

FCC TEST REPORT

Test report On Behalf of Zhongshan K-mate General Electronics Co., Ltd. For Bluetooth True Wireless Headset Model No.: BTH108R

FCC ID: WAD-BTH108R

Prepared for :	Zhongshan K-mate General Electronics Co., Ltd.
	NO.2, 5th Xinsheng Street, Gangkou Town, Zhongshan City, Guangdong, China
Prepared By :	Shenzhen HUAK Testing Technology Co., Ltd.
	1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street,
	Bao'an District, Shenzhen City, China

 Date of Test:
 Oct. 12, 2018 ~ Oct. 26, 2018

 Date of Report:
 Oct. 31, 2018

 Report Number:
 HK1810231333E

TEST RESULT CERTIFICATION

Applicant's name:	Zhongshan K-mate General Electronics Co., Ltd.
Address	NO.2, 5th Xinsheng Street, Gangkou Town, Zhongshan City, Guangdong, China
Manufacture's Name:	Zhongshan K-mate General Electronics Co., Ltd.
Address	NO.2, 5th Xinsheng Street, Gangkou Town, Zhongshan City, Guangdong, China
Product description	
Trade Mark:	K-mate
Product Name:	Bluetooth True Wireless Headset
Model and/or type reference:	BTH108R
Series Model:	BTH173
Difference Description:	All the same except for the appearance
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247 ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test	
Date (s) of performance of tests:	Oct. 12, 2018 ~ Oct. 26, 2018
Date of Issue:	Oct. 31, 2018
Test Result	Pass

2

Testing Engineer

Gory Di an L (Gary Qian)

Technical Manager

Edon Hu

(Eden Hu)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS PAGE **1. TEST SUMMARY** 5 2. GENERAL INFORMATION 6 2.1. GENERAL DESCRIPTION OF EUT 6 2.2. CARRIER FREQUENCY OF CHANNELS 7 2.3. OPERATION OF EUT DURING TESTING 7 2.4. DESCRIPTION OF TEST SETUP 8 2.5. EQUIPMENT USED IN EUT SYSTEM 8 2.6. MEASUREMENT INSTRUMENTS LIST 9 **3. PEAK OUTPUT POWER** 10 **3.1. MEASUREMENT PROCEDURE** 10 3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 10 **3.3. LIMITS AND MEASUREMENT RESULT** 11 4. BANDWIDTH 17 **4.1. MEASUREMENT PROCEDURE** 17 4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 17 **4.3. LIMITS AND MEASUREMENT RESULTS** 17 5. CONDUCTED SPURIOUS EMISSION 24 5.1. MEASUREMENT PROCEDURE 24 5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION) 24 **5.3. LIMITS AND MEASUREMENT RESULT** 24 6. RADIATED EMISSION 28 6.1. TEST LIMIT 28 **6.2. MEASUREMENT PROCEDURE** 28 6.3. TEST SETUP 30 6.4. TEST RESULT 32 7. BAND EDGE EMISSION 44 7.1. MEASUREMENT PROCEDURE 44 7.2. TEST SET-UP 44 7.3. TEST RESULT 45 8. NUMBER OF HOPPING FREQUENCY 49 8.1. MEASUREMENT PROCEDURE 49 8.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION) 49 8.3. LIMITS AND MEASUREMENT RESULT 49 51

9. TIME OF OCCUPANCY (DWELL TIME)

TABLE OF CONTENTS	PAGE
9.1. MEASUREMENT PROCEDURE	51

	9.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	51
	9.3. LIMITS AND MEASUREMENT RESULT	51
10	. FREQUENCY SEPARATION	54
	10.1. MEASUREMENT PROCEDURE	54
	10.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	54
	10.3. LIMITS AND MEASUREMENT RESULT	54
11	. LINE CONDUCTED EMISSION TEST	56
	11.1. LIMITS OF LINE CONDUCTED EMISSION TEST	56
	11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	56
	11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	57
	11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	57
	11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	57
12	. ANTENNA REQUIREMENT	58
13	. PHOTOGRAPH OF TEST	59
14	. PHOTOGRAPHS OF EUT	61

1. TEST SUMMARY

1.1. TEST PROCEDURES AND RESULTS

RESULT
COMPLIANT
N/A

Note: N/A means it's not applicable to this item.

1.2. TEST FACILITY

Test Firm :	Shenzhen HUAK Testing Technology Co., Ltd.	
-------------	--	--

Address : 1F, B2 Building, Junfeng Zhongcheng Zhizao Innovation Park, Fuhai Street, Bao'an District, Shenzhen City, China Designation Number: : CN1229

Test Firm Registration Number : 616276

1.3. MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz)	=	4.06dB, k=2

2. GENERAL INFORMATION

2.1. GENERAL DESCRIPTION OF EUT

Operation Frequency	2.402 GHz to 2.480GHz	
RF Output Power	7.66dBm(Max)	
Bluetooth Version	V5.0	
Modulation BR ⊠GFSK, EDR ⊠π /4-DQPSK, ⊠8DPSK BLE □GFSK		
Number of channels	79 for BR/EDR	
Hardware Version	BTH108RMB-V11	
Software Version	BTH108R-V24	
Antenna Designation	Ceramic Antenna	
Antenna Gain	2dBi	
Power Supply	DC 3.7V by battery	
Note: The USB port only used for charging and can't be used to transfer data with PC.		

2.2. CARRIER FREQUENCY OF CHANNELS

BR/EDR Channel List

Frequency Band	Channel Number	Frequency		
	0	2402MHz		
	1	2403MHz		
	:	:		
2400~2483.5MHz	38	2440 MHz		
	39	2441 MHz		
	40	2442 MHz		
	:	:		
	77	2479 MHz		
	78	2480 MHz		

2.3. OPERATION OF EUT DURING TESTING

Low channel GFSK	
Middle channel GFSK	
High channel GFSK	
Low channel π /4-DQPSK	
Middle channel π /4-DQPSK	
High channel π /4-DQPSK	
Low channel 8DPSK	
Middle channel 8DPSK	
High channel 8DPSK	
BT Link(Hopping mode)	

Note:

1. All the test modes can be supply by battery, only the result of the worst case was recorded in the report, if no other cases.

2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.

3. The EUT used fully-charged battery when tested.

2.4. DESCRIPTION OF TEST SETUP

Configure 1: (Normal hopping)

EUT

Configure 2: (Control continuous TX)

EUT	Control box	PC

2.5. EQUIPMENT USED IN EUT SYSTEM

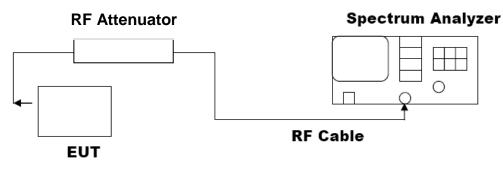
ltem	Equipment	Mfr/Brand	Model/Type No.	Remark
1	Bluetooth True Wireless	K-mate	BTH108R	EUT
2	Battery	SHIYANGENERGY	1454	Accessory
3	PC	APPLE	A1465	A.E
4	Control box	AIROHA	N/A	A.E
5	USB Cable	N/A	0.8m unshielded	Accessory
6	IPOD	APPLE	A1367	A.E

Note: The temporary antenna connector is a RF SMA connector with fifty ohm resistor, which is welded to the PCB board or module.

2.6. MEASUREMENT INSTRUMENTS LIST

TEST EQUIPMENT OF RADIATED EMISSION TEST

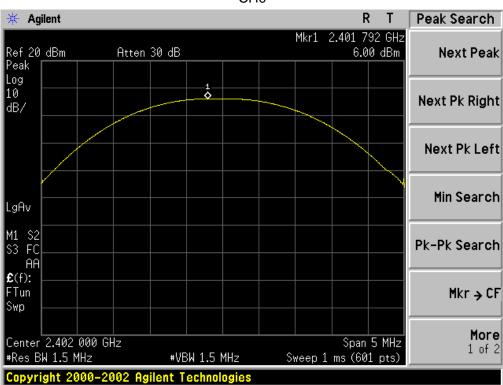
ltem	Equipment	Manufacturer Model No.		Serial No.	Last Cal.	Cal. Interval
1.	Spectrum analyzer	Agilent	N9020A	HKE-048	Dec. 28, 2017	1 Year
2.	Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Dec. 28, 2017	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESCI 7	HKE-010	Dec. 28, 2017	1 Year
4.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	HKE-012	Dec. 28, 2017	1 Year
5.	Loop Antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Dec. 28, 2017	1 Year
6.	Horn Antenna	Schewarzbeck	9120D	HKE-013	Dec. 28, 2017	1 Year
7.	Broad-band Horn Antenna	Schewarzbeck	LB-180400-KF	HKE-031	Dec. 28, 2017	1 Year
8.	Pre-amplifier	EMCI	EMC051845SE	HKE-015	Dec. 28, 2017	1 Year
9.	Pre-amplifier	Agilent	83051A	HKE-016	Dec. 28, 2017	1 Year
10.	Filter (2.4-2.483GHz)	Micro-tronics	087		N/A	N/A
11.	Radiation Cable 1	MXT	HK1	R05	N/A	N/A
12.	Radiation Cable 2	MXT	HK1	R06	N/A	N/A

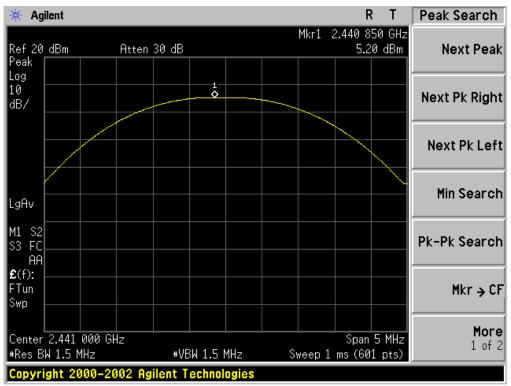

3. PEAK OUTPUT POWER

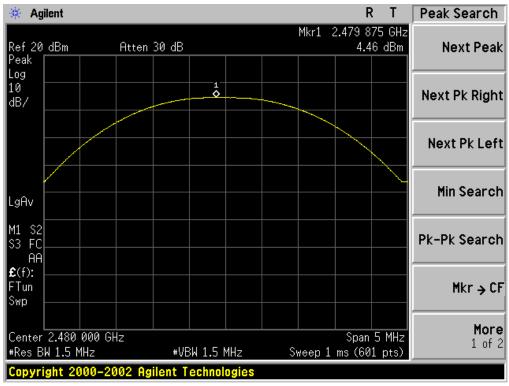
3.1. MEASUREMENT PROCEDURE

For peak power test:

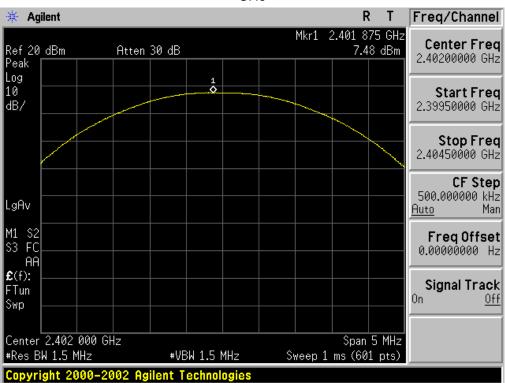
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. RBW > the 20 dB bandwidth of the emission being measured, VBW \ge RBW.
- 4. Record the maximum power from the Spectrum Analyzer.
- 5. The maximum peak power shall be less 21dBm.

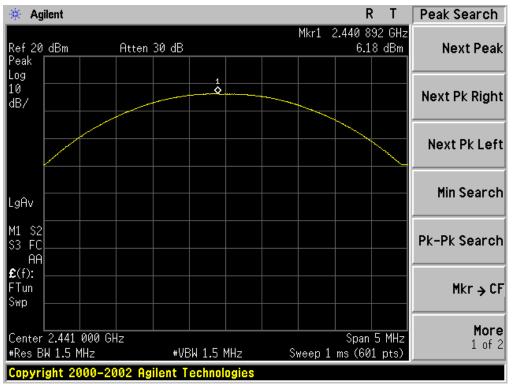

3.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

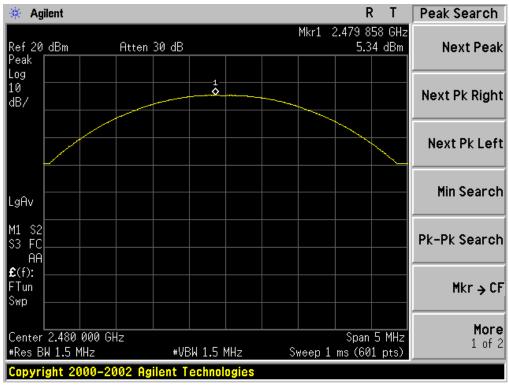



3.3. LIMITS AND MEASUREMENT RESULT

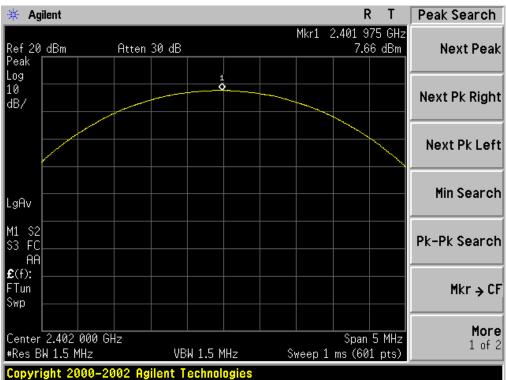
PEAK OUTPUT POWER MEASUREMENT RESULT FOR GFSK MOUDULATION					
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail		
2.402	6.00	21	Pass		
2.441	5.20	21	Pass		
2.480	4.46	21	Pass		

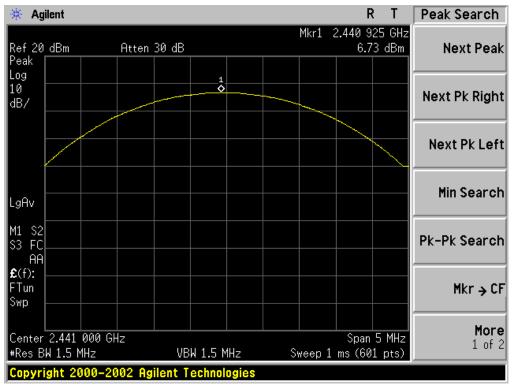


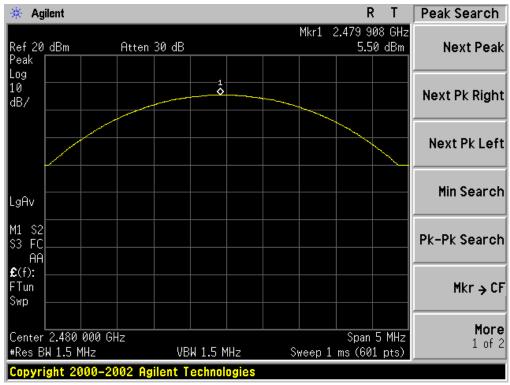




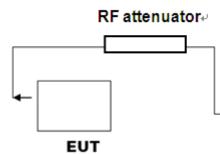
PEAK OUTPUT POWER MEASUREMENT RESULT FOR II /4-DQPSK MODULATION					
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail		
2.402	7.48	21	Pass		
2.441	6.18	21	Pass		
2.480	5.34	21	Pass		

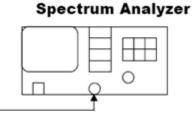





PEAK OUTPUT POWER MEASUREMENT RESULT FOR 8DPSK MODULATION				
Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail	
2.402	7.66	21	Pass	
2.441	6.73	21	Pass	
2.480	5.50	21	Pass	

Page 15 of 72

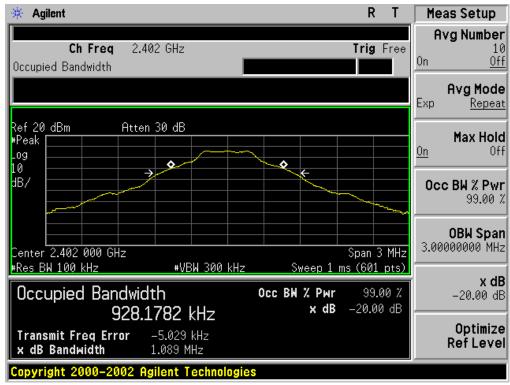



4. BANDWIDTH

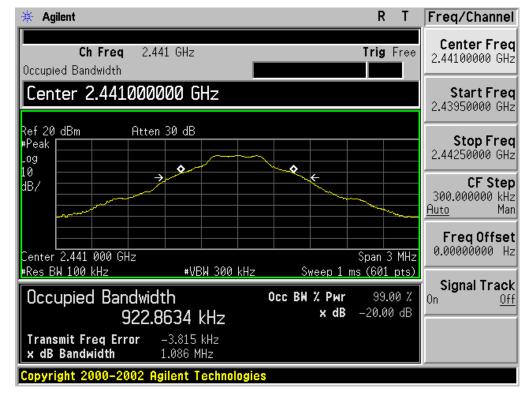
4.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ 3RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.

4.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

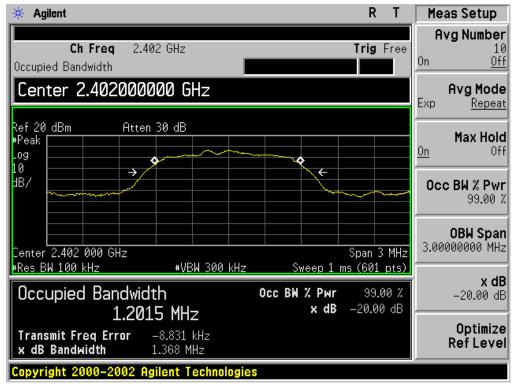

RF Cable

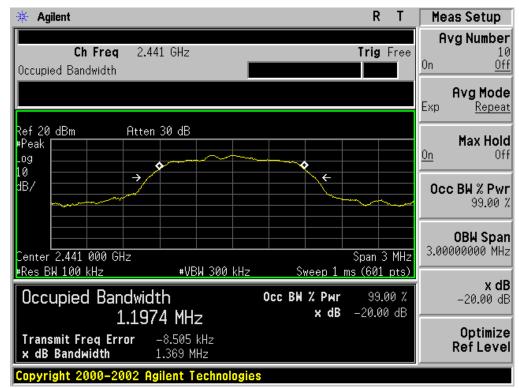
Note: The EUT has been used temporary antenna connector for testing. 4.3. LIMITS AND MEASUREMENT RESULTS


BLUETOOTH 1MBPS LIMITS AND MEASUREMENT RESULT					
	Measurement Result				
Applicable Limits		Test Data (MHz	Dan K		
		99%OBW (MHz)	-20dB BW(MHz)	Result	
	Low Channel	0.928	1.089	PASS	
N/A	Middle Channel	0.923	1.086	PASS	
	High Channel	0.925	1.083	PASS	

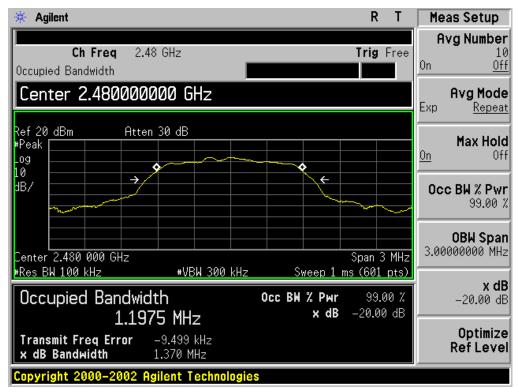
TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

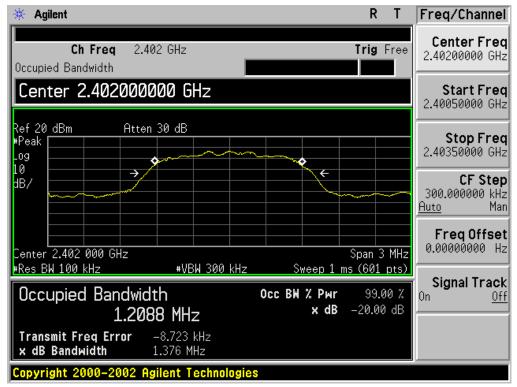

TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

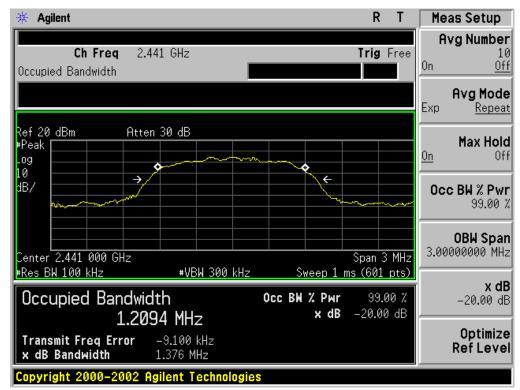

BLUETOOTH 2MBPS LIMITS AND MEASUREMENT RESULT					
	Measurement Result				
Applicable Limits	Test Data (MHz)			Decult	
		99%OBW (MHz)	-20dB BW(MHz)	Result	
	Low Channel	1.202	1.368	PASS	
N/A	Middle Channel	1.197	1.369	PASS	
	High Channel	1.197	1.370	PASS	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL

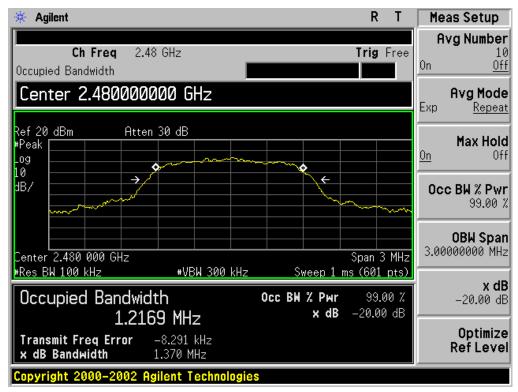


TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL


TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL

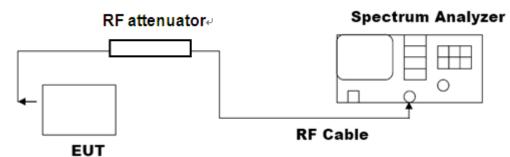

BLUETOOTH 3MBPS LIMITS AND MEASUREMENT RESULT					
	Measurement Result				
Applicable Limits	Test Data (MHz)			Decult	
		99%OBW (MHz)	-20dB BW(MHz)	Result	
	Low Channel	1.209	1.376	PASS	
N/A	Middle Channel	1.209	1.376	PASS	
	High Channel	1.217	1.370	PASS	

TEST PLOT OF BANDWIDTH FOR LOW CHANNEL



TEST PLOT OF BANDWIDTH FOR MIDDLE CHANNEL

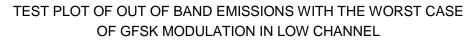
TEST PLOT OF BANDWIDTH FOR HIGH CHANNEL



5. CONDUCTED SPURIOUS EMISSION

5.1. MEASUREMENT PROCEDURE

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic. RBW = 100 kHz; VBW = 300kHz; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.


5.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

5.3. LIMITS AND MEASUREMENT RESULT

LIMITS AND MEASUREMENT RESULT				
Angliaghta Limita	Measurement Result			
Applicable Limits	Test Data	Result		
In any 100 KHz Bandwidth Outside the frequency band in which the spread spectrum intentional radiator is operating, the radio	At least -20dBc than the limit Specified on the BOTTOM Channel	PASS		
frequency power that is produce by the intentional radiator shall be at least 20 dB below that in 100KHz bandwidth within the band that contains the highest level of the desired power. In addition, radiation emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in§15.209(a))	At least -20dBc than the limit Specified on the TOP Channel	PASS		

Agilent Peak Search 瘚 R T Mkr1 224.3 MHz Ref 20 dBm Peak Atten 30 dB -61.12 dBm Next Peak Log 10 dB/ Next Pk Right Next Pk Left Min Search LgAv Stop 1.000 0 GHz Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.83 ms (8192 pts) Pk-Pk Search Marker Trace (1) Type Freq X Axis 224.3 MHz Amplitude -61.12 dBm 1 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies Peak Search 🔆 Agilent R Т Mkr2 6.41 GHz -52.61 dBm Ref 20 dBm Atten 30 dB Next Peak Peak 1 Log 10 Next Pk Right dB/ Next Pk Left 2 0 1 1 Min Search LgAv Start 1.00 GHz Stop 25.00 GHz #Res BW 100 kHz Pk-Pk Search #VBW 300 kHz Sweep 2.294 s (8192 pts) X Axis 2.40 GHz 6.41 GHz Amplitude 5.01 dBm -52.61 dBm Marker Trace (1) (1) Type Freq Freq 2 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN MIDDLE CHANNEL

Agilent Peak Search 쑕 R T Mkr1 794.2 MHz Ref 20 dBm Peak Atten 30 dB -61.46 dBm Next Peak Log 10 dB/ Next Pk Right Next Pk Left ò Min Search LgAv Stop 1.000 0 GHz Start 30.0 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.83 ms (8192 pts) Pk-Pk Search Marker Trace (1) Type Freq X Axis 794.2 MHz Amplitude -61.46 dBm 1 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies Peak Search 🔆 Agilent R Т Mkr2 6.51 GHz -52.71 dBm Ref 20 dBm Atten 30 dB Next Peak Peak 1 Log 10 Next Pk Right dB/ Next Pk Left 2 Min Search LgAv Start 1.00 GHz Stop 25.00 GHź #Res BW 100 kHz Pk-Pk Search #VBW 300 kHz Sweep 2.294 s (8192 pts) X Axis 2.44 GHz 6.51 GHz Amplitude 4.98 dBm -52.71 dBm Marker Trace (1) (1) Type Freq Freq 2 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies

TEST PLOT OF OUT OF BAND EMISSIONS OF GFSK MODULATION IN HIGH CHANNEL

Agilent Peak Search 쑕 R T Mkr1 733.1 MHz Ref 20 dBm Peak Atten 30 dB -61.41 dBm Next Peak Log 10 dB/ Next Pk Right Next Pk Left 1 \$ Min Search LgAv Stop 1.000 0 GHz Start 30.0 MHz Sweep 92.83 ms (8192 pts) #Res BW 100 kHz #VBW 300 kHz Pk-Pk Search Marker Trace (1) Type Freq X Axis 733.1 MHz Amplitude -61.41 dBm 1 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies Peak Search 🔆 Agilent R Т Mkr2 24.93 <u>GHz</u> -49.25 dBm Ref 20 dBm Atten 30 dB Next Peak Peak Log Ŷ 10 Next Pk Right dB/ Next Pk Left Min Search LgAv Start 1.00 GHz Stop 25.00 GHz #Res BW 100 kHz Pk-Pk Search #VBW 300 kHz Sweep 2.294 s (8192 pts) X Axis 2.48 GHz 24.93 GHz Amplitude 3.71 dBm -49.25 dBm Marker Trace (1) (1) Type Freq Freq 2 Mkr → CF More 1 of 2 Copyright 2000-2002 Agilent Technologies

6. RADIATED EMISSION

6.1. TEST LIMIT

Distance	Field Strengths Limit		
Meters	μ V/m	dB(µV)/m	
300	2400/F(kHz)		
30	24000/F(kHz)		
30	30		
3	100	40.0	
3	150	43.5	
3	200	46.0	
3	500	54.0	
Above 1000 3 Other:74.0 dB(µV)/m (Peak) 54.0 dB(µV)/r		2eak) 54.0 dB(μV)/m	
(Average)			
	300 30 30 30 3 3 3 3 3 3 3 3	300 2400/F(kHz) 30 24000/F(kHz) 30 30 30 30 30 30 31 100 32 150 33 200 33 500 3 Other:74.0 dB(μV)/m (F	

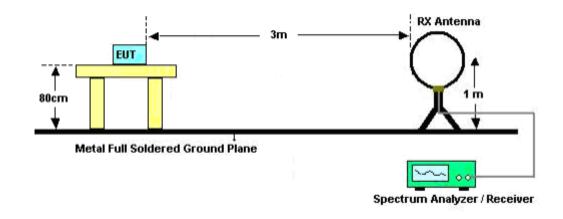
(2) The smaller limit shall apply at the cross point between two frequency bands.

(3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

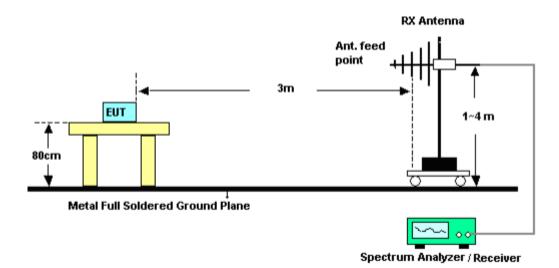
6.2. MEASUREMENT PROCEDURE

- The measuring distance of 3m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Below 1GHz)
- The measuring distance of 3m shall used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation(Above 1GHz)
- 3. The height of the test antenna shall vary between 1m to 4m.Both horizontal and vertical polarization Of the antenna are set to make the measurement.
- 4. The initial step in collecting radiated emission data is a receive peak detector mode. Pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- 5. All readings are peak unless otherwise stated QP in column of Note. Peak denoted that the Peak reading compliance with the QP limits and then QP Mode measurement didn't perform(Below 1GHz)
- 6. All readings are Peak mode value unless otherwise stated AVG in column of Note. If the Peak mode measured value compliance with the Peak limits and lower than AVG Limits, the EUT shall be deemed to meet Peak&AVG limits and then only Peak mode was measured, but AVG mode didn't perform.(Above 1GHz)

The following table is the setting of spectrum analyzer and receiver.

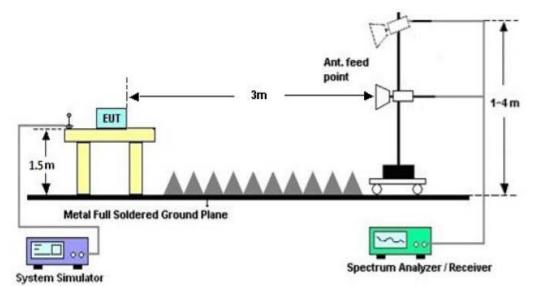

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
	1GHz~26.5GHz
Start ~Stop Frequency	RBW 1MHz/ VBW 3MHz for Peak,
	RBW 1MHz/ VBW 10Hz for Average

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP



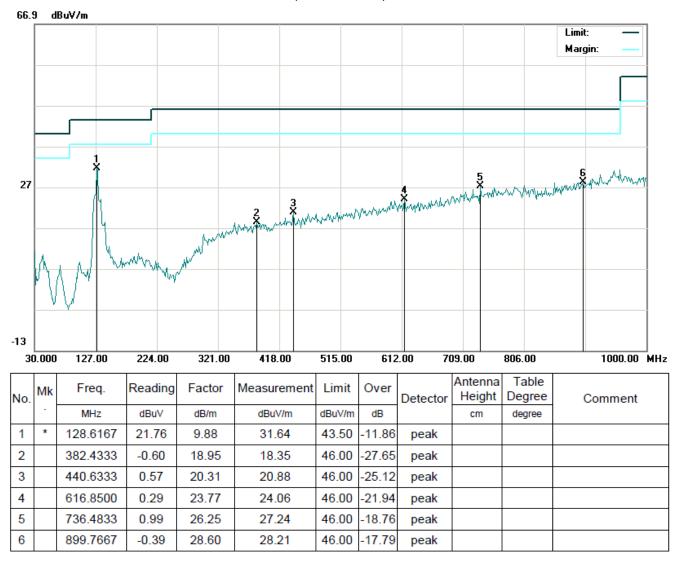
6.3. TEST SETUP

RADIATED EMISSION TEST SETUP BELOW 30MHz



RADIATED EMISSION TEST SETUP 30MHz-1000MHz

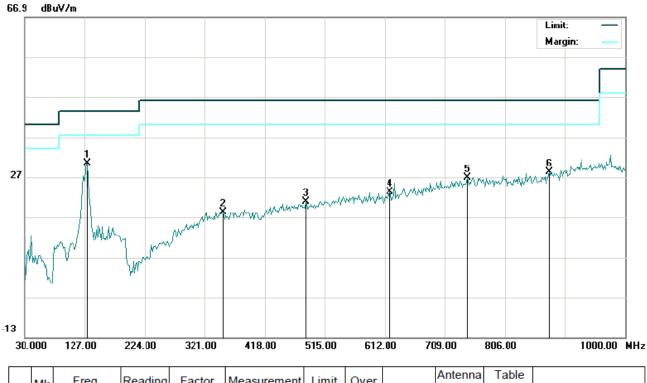
RADIATED EMISSION TEST SETUP ABOVE 1000MHz


6.4. TEST RESULT

(Worst Modulation: GFSK)

RADIATED EMISSION BELOW 30MHz

No emission found between lowest internal used/generated frequencies to 30MHz. **RADIATED EMISSION BELOW 1GHz**


RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL-HORIZONTAL

RESULT: PASS

RADIATED EMISSION TEST- (30MHz-1GHz)-LOW CHANNEL -VERTICAL

	No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
	1	*	131.8500	18.67	11.80	30.47	43.50	-13.03	peak			
	2		351.7167	-0.48	18.75	18.27	46.00	-27.73	peak			
	3		484.2833	-0.11	20.96	20.85	46.00	-25.15	peak			
	4		620.0833	0.00	23.18	23.18	46.00	-22.82	peak			
	5		746.1833	0.34	26.52	26.86	46.00	-19.14	peak			
	6		877.1333	0.23	28.02	28.25	46.00	-17.75	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3

4

5

6

RESULT: PASS

516.6167

595.8333

736.4833

896.5333

-0.03

-0.19

0.99

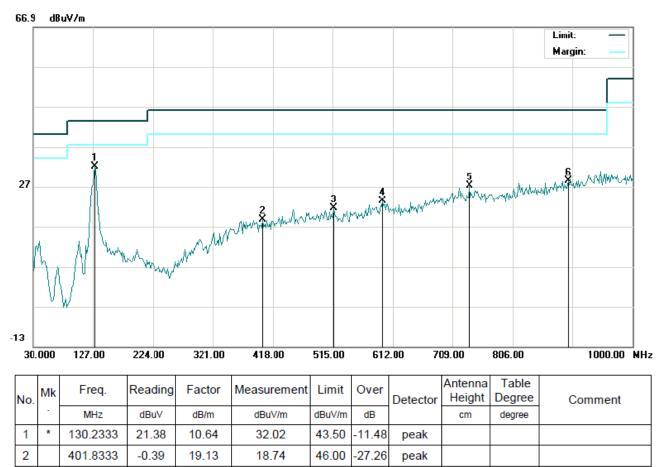
-0.21

21.58

23.63

26.25

28.52


21.55

23.44

27.24

28.31

RADIATED EMISSION TEST- (30MHz-1GHz)-MIDDLE CHANNEL-HORIZONTAL

46.00

46.00

46.00

46.00

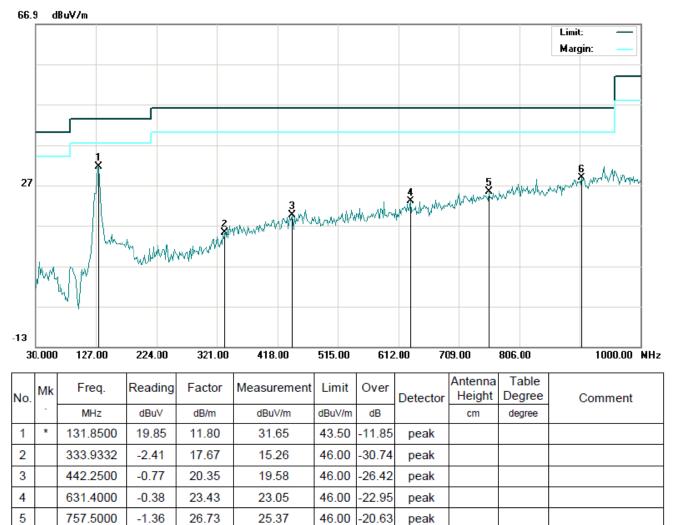
-24.45

22.56

-18.76

-17.69

peak


peak

peak

peak

RADIATED EMISSION TEST- (30MHz-1GHz)- MIDDLE CHANNEL -VERTICAL

RESULT: PASS

906.2333

0.01

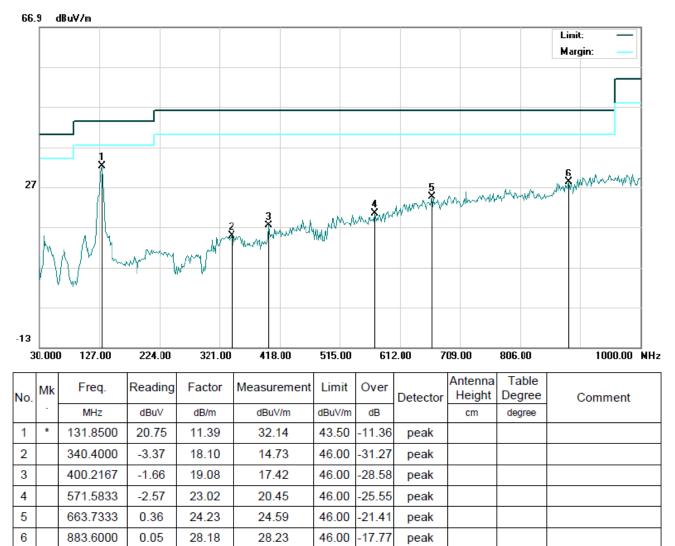
6

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

28.79

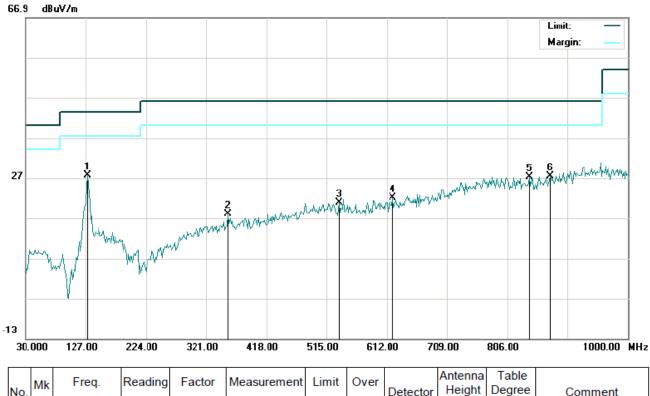
28.78

2. The "Factor" value can be calculated automatically by software of measurement system.


46.00

-17.21

peak

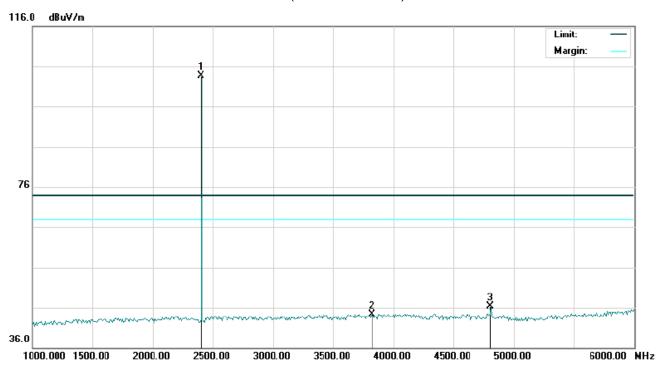

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL-HORIZONTAL

RESULT: PASS

RADIATED EMISSION TEST- (30MHz-1GHz)-HIGH CHANNEL -VERTICAL

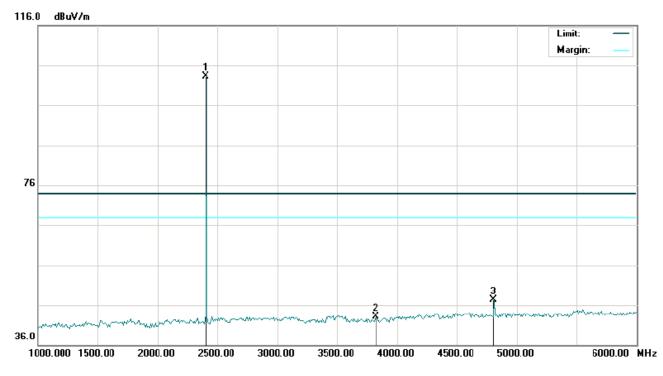
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Height	Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	130.2333	16.48	11.13	27.61	43.50	-15.89	peak			
2		356.5667	-0.86	18.78	17.92	46.00	-28.08	peak			
3		534.4000	-1.30	22.06	20.76	46.00	-25.24	peak			
4		621.7000	-1.26	23.22	21.96	46.00	-24.04	peak			
5		841.5667	-0.05	27.31	27.26	46.00	-18.74	peak			
6		875.5167	-0.51	27.97	27.46	46.00	-18.54	peak			

RESULT: PASS

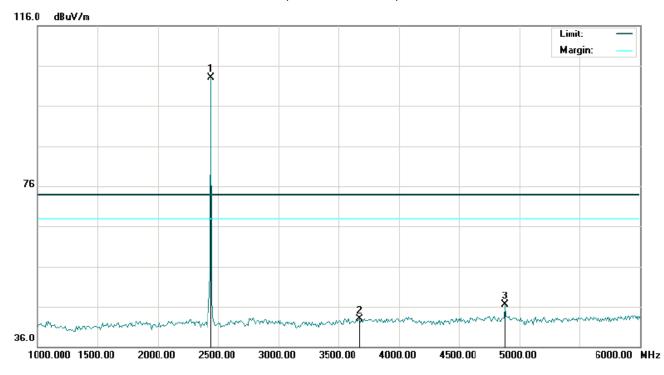

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

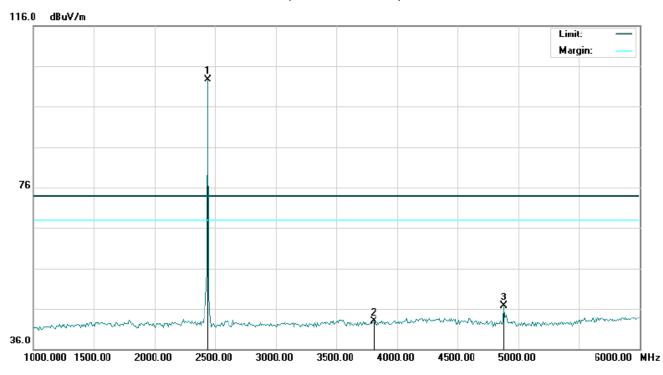
RADIATED EMISSION ABOVE 1GHz


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-LOW CHANNEL-HORIZONTAL

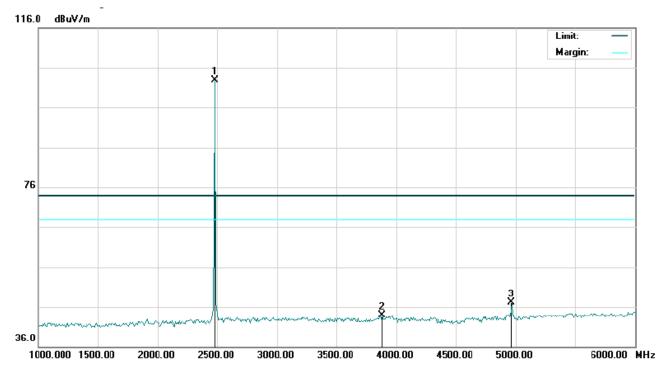
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2402.000	93.33	10.32	103.65	74.00	29.65	peak			
2		3825.000	30.20	14.11	44.31	74.00	-29.69	peak			
3		4804.000	38.71	7.69	46.40	74.00	-27.60	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-LOW CHANNEL -VERTICAL

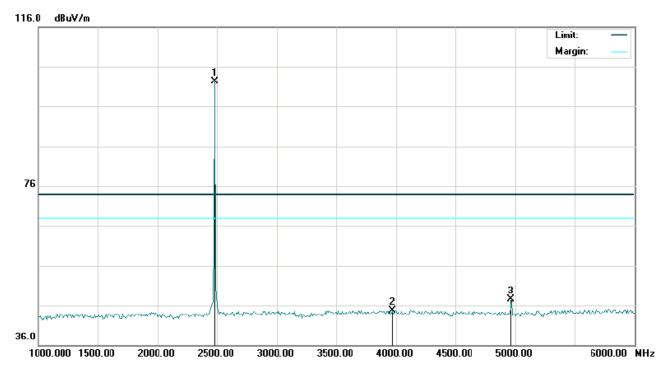
N	o .	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
		-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	1	*	2402.000	92.94	10.32	103.26	74.00	29.26	peak			
2	2		3825.000	28.90	14.11	43.01	74.00	-30.99	peak			
3	3		4804.000	39.55	7.69	47.24	74.00	-26.76	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-MIDDLE CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2441.000	92.73	10.36	103.09	74.00	29.09	peak			
2		3675.000	29.75	13.19	42.94	74.00	-31.06	peak			
3		4882.000	38.66	7.89	46.55	74.00	-27.45	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics) - MIDDLE CHANNEL -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2441.000	92.39	10.36	102.75	74.00	28.75	peak			
2		3808.333	28.99	14.01	43.00	74.00	-31.00	peak			
3		4882.000	38.89	7.89	46.78	74.00	-27.22	peak			


RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-HIGH CHANNEL-HORIZONTAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	92.43	10.41	102.84	74.00	28.84	peak			
2		3883.333	29.43	14.47	43.90	74.00	-30.10	peak			
3		4960.000	39.10	8.09	47.19	74.00	-26.81	peak			

RADIATED EMISSION ABOVE 1GHz (1-10th Harmonics)-HIGH CHANNEL -VERTICAL

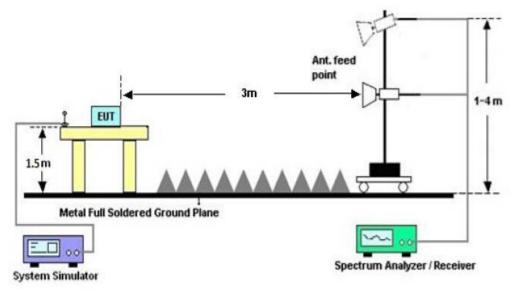
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	91.85	10.41	102.26	74.00	28.26	peak			
2		3966.667	29.70	14.98	44.68	74.00	-29.32	peak			
3		4960.000	39.41	8.09	47.50	74.00	-26.50	peak			

RESULT: PASS

Note: 6~25GHz at least have 20dB margin. No recording in the test report.

Factor=Antenna Factor+ Cable loss-Amplifier gain, Margin=Measurement-Limit.

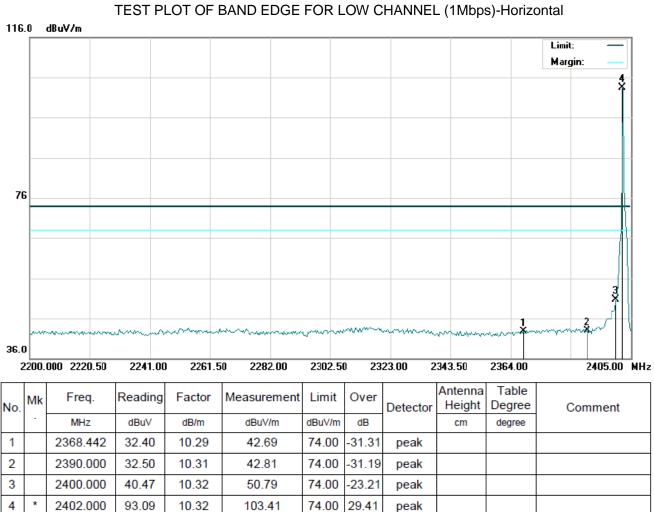
The "Factor" value can be calculated automatically by software of measurement system.

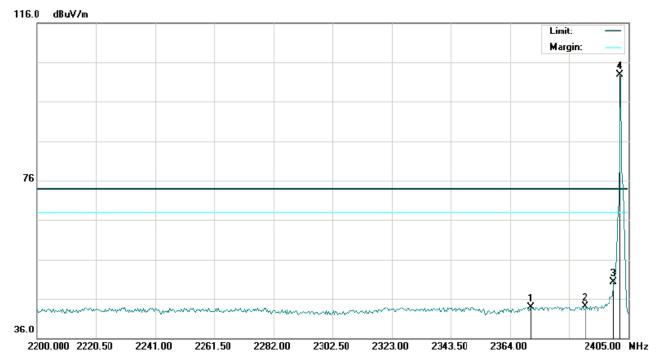


7. BAND EDGE EMISSION

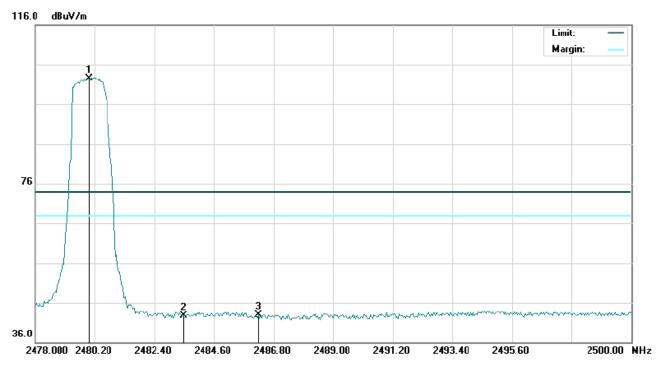
7.1. MEASUREMENT PROCEDURE

- 1. Set the EUT Work on the top, the bottom operation frequency individually.
- Set SPA Start or Stop Frequency=Operation Frequency, For unrestricted band: RBW=100kHz, VBW=300kHz
 For restricted band: RBW=1MHz, VBW=3*RBW
 Center frequency =Operation frequency
- 3. The band edges was measured and recorded.

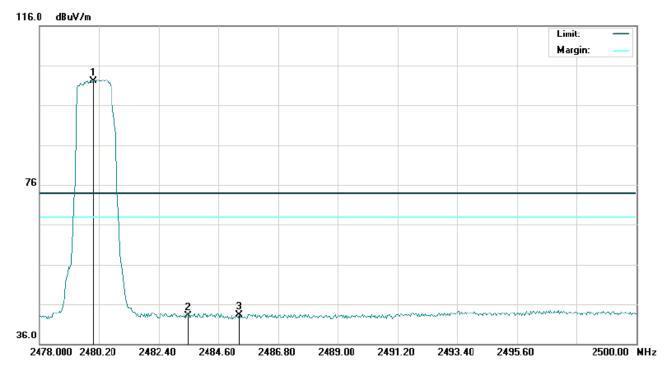

7.2. TEST SET-UP


7.3. TEST RESULT

(Worst Modulation: GFSK)


TEST PLOT OF BAND EDGE FOR LOW CHANNEL (1Mbps)-Vertical

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		2371.175	33.58	10.29	43.87	74.00	-30.13	peak			
2		2390.000	33.71	10.31	44.02	74.00	-29.98	peak			
3		2400.000	40.06	10.32	50.38	74.00	-23.62	peak			
4	*	2402.000	92.59	10.32	102.91	74.00	28.91	peak			



No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	•	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	92.05	10.41	102.46	74.00	28.46	peak			
2		2483.500	32.19	10.41	42.60	74.00	-31.40	peak			
3		2486.250	32.51	10.41	42.92	74.00	-31.08	peak			

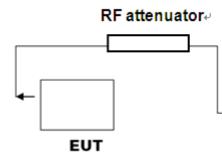
No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1	*	2480.000	91.64	10.41	102.05	74.00	28.05	peak			
2		2483.500	32.76	10.41	43.17	74.00	-30.83	peak			
3		2485.370	32.89	10.41	43.30	74.00	-30.70	peak			

RESULT: PASS

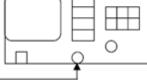
Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. Hopping off and Hopping on have been tested and only worst case recorded



8. NUMBER OF HOPPING FREQUENCY

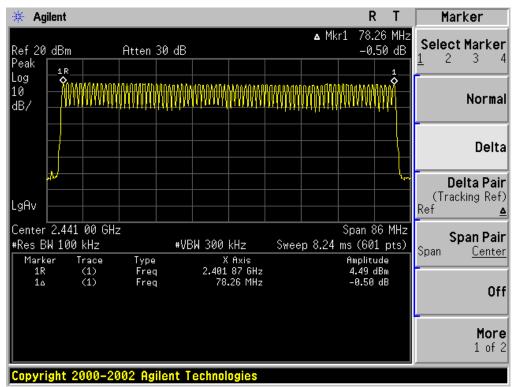

8.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer Start = 2.4GHz Stop = 2.4835GHz
- 4. Set the Spectrum Analyzer as RBW>=1%span, VBW>=3RBW.

8.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

Spectrum Analyzer

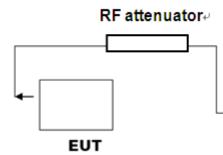
RF Cable

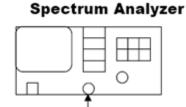

8.3. LIMITS AND MEASUREMENT RESULT

TOTAL NO. OF	LIMIT (NO. OF CH)	MEASUREMENT (NO. OF CH)	RESULT
HOPPING CHANNEL	>=15	79	PASS

Page 50 of 72

TEST PLOT FOR NO. OF TOTAL CHANNELS




9. TIME OF OCCUPANCY (DWELL TIME)

9.1. MEASUREMENT PROCEDURE

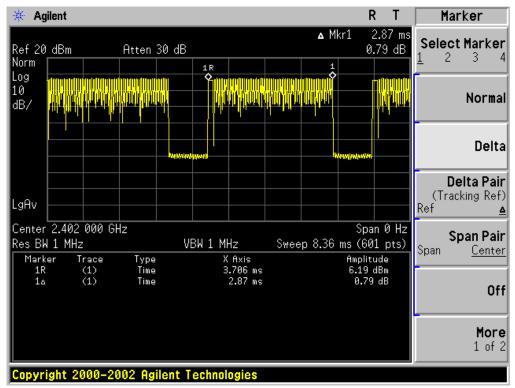
- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer.
- 3. Set Span = zero span, centered on a hoping channel
- 4. Set the spectrum analyzer as RBW=1MHz, VBW>=RBW, Span = 0 Hz

9.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)

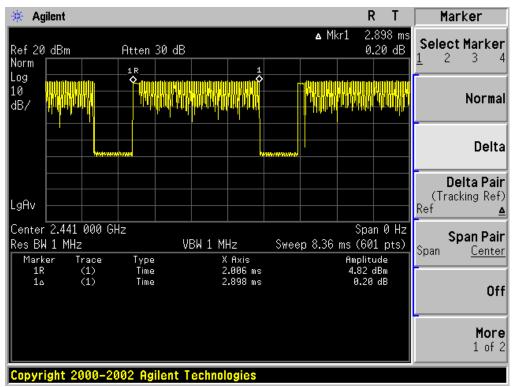
RF Cable

9.3. LIMITS AND MEASUREMENT RESULT

The Worst Case (1Mbps)

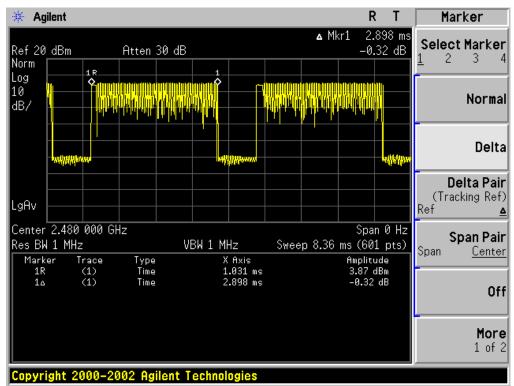

Channel	Time of Pulse for DH5 (ms)	Period Time (s)	Sweep Time (ms)	Limit (ms)
Low	2.87	31.6	306.13	400
Middle	2.898	31.6	309.12	400
High	2.898	31.6	309.12	400

Low Channel Time 2.87*(1600/6)/79*31.6=306.13ms Middle Channel Time 2.898*(1600/6)/79*31.6=309.12ms High Channel Time 2.898*(1600/6)/79*31.6=309.12ms



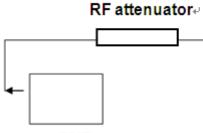
Page 52 of 72

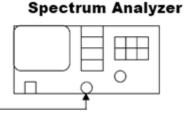
TEST PLOT OF LOW CHANNEL


TEST PLOT OF MIDDLE CHANNEL

Page 53 of 72

TEST PLOT OF HIGH CHANNEL

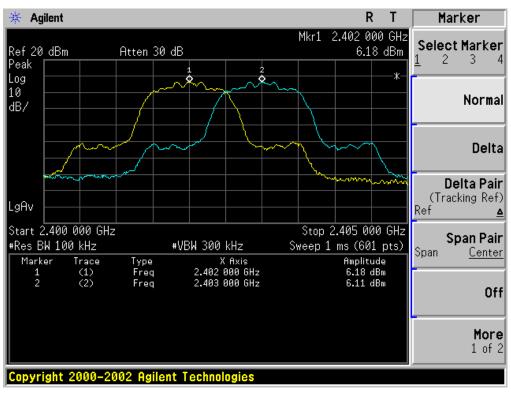



10. FREQUENCY SEPARATION

10.1. MEASUREMENT PROCEDURE

- 1. Place the EUT on the table and set it in transmitting mode
- 2. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum analyzer
- Set Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold

10.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)


RF Cable

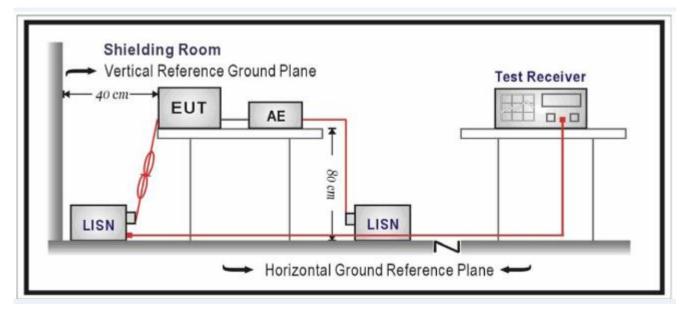
EUT

10.3. LIMITS AND MEASUREMENT RESULT

CHANNEL	CHANNEL SEPARATION	LIMIT	RESULT
	KHz	KHz	
CH00-CH01	1000	>=25 KHz or 2/3 20 dB BW	Pass

TEST PLOT FOR FREQUENCY SEPARATION (3Mbps)

11. LINE CONDUCTED EMISSION TEST 11.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage		
Frequency	Q.P.(dBuV)	Average(dBuV)	
150kHz~500kHz	66-56	56-46	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

11.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

11.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST

- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received DC charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

11.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

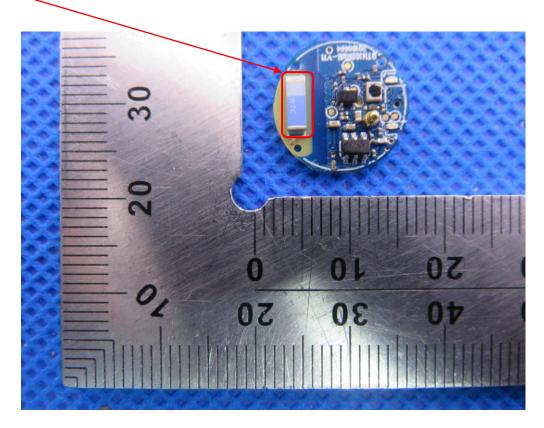
- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- 2. A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

11.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

N/A

Note: The BT function of EUT didn't work when charging.

12. ANTENNA REQUIREMENT


Standard Applicable

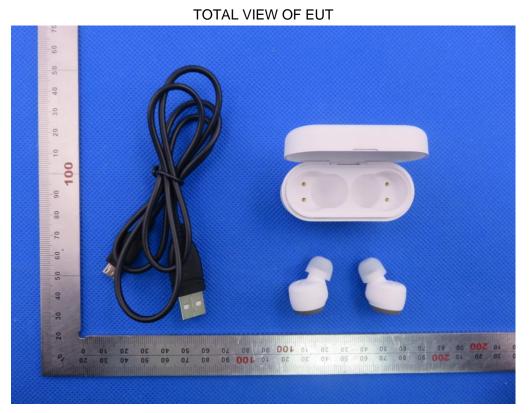
For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

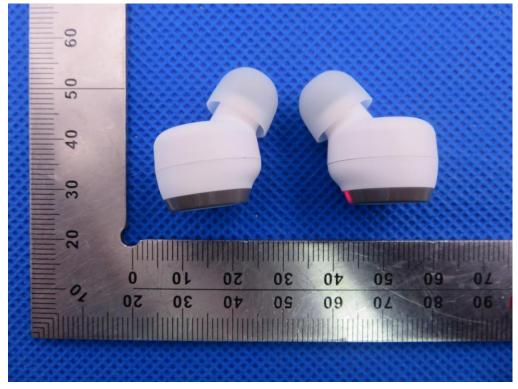
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

<u>ANTENNA</u>

13. PHOTOGRAPH OF TEST





14. PHOTOGRAPHS OF EUT

TOP VIEW OF EUT

BOTTOM VIEW OF EUT

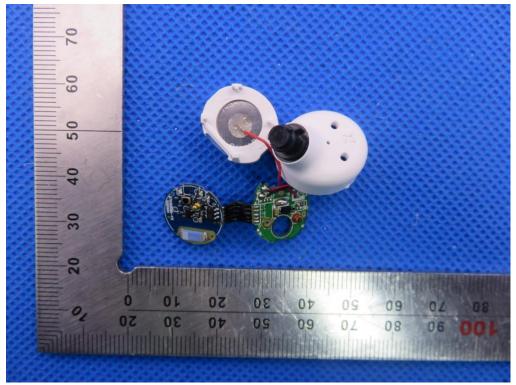


FRONT VIEW OF EUT

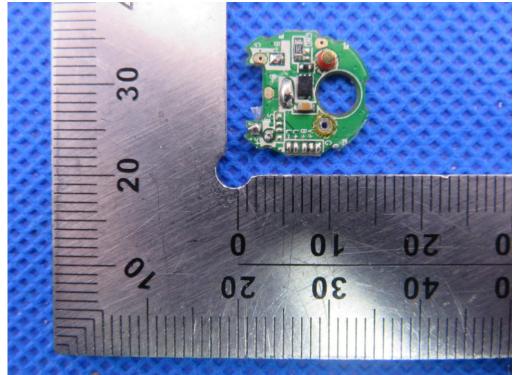
BACK VIEW OF EUT

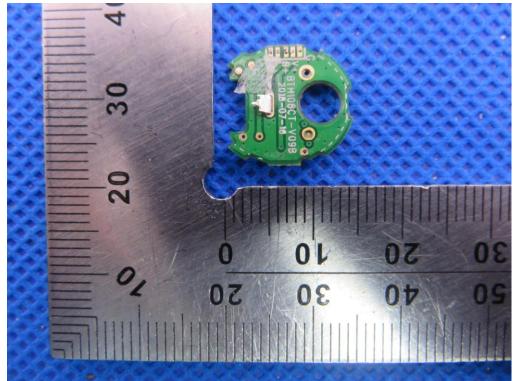
LEFT VIEW OF EUT

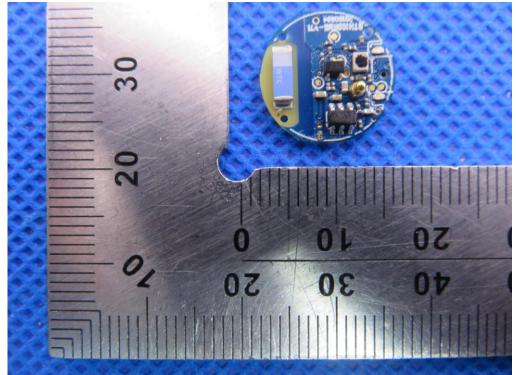
RIGHT VIEW OF EUT

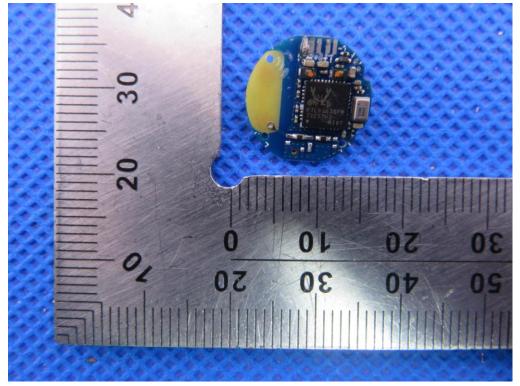


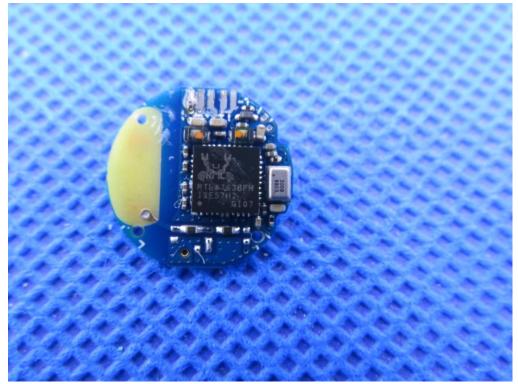
VIEW OF EUT (PORT)

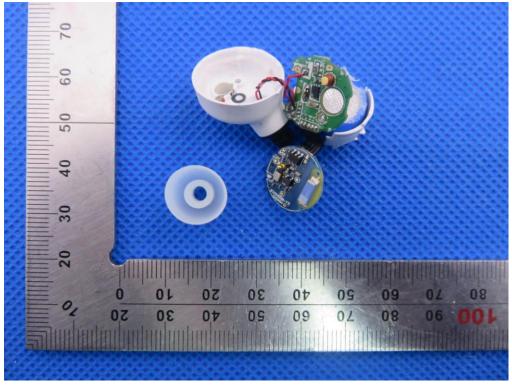

Right OPEN VIEW OF EUT


VIEW OF BATTERY

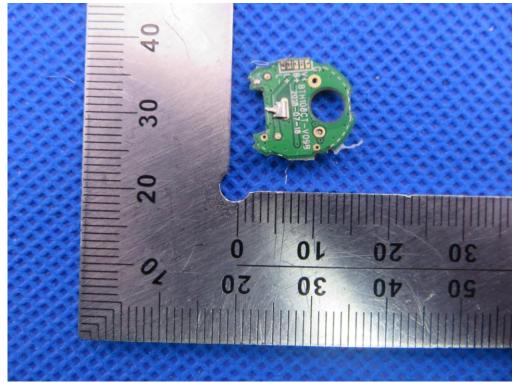


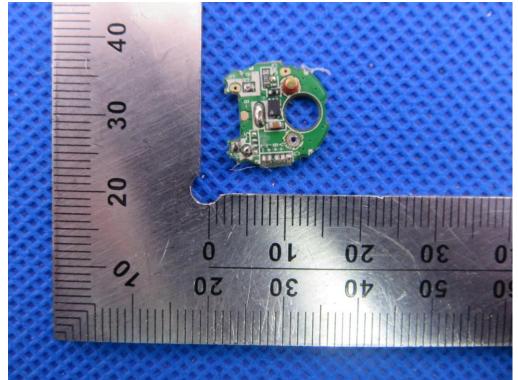

INTERNAL VIEW OF EUT-2

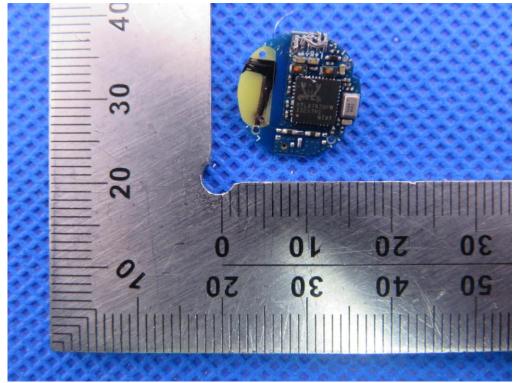


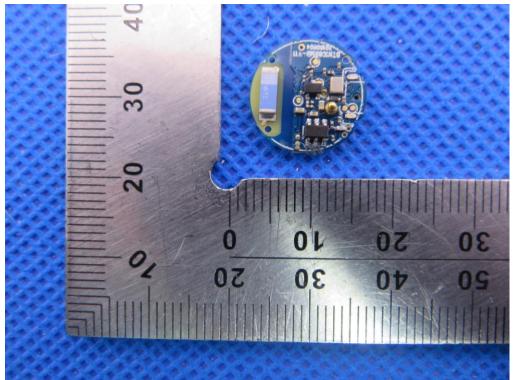

INTERNAL VIEW OF EUT-4

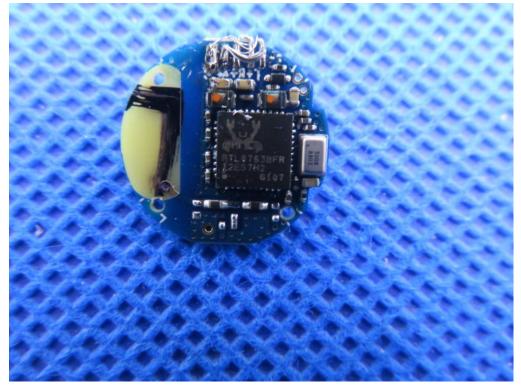
Left OPEN VIEW OF EUT




VIEW OF BATTERY


INTERNAL VIEW OF EUT-1




INTERNAL VIEW OF EUT-3

INTERNAL VIEW OF EUT-5

Charging Dock VIEW OF EUT (PORT)-1

VIEW OF EUT (PORT)-2

----END OF REPORT----