

RF Exposure Report

Report No.: SABFPJ-WTW-P20120001

FCC ID: SWX-AF60HD

Test Model: AF60-HD

Received Date: Dec. 01, 2020

Test Date: Jan. 12, 2021

Issued Date: Jan. 15, 2021

Applicant: Ubiquiti Inc.

Address: 685 Third Avenue, New York, New York 10017 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration / Designation Number:

723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: SABFPJ-WTW-P20120001 Page No. 1 / 6 Report Format Version: 6.1.1

Table of Contents

F	≀elea	se Control Record	3
1	i	Certificate of Conformity	4
2	2	RF Exposure	5
	2.1	Limits for Maximum Permissible Exposure (MPE)	. 5
		MPE Calculation Formula	
	2.3	Classification	5
	2.4	Calculation Result	6

Release Control Record

Issue No.	Description	Date Issued
SABFPJ-WTW-P20120001	Original release.	Jan. 15, 2021

1 Certificate of Conformity

Product: AirFiber 60 HD

Brand: UBIQUITI

Test Model: AF60-HD

Sample Status: Engineering sample

Applicant: Ubiquiti Inc.

Test Date: Jan. 12, 2021

Standards: FCC Part 2 (Section 2.1091)

IEEE C95.3 -2002

References Test KDB 447498 D01 General RF Exposure Guidance v06 **Guidance**:

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Jan. 15, 2021

Joyce Kuo / Specialist

Approved by : , Date: Jan. 15, 2021

Clark Lin / Technical Manager

2 RF Exposure

2.1 Limits for Maximum Permissible Exposure (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	in a grant and a grant and a grant a g		Average Time (minutes)		
	Limits For General Population / Uncontrolled Exposure					
0.3-1.34	614	1.63	(100)*	30		
1.34-30	824/f	2.19/f	(180/f ²)*	30		
30-300	27.5	0.073	0.2	30		
300-1500			f/1500	30		
1500-100,000			1.0	30		

f = Frequency in MHz; *Plane-wave equivalent power density

2.2 MPE Calculation Formula

 $Pd = (Pout*G) / (4*pi*r^2)$

where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

2.3 Classification

The antenna of this product, under normal use condition, is at least 60 cm away from the body of the user.

2.4 Calculation Result

The maximum power of Bluetooth was refer to the FCC test reports. (Report No.: TR5700_AF60-HD_FCC_15.247_BLE_01)

Operation Mode	Evaluation Frequency (MHz)	Max. Avg. Power (dBm)	Max .Avg. Power (mW)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
Bluetooth	2402-2480	4.40	2.754	3	60	0.00012	1

Operation Mode	Evaluation Frequency (MHz)	Max.Avg. EIRP (dBm)	Max. EIRP (mW)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)
802.11ad	57000-71000	45.97	39536.662	60	0.87395	1

Conclusion:

The formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Simultaneously transmission condition:

Bluetooth +802.11ad = 0.00012 / 1+ 0.87395 / 1= 0.87407

Therefore the maximum calculations of above situations are less than the "1" limit.

--- END ---