

Co-location Report

- FCC ID: 2AQYK-WWTMXS
- APPLICANT: Shenzhen WOWOTO Technology Co., Ltd.
- Application Type: Certification
- Product: Smart Projector
- Model No.: WWT-M5S
- Brand Name: WOWOTO
- **FCC Classification:** Digital Transmission System (DTS) Unlicensed National Information Infrastructure (NII)

Test Date:

November 05, 2019

Reviewed By:

Approved By:

Surry Sur (Sunny Sun)

(Sunny Sun) Robin Wu

(Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2014. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No. Version		Description	Issue Date	Note
1910RSU009-U5 Rev. 01		Initial Report	11-06-2019	Valid

CONTENTS

Des	scriptio	n	Page
Ger	neral In	formation	4
1.	INTRO	ODUCTION	5
	1.1	Scope	5
	1.2.	MRT Test Location	5
2.	PROD	DUCT INFORMATION	6
	2.1.	Feature of Equipment under Test	6
	2.2.	Test Mode	6
	2.3.	Test Configuration	6
	2.4.	EMI Suppression Device(s)/Modifications	6
	2.5.	Labeling Requirements	7
3.	DESC	RIPTION OF TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	Radiated Emissions	8
4.	ANTE	INNA REQUIREMENTS	10
5.	TEST	EQUIPMENT CALIBRATION DATE	11
6.	MEAS	SUREMENT UNCERTAINTY	12
7.	TEST	RESULT	13
	7.1.	Summary	13
	7.2.	Radiated Emissions for Co-location Measurement	14
	7.2.1.	Test Limit	14
	7.2.2.	Test Procedure Used	14
	7.2.3.	Test Setting	14
	7.2.4.	Test Setup	16
	7.2.5.	Test Result of Radiated Emissions for Co-location	17
Арр	endix /	A - Test Setup Photograph	25
Арр	endix	B - EUT Photograph	26

General Information

Applicant:	Shenzhen WOWOTO Technology Co., Ltd.				
Applicant Address:	G05, 2nd Floor, Gaoxinqi Industry Park, District 67, Xingdong				
	Community, Xin'an Street, Baoan Area, Shenzhen, China				
Manufacturer:	Shenzhen WOWOTO Technology Co., Ltd.				
Manufacturer Address:	G05, 2nd Floor, Gaoxinqi Industry Park, District 67, Xingdong				
	Community, Xin'an Street, Baoan Area, Shenzhen, China				
Test Site:	MRT Technology (Suzhou) Co., Ltd				
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic				
	Development Zone, Suzhou, China				

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	Smart Projector				
Model No.:	WWT-M5S				
	WWT-M1S, WWT-M2S, WWT-M3S, WWT-M4S, WWT-M5S, WWT-M6S,				
Serial Model No.:	WWT-M7S, WWT-M8S, WWT-M9S, WWT-S1S, WWT-S2S, WWT-S3S,				
	WWT-S4S, WWT-S5S, WWT-S6S, WWT-S7S, WWT-S8S, WWT-S9S				
Brand Name:	WOWOTO				
Wi-Fi Specification:	802.11a/b/g/n				
Bluetooth Specification: v4.0 (BLE only)					
Accessory					
	Model No.: GQ36-120300-AX				
Adapter #1:	Input: 100-240V ~ 50/60Hz 1.0A Max				
	Output: 12V - 3.0A				
	Model No.: KZ1203000				
Adapter #2:	Input: 100-240V ~ 50/60Hz 1.0A Max				
	Output: 12V 3000mA				
	Model No.: GW48W-120300D				
Adapter #3:	Input: 100-240V ~ 50/60Hz 1.2A				
	Output: 12V - 3.0A				

Note: The different models are only for marketing different clients, others are the same.

2.2. Test Mode

Test Made	Mode 1: Transmit by 2.4GHz Wi-Fi & Transmit by BLE
Test Mode	Mode 2: Transmit by 5GHz Wi-Fi & Transmit by BLE

2.3. Test Configuration

This device was tested per the guidance of ANSI C63.10-2013. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

2.4. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and the guidance was used in the measurement.

Deviation from measurement procedure.....None

3.2. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the Antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive Antenna height using a broadband Antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn Antennas were used. For frequencies below 30MHz, a calibrated loop Antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband Antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive Antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn Antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to

compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive Antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive Antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn Antenna, the horn Antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of this device is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

This device complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2020/03/31
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2019/11/16
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2020/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2019/11/09
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2019/11/16
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2019/12/13
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2020/04/30

Software	Version	Function	
EMI Software	V3	EMI Test Software	

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emiss	Radiated Emission Measurement - AC1					
Measuring	Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):					
Horizontal:	30MHz~300MHz: 4.07dB					
	300MHz~1GHz: 3.63dB					
	1GHz~18GHz: 4.16dB					
Vertical:	30MHz~300MHz: 4.18dB					
	300MHz~1GHz: 3.60dB					
	1GHz~18GHz: 4.76dB					
Radiated Emiss	ion Measurement - AC2					
Measuring	Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):					
Horizontal:	30MHz~300MHz: 3.75dB					
	300MHz~1GHz: 3.53dB					
1GHz~18GHz: 4.28dB						
Vertical:	30MHz~300MHz: 3.86dB					
	300MHz~1GHz: 3.53dB					
	1GHz~18GHz: 4.33dB					

7. TEST RESULT

7.1. Summary

FCC Part	Test Description	Test Limit	Test	Test	Reference
Section(s)			Condition	Result	
	General Field Strength	Emissions in restricted			
15.205	Limits (Restricted	bands must meet the	Padiatad	Dooo	Section 7.2
15.209	Bands and Radiated	radiated limits detailed	Radiated	Pass	Section 7.2
	Emission Limits)	in 15.209			

Note: All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

7.2. Radiated Emissions for Co-location Measurement

7.2.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47

CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209							
Frequency Field Strength Measured Distance							
(MHz)	(µV/m)	(Meters)					
0.009 - 0.490	2400/F (kHz)	300					
0.490 - 1.705	24000/F (kHz)	30					
1.705 - 30	30	30					
30 - 88	100	3					
88 - 216	150	3					
216 - 960	200	3					
Above 960	500	3					

7.2.2.Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

- ANSI C63.10 Section 6.4 (Standard test method below 30MHz)
- ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.2.3.Test Setting

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120 kHz
- 4. Detector = CISPR quasi-peak or average
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest

- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle \ge 98%, set VBW = 10 Hz.

If the EUT duty cycle is < 98%, set VBW \ge 1/T. T is the minimum transmission duration.

- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

7.2.4.Test Setup

Below 1GHz Test Setup:

Above 1GHz Test Setup:

7.2.5.Test Result of Radiated Emissions for Co-location

Note 1: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1			-	Time: 2019/11/05 - 14:16					
Limit: FCC_Part15.209_RE(3m) Er				Engineer: Flay Yang					
Probe: VULB 9168 _20-2000MHz Polarity: Horizontal									
EUT	: Smar	t Projec	tor		F	Power: AC 12	0V/60Hz		
Test	Mode	2							
	90								
	80								
	70								
	60								
Ē	50								f
dBuV	40				1	3	4 * 5		6
Level	30				* *		*		
	20								
	10								
	0								
	-10								
	30			100	Freque	ncy(MHz)			1000
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре
	0		(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			143.990	35.296	20.318	-8.204	43.500	14.978	QP
2			159.490	31.540	16.154	-11.960	43.500	15.386	QP
3			240.006	37.048	24.045	-8.952	46.000	13.003	QP
4		*	288.060	38.922	24.691	-7.078	46.000	14.231	QP
5			336.035	35.773	20.331	-10.227	46.000	15.442	QP
6			791.935	37.113	13.521	-8.887	46.000	23.592	QP

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).

Site: AC1					Time: 2019/11/05 - 15:32						
Limit: FCC_Part15.209_RE(3m)						Engineer: Flay Yang					
Probe: BBHA9120D_1-18GHz						Polarity: Horizontal					
EUT: Smart Projector						Power: AC 1	20V/60Hz				
Test Mode 1											
	90										
	80										
	70										
	60				_	1					
(m/	50					*	3 6	*			
(dBuV	40			4			¥ 5 ★ *	*			
Level	30			1							
	20										
	10										
	0										
	-10						de al la da				
	1000				Frequ	Jency(MHz)		10000	18000		
No	Flag	Mark	Frequency	Measure	Reading	Margin	Limit	Factor	Туре		
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)			
				(dBuV/m)	(dBuV)						
1			4876.000	52.322	46.621	-21.678	74.000	5.701	PK		
2		*	4876.000	48.825	43.124	-5.175	54.000	5.701	AV		
3			5998.000	44.746	37.252	-29.254	74.000	7.494	PK		
4			5998.500	36.909	29.414	-17.091	54.000	7.495	AV		
5			7315.600	47.405	35.715	-26.595	74.000	11.690	PK		
6			7312.000	38.463	26.757	-15.537	54.000	11.706	AV		
7			9749.500	48.912	33.048	-25.088	74.000	15.864	PK		
8			9748.000	40.691	24.843	-13.309	54.000	15.848	AV		

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Site: AC1						Time: 2019/11/05 - 15:36						
Lim	it: FC	C_Pa	art15.209_RE((3m)		Engineer: Flay Yang						
Pro	be: B	BHA	9120D_1-18G	Hz		Polarity: Vertion	cal					
EUT	Г: Sm	art P	rojector			Power: AC 12	0V/60Hz					
Test	t Mod	le 1										
	90				1							
	80											
	70											
	60					1						
(1)	50					*	3	<mark>⊃ 8</mark> * *				
dBuV	40						4	6 * 7				
Level	30			1				*				
	20											
	10											
	0											
	-10											
	100	D			Frequ	iency(MHz)		10000	18000			
N	FI	М	Frequency	Measure	Reading	Margin	Limit	Factor	Туре			
о	ag	ar	(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)				
		k		(dBuV/m)	(dBuV)							
1			4876.000	51.468	45.767	-22.532	74.000	5.701	PK			
2		*	4876.000	47.829	42.128	-6.171	54.000	5.701	AV			
3		7313.400 47.789 36.0		36.089	-26.211	74.000	11.700	РК				
4			7313.400	39.224	27.524	-14.776	54.000	11.700	AV			
5			9151.500	49.838	35.669	-24.162	74.000	14.169	РК			
6			9151.500	39.310	25.141	-14.690	54.000	14.169	AV			
7		9749.600 48.541 32.676		-25.459	74.000	15.865	РК					
8			9748.000	36.005	20.157	-17.995	54.000	15.848	AV			

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Site: AC1						Time: 2019/11/05 - 15:42						
Limit: FCC_Part15.209_RE(3m)						Engineer: Flay Yang						
Probe: BBHA9120D_1-18GHz						Polarity: Horizontal						
EUT: Smart Projector						Power	: AC 12	0V/60H	lz			
Test Mode 2												
	90				T				T.	r r		
	80											
	70				-							
	60			-		-	_				c .	7
Ē	50							1	3		*	*
dBuV	40							*	, A		6	8
Level(30						_	2	**		Ť	_
	20					_						
	10											
	0											
	-10											
	1000				Freq	uency(MH:	z)			10000		18000
No	Flag	Mark	Frequency	Measure	Reading	Margin		Limit		Facto	or	Туре
	-		(MHz)	Level	Level	(dB))	(dBuV/m)		(dB)		
				(dBuV/m)	(dBuV)							
1			6499.500	43.050	33.694	-30.	-30.950		74.000		6	PK
2			6499.500	29.483	20.127	-24.	-24.517		54.000		6	AV
3			8038.000	45.901	33.206	-28.099		74.000		12.695		PK
4			8038.000	34.539	21.844	-19.461		54.000		12.695		AV
5			10792.000	50.644	33.123	-23.356		74.000		17.521		PK
6			10792.000	36.668	19.147	-17.332		54.000		17.521		AV
7			13427.000	50.893	31.910	-23.107		74.000		18.983		PK
8		*	13427.000	39.081	20.098	-14.	919	54.00	00	18.98	33	AV

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Site: AC1						Time: 2019/11/05 - 15:48						
Limit: FCC_Part15.209_RE(3m)						Engineer: Flay Yang						
Probe: BBHA9120D_1-18GHz						Polarity: Vertical						
EUT: Smart Projector						Power: AC 120V/60Hz						
Test Mode 2												
	90				T							
	80						-					
	70											
	60					-			3	5 7		
(EL)	50							1	*	* *		
dBuV	40					-		2	4	*		
Level(30							*				
	20					-	_					
	10											
	0											
	-10											
	1000				Freq	uencv(MH:	z)		10000	18000		
No	Flag	Mark	Frequency	Measure	Reading	Mar	ain	Limit	Factor	Туре		
	5		(MHz)	Level	Level	(dB))	(dBuV/m)	(dB)	51		
				(dBuV/m)	(dBuV)							
1			8038.000	46.485	33.790	-27.	515	74.000	12.695	PK		
2			8038.000	34.016	21.321	-19.984		54.000	12.695	AV		
3			10384.000	52.403	35.493	-21.597		74.000	16.910	РК		
4			10384.000	39.297	22.387	-14.703		54.000	16.910	AV		
5			13631.000	51.777	32.184	-22.223		74.000	19.593	PK		
6		*	13631.000	40.601	21.008	-13.399		54.000	19.593	AV		
7			15492.500	50.053	32.435	-23.947		74.000	17.618	PK		
8			15492.500	37.684	20.066	-16.	316	54.000	17.618	AV		

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB).

Appendix A - Test Setup Photograph

Refer to "1910RSU009-UT" file.

Appendix B - EUT Photograph

Refer to "1910RSU009-UE" file.