID: Aceex Modem (for serial interface port) DM1414 0301000558 Linear, Power Adapter (AC to AC Xfmr, Wall Mounted Type) Nonshielded, Without Grounding Pin IFAXDM1414

Aceex Modem (for serial interface port) DM1414 0301000557 Linear, Power Adapter (AC to AC Xfmr, Wall Mounted Type) Nonshielded, Without Grounding Pin IFAXDM1414

DELL 19" Monitor P992 JP-08D468-47743-2B2-203T Non-shielded, Detachable (Comply with FCC DOC)

IFAADN

International Standards Laboratory

Report Number: ISL-04LE123FB

Support Unit 13.

Description: Model: Serial No.: Power Supply Type: Hard Disk Drive: Floppy Driver: **CD-ROM Drive:** VGA Card: Modem Card: Parallel Port: Serial Port: LAN Port: Keyboard Connector: Mouse Connector: USB Connector: Game Port: Speaker Port: Microphone Port: Line In Port: Power Cord:

Support Unit 14.

Description: Model: Serial No.: Power Supply Type: Hard Disk Drive: Floppy Driver: CD-ROM Drive: VGA Card: Modem Card: Parallel Port: Serial Port: LAN Port: Keyboard Connector: Mouse Connector: **USB** Connector: Game Port: Speaker Port: Microphone Port: Line In Port: Power Cord:

Acer Personal Computer VT7200 N/A Delta (Model: DPS-300GB-1) Maxtor (Model:53073U6)30GB Panasonic (Model: JU-256A047P K2) AOpen (Model: CD-952E/AKH) WinFast (Model: LRI2830) AMBIT(Model: 1456VQH20E-04) one 25-pin two 9-pin one 8-pin one 6-pin one 6-pin two 4-pin one 15-pin one one one Non-shielded, Detachable

Acer Personal Computer VT7200 N/A Delta (Model: DPS-300GB-1) Maxtor (Model:53073U6)30GB Panasonic (Model: JU-256A047P K2) AOpen (Model: CD-952E/AKH) WinFast (Model: LRI2830) AMBIT(Model: 1456VQH20E-04) one 25-pin one 9-pin one 8-pin one 6-pin one 6-pin two 4-pin one 15-pin one one one Non-shielded, Detachable

International Standards Laboratory

Report Number: ISL-04LE123FB

4.7.2 Software for Controlling Support Unit

Test programs exercising various part of EUT were used. The programs were executed as follows:

- A. Read and write to the disk drives.
- B. Send audio signal to the headphone.
- C. R/W memory card form EUT USB Port through Card Reader/Writer
- D. Receive audio signal from the microphone.
- E. Receive audio signal from walkman.
- F. Send H pattern to the parallel port device (Printer).
- G. Send H pattern to the serial port device (Modem).
- H. Send H pattern to the video port device (Monitor).
- I. Send signal from EUT to server through LAN port.
- J. Press the "H" font key, Send H pattern to the WordPad file show on the monitor screen.
- K. Repeat the above steps.

	Filename	Issued Date
LAN	EMC.exe	11/22/1996
Monitor	HH.bat	8/20/1991
Modem	Hm.bat	8/20/1991
Printer	Wordpad.exe	11/11/1999
Winthrax	Winthrax.exe	5/21/1996
WordPad	WordPad.exe	8/21/2002

International Standards Laboratory

Description	Path	Cable Length	Cable Type	Connector Type
AC Power Cord	110V (~240V) to AC Power Cord Inlet (3-pin)	1.8M	Nonshielded, Detachable	Plastic Head
Server Data Cable	Server to EUT LAN Port	33 feet	Non-shielded, Detachable	RJ-45, with Plastic Head
Monitor Data Cable	Monitor to PC VGA port	1.6M	Shielded, Un-detachable	Metal Head
Modem Data Cable x2	Modem to PC COM port	1.5M	Shielded, Detachable	Metal Head
Mouse Data Cable	Mouse to PC Mouse port	1.8M	Shielded, Un-detachable	Metal Head
Printer Data Cable	Printer to PC Parallel port	1.5M	Shielded, Detachable	Metal Head
Audio-in Data Cable	Walkman to PC Line In Port	2M	Non-shielded, Detachable	Plastic Head
Microphone Data Cable	Microphone to PC Line In Port	1.5M	Nonshielded, Undetachable	Plastic Head
Headphone Data Cable x2	Headphone to PC Line Out Port	1.2M	Nonshielded, Undetachable	Plastic Head
Joy Stick Data Cable	Joystick to PC Game port	1.95M	Shielded, Un-detachable	Metal Head
USB Data Cable x2	EUT USB Port to Card Reader/Writer	1.0 M	Shielded, detachable (with cord)	Metal Head
PS/2 Data Cable	EUT PS/2 Port to Personal Computer PS/2 port	1.7M	Shielded, Un-detachable	Metal Head

4.7.3 I/O Cable Condition of EUT and Support Units

International Standards Laboratory

Report Number: ISL-04LE123FB

4.8 Appendix H: Description of Equipment Under Test

EUT

Description:	Keyboard
Condition:	Pre-Production
Model:	6300
Serial Number:	N/A
Power:	From Personal Computer PS/2 port
PS/2 Connector:	one 6 pin
PS/2 Signal Data Cable:	Shielded, Un-detachable

The test configuration is listed below:

Configuration 1:

The EUT inserted into the Personal Computer PS/2 Keyboard port.

EMI Noise Source: None

EMI Solution:

- On PS/2 Signal Data Cable end of Keyboard add a Core. Vendor: FYE, Model: 10.4*6*4.
- 2. Adding one aluminum foil on the back of the keyboard Type.

4.9 Appendix I: Uncertainty of Measurement

Item	Source of Uncertainty	Probability Distribution	Total Uncerta	Total Uncertainties (dB)		Standard Uncertainty (dE	
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=1	0.098	k=1	0.098	
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.682	k=1	0.341	
3	Receiver: Sine wave voltage	Normal	k=2		k=2	0.000	
4	Receiver: Pulse amplitude response	Rectangular	k=1.73	1.000	k=1	0.577	
5	Receiver: Pulse repetition rate response	Rectangular	k=1.73		k=1	0.000	
6	Receiver: Noise floor proximity	Normal	k=1.73	0.000	k=1	0.000	
7	LISN Factor Calibration	Normal	k=2	1.200	k=1	0.600	
8	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500	
9	Combined Standard Uncertainty Uc(y)	Normal			k=1	1.034	
10	Total Uncertainty @95% mim. Confidence Level	Normal			k=2	2.068	

Measurement Uncertainty Calculations:

Uc (y) = square root ($u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2$) U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory

Report Number: ISL-04LE123FB

Test Site:	Conduction 02					
Item	Source of Uncertainty	Probability Distribution	Total Uncerta	inties (dB)	Standard Unce	ertainty (dB)
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.104	k=1	0.052
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.330	k=1	0.165
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	LISN Factor Calibration	Normal	k=2	1.200	k=1	0.600
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	0.850
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	1.701		

Test Site: Conduction 02

Measurement Uncertainty Calculations:

Uc (y) = square root ($u_1 (y)^2 + u_2 (y)^2 + \dots + u_n (y)^2$) U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory

Report Number: ISL-04LE123FB

0.	тс	01
OA'	10	υı

Source of Uncertainty	Probability Distribution	Total Uncerta	inties (dB)	Standard Unce	ertainty (dB)
Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.286	k=1	0.143
Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	1.642	k=1	0.821
Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
Antenna Factor Calibration	Normal	k=2	1.400	k=1	0.700
Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
Combined Standard Uncertainty Uc(y)	Normal			k=1	1.232
Total Uncertainty @95% mim. Confidence Level	Normal			k=2	2.464

Measurement Uncertainty Calculations: Uc (y) = square root ($u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2$) U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory

Test Site:	Chamber 01-3M					
Item	Source of	Probability	Total Unc	Total Uncertainties		Uncertainty
	Uncertainty	Distribution (dB)		(dB)		lB)
1	Systematic Effects:	Normal	k=1	0.036	k=1	0.036
	(Assessment from 20					
	repeat observation;					
	1 reading on EUT)					
2	Random Effects:	Normal	k=1	0.040	k=1	0.040
	(Assessment from 20					
	random					
	observations; 1					
	reading on EUT)					
3	Antenna Factor	Normal	k=2	1.400	k=1	0.700
	Calibration					
4	Receiver: Sine wave	Normal	k=2	0.500	k=1	0.250
	voltage					
5	Receiver: Pulse	Rectangular	k=1.73	1.000	k=1	0.577
	amplitude response	U				
6	Receiver: Pulse	Rectangular	k=1.73	1.000	k=1	0.577
	repetition rate	U				
	response					
7	Receiver: Noise floor	Normal	k=2	0.500	k=1	0.250
	proximity					
8	Mismatch:	U-shaped	k=1	0.670	k=1	0.670
	antenna-receiver					
9	Antenna: AF freq.	Rectangular	k=1.73	1.000	k=1	0.577
	Interpolation	C				
10	Antenna: AF height	Rectangular	k=1.73	1.000	k=1	0.577
	deviation	C				
11	Antenna: Directivity	Rectangular	k=1.73	1.000	k=1	0.577
	diffrence	C				
12	Antenna: Balance	Rectangular	k=1	1.000	k=1	1.000
13	Site imperfections	Triangular	k=1.73	1.000	k=1	0.577
14	Site separation	Rectangular	k=1.73	1.000	k=1	0.577
	distance	C				
15	Table height	Normal	k=2	1.000	k=1	0.500
16	Cable Loss	Normal	k=2	1.000	k=1	0.500
-	Calibration					
17	Combined Standard	Normal			k=1	2.214
± '	Uncertainty Uc(y)					
18	Total Uncertainty	Normal			k=2	4.427
10	@95% mim.					
	Confidence Level					

Test Site: Chamber 01-3M

Measurement Uncertainty Calculations: Uc (y) = square root ($u_1(y)^2 + u_2(y)^2 + \dots + u_n(y)^2$) U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory

Report Number: ISL-04LE123FB

Test Site:	Chamber 02-10M					
Item	Source of Uncertainty	ty Probability Total Uncertainties (dB) Standard U Distribution	Standard Unc	ertainty (dB)		
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.134	k=1	0.067
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.206	k=1	0.103
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	Antenna Factor Calibration	Normal	k=2	1.400	k=1	0.700
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	0.916
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	1.831		

Measurement Uncertainty Calculations:

Uc (y) = square root ($u_1 (y)^2 + u_2 (y)^2 + \dots + u_n (y)^2$) U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory

Test Site:	Chamber 02-3M					
Item	Source of Uncertainty	ty Probability Total Uncertainties (dB) Standard Uncert	Total Uncertainties (dB)		ertainty (dB)	
1	Systematic Effects: (Assessment from 20 repeat observation; 1 reading on EUT)	Normal	k=2	0.067	k=1	0.034
2	Random Effects: (Assessment from 20 random observations; 1 reading on EUT)	Normal	k=2	0.103	k=1	0.052
3	Receiver Calibration	Rectangular	k=1.73	1.000	k=1	0.577
4	Antenna Factor Calibration	Normal	k=2	1.700	k=1	0.850
5	Cable Loss Calibration	Normal	k=2	1.000	k=1	0.500
6	Combined Standard Uncertainty Uc(y)	Normal			k=1	1.029
7	Total Uncertainty @95% mim. Confidence Level	Normal	k=2	2.059		

Measurement Uncertainty Calculations:

Uc (y) = square root ($u_1 (y)^2 + u_2 (y)^2 + \dots + u_n (y)^2$) U = 2 * Uc (y)

Note: The measurement Uncertainties mentioned above also refer to NIS 81-1994 of NAMAS : The treatment of Uncertainty in EMC Measurement.

International Standards Laboratory

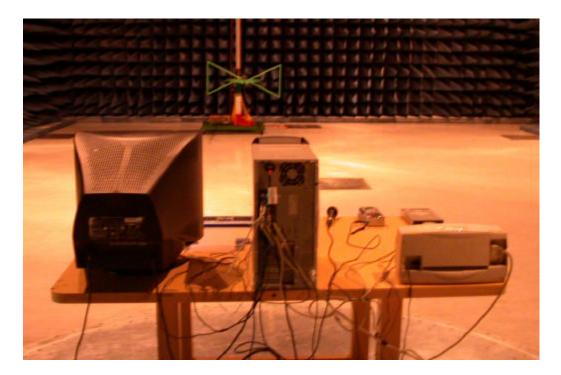
4.10 Appendix J: Photographs of EUT Configuration Test Set Up

The measurement results along with the appropriate limits for comparison shall be presented in tabular form. If an alternate test method is used, the test report must identify that method and justification for its use shall be provided. Instrumentation, instrument attenuator and bandwidth settings, detector function, EUT arrangements, a sample calculation with all conversion factors and all other pertinent details shall be included along with the measurement results. When automatic scan techniques are used, an explanation of how each emission from the EUT was maximized shall be included in the test report along with the scan rate used to obtain each level.

The justification for selecting a particular EUT configuration and particular length of interface cable to produce maximized emissions must be documented in the test report. Photographs clearly showing the test set-up and interface cable arrangement for the highest radiated and line conducted emission measured shall be included.

The Front View of Highest Conducted Set-up For EUT

International Standards Laboratory


Report Number: ISL-04LE123FB

The Front View of Highest Radiated Set-up For EUT

-31-

The Back View of Highest Radiated Set-up For EUT

International Standards Laboratory

Report Number: ISL-04LE123FB

4.11 Appendix K: Photographs of EUT

Please find this appendix in the File of ISL-04LE123P

International Standards Laboratory

Report Number: ISL-04LE123FB