Specification for

WisLink-LoRa Gateway Module

Mini-PCle Edition RAK2287 **SPI/USB**

Version V1.2 | February 2020

Table of Contents

1	Ove	Prview	č
	1.1	Introduction	3
	1.2	Main Features	3
	1.3	Package Contents	4
2	Wis	Link LoRa Module RAK2287	
	2.1	Overview	4
	2.2	Block Diagram	
	2.3	Operating Frequencies	5
	2.4	Pin Definition	5
	2.5	Power Supply	8
	2.6	SPI Interface	8
	2.7	USB Interface	8
	2.8	UART and I2C interface	8
	2.9	RESET	9
	2.10	Antenna RF Interface	9
	2.11	Electrical Characteristics	9
		2.11.1 Absolute Maximum Rating	9
		2.11.2 Maximum ESD	. 10
		2.11.3 Operating Conditions	. 10
		2.11.4 Power Consumption	. 11
		2.11.5 RF Characteristics	. 11
3	Sch	ematics Reference	. 11
4	Con	ntact Information	. 12
5	War	ning	.12
6	Rev	ision History	. 15
7	Doc	rumant Summary	15

List of Tables

Table 2	Operating Frequencies	5
Table 3	Definition of I/O Parameters	6
Table 4	Absolute Maximum Ratings	10
Table 5	Maximum ESD Ratings	10
Table 6	Operation Temperature Range	10
Table 7	PowerSupply Range	11
Table 8	Power Consumption	11
Table 9	LoRa RF Characteristics	11
Liet	of Figures	
LIST	or rigures	
Figure 1	RAK2287 board	
Figure 2	Module Overview	
Figure 3	RAK2287Block Diagram	5
Figure 8	LRAK2287Card Minimum Schematic Reference	13

Overview

1.1 Introduction

RAK2287 is a LoRa concentrator card with mini-PCle form factor based on SX1302, which enables an easy integration into an existing router or other network equipment with LoRa Gateway capabilities. It can be used in any embedded platform offering a free mini-PCle slot with SPI or USB connection. Furthermore, ZOE-M8Q GPS chip is integrated on board.

RAK2287 is a complete and cost efficient LoRa gateway solution offering up to 10 programmable parallel demodulation paths which are 8xSF5-SF12 LoRa demodulators, 8xSF5-SF10 LoRa demodulators, 500 kHz LoRa demodulator and (G)FSK demodulator. It can detect at any time, any packet in a combination of 8 different spreading factors(SF5 to SF12) and 10 channels, and demodulate up to 16 packets at any time. It targets smart metering fixed networks and Internet-of-Things (IoT) applications, covering up to 500 nodes per square kilometer in an environment with moderate interference. Another feature is the integration of Ublox GPS module which expands applications.

1.2 Main Features

- Compatible with Mini PCI-e Edition specification with heat sink.
- SX1302 base band processor emulates 8 x8 channel LoRa packet detectors, 8 x SF5-SF12 LoRa demodulators, 8 x SF5-SF10 LoRa demodulators, one 125 /250 / 500 kHz high-speed LoRa demodulator and one (G)FSK demodulator.
- Built-in STM32L412K to convert SPI interface of SX1302 to USB2.0.
- Voltage of Mini PCI-e is 3.3 V, compatible with 3G/LTE card of Mini PCI-e type.
- Tx power up to 13.39dBm, Rx sensitivity down to -139dBm@SF12, BW 125 kHz.
- Supports latest LoRaWAN 1.0.2 protocol.
- Supports global license-free frequency band (US915).
- Supports optional SPI or USB interfaces.
- Built-in ZOE-M8Q GPS module

1.3 Package Contents

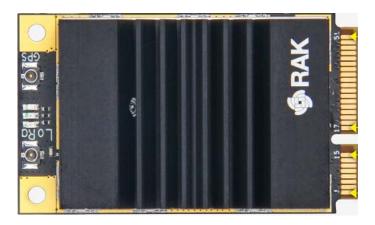


Figure 1 | RAK2287 board

WisLink LoRa Module RAK2287

2.1 Overview

The board only weighs 9.7 grams, its length is 50.95 mm while its width is 30 mm. The board width, top-side and bottom-side keep-out areas and all other dimension is defined by PCI Express Mini Card Electromechanical Specification except for the card thickness (nominal value of 3.7 mm).

Figure 2 | Module Overview

2.2 Block Diagram

RAK2287 card integrates one ZOE-M8Q, one SX1302 chip and two SX1250 chips which represent the core of the device. This provides the related LoRa modem and processing functionalities. Additional signal conditioning circuitry is implemented for PCI Express Mini Card compliance, and two UFL connectors are available for external antennas integration.

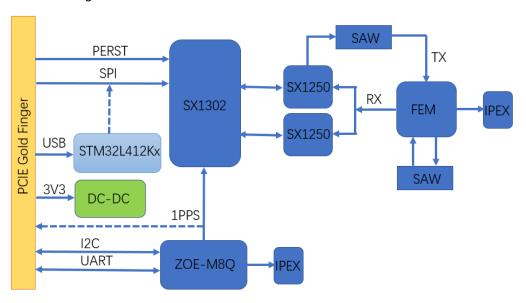


Figure 3 | RAK2287Block Diagram

2.3 Operating Frequencies

The board supports the following LoRaWAN frequency channels, allowing easy configuration while building the firmware from the source code.

Region	Freq. (MHz)
North America	US915

Table 1 | Operating Frequencies

Note: The above frequency band parameters changes in difference region to compliance with the local regulatory requirements, contract Rakwireless for detail.

2.4 Pin Definition

The following tables show the pin definition and description of RAK2287 on the 52pin application.

Туре	Description
Ю	Bidirectional
DI	Digital input
DO	Digital output
OC	Open collector
OD	Open drain
PI	Power input
PO	Power output
NC	No Connection

Table 2 | Definition of I/O Parameters

Pin#	Mini PCIe PIN Rev. 2.0	RAK2287 PIN		Description	Remarks
1	WAKE#	SX1261_BUSY	SX1261_BUSY DO		Reserved for future applications.
2	3.3Vaux	3V3	PI	3.3V DC supply	
3	COEX1	SX1261_DIO1	10	No Connection by default	Reserved for future applications.
4	GND	GND		Ground	
5	COEX2	SX1261_DIO2	10	No Connection by default	Reserved for future applications.
6	1.5V	GPIO(6)	10		Connect to SX1302's GPIO[6].
7	CLKREQ#	SX1261_NSS	DI	No Connection by default	Reserved for future applications.
8	UIM_PWR	NC		No Connection	
9	GND	GND		Ground	
10	UIM_DATA	NC		No Connection	
11	REFCLK-	SX1261_NRESET	DI	No Connection by default	Reserved for future applications.
12	UIM_CLK	NC		No Connection	
13	REFCLK+	MCU_NRESET	DI	No Connection by default	Reserved for future applications.
14	UIM_RESET	NC		No Connection	
15	GND	GND		Ground	
16	UIM_VPP	NC		No Connection	
17	RESERVED	NC		No Connection	
18	GND	GND		Ground	
19	RESERVED	PPS	DO	Time pulse output	Leave open if not used.

20	W_DISABLE#	NC		No Connection	
21	GND	GND		Ground	
22	PERST#	SX1302_RESET	DI	SX1302 reset input	Active high, ≥100ns for SX1302 reset.
23	PERn0	RESET_GPS	DI	GPS module ZOE- M8Q reset inputs	Active low, Leave open if not used.
24	3.3Vaux	3V3	PI	3.3V DC supply	
25	PERp0	STANDBY_GPS	DI	GPS module ZOE- M8Q external interrupt input	Active low, Leave open if not used.
26	GND	GND		Ground	
27	GND	GND		Ground	
28	1.5V	NC		No Connection	
29	GND	GND		Ground	
30	SMB_CLK	I2C_SCL	Ю	HOST SCL	Connect to GPS module ZOE-M8Q's SCL internally. Leave open if not used.
31	PETn0	PI_UART_TX	DI	HOST UART_TX	Connect to GPS module ZOE-M8Q's UART_RX internally. Leave open if not used.
32	SMB_DATA	I2C_SDA	Ю	HOST SDA	Connect to GPS module ZOE-M8Q's SDA internally. Leave open if not used.
33	РЕТр0	PI_UART_RX	DO	HOST UART_RX	Connect to GPS module ZOE-M8Q's UART_TX internally. Leave open if not used.
34	GND	GND		Ground	
35	GND	GND		Ground	
36	USB_D-	USB_DM	Ю	USB differential data (-)	Require differential impedance of 90Ω .
37	GND	GND		Ground	
38	USB_D+	USB_DP	10	USB differential data (+)	Require differential impedance of 90Ω .
39	3.3Vaux	3V3	PI	3.3V DC supply	
40	GND	GND		Ground	
41	3.3Vaux	3V3	PI	3.3V DC supply	
42	LED_WWAN#	NC		No Connection	
43	GND	GND		Ground	
44	LED_WLAN#	NC		No Connection	
45	RESERVED	HOST_SCK	I/O	Host SPI CLK	
46	LED_WPAN#	NC		No Connection	
47	RESERVED	HOST_MISO	I/O	Host SPI MISO	
48	1.5V	NC		No Connection	

49	RESERVED	HOST_MOSI	I/O	Host SPI MOSI
50	GND	GND		Ground
51	RESERVED	HOST_CSN	I/O	Host SPI CS
52	3.3Vaux	3V3	PI	3.3V DC supply

Table 4 | Pin Definitions

2.5 **Power Supply**

RAK2287 card must be supplied through the 3.3Vaux pins by a DC power supply and the voltage must be stable.

2.6 SPI Interface

SPI interface is provided on the Host_SCK, Host _MISO, Host _MOSI, Host _CSN pins of the system connector. The SPI interface gives access to the configuration register of SX1302 via a synchronous full-duplex protocol. Only the slave side is implemented.

2.7 **USB Interface**

RAK2287 card can support the high speed USB to SPI by STM32L412Kx, it includes a USB 2.0 compliant interface with maximum 480 Mb/s data rate, representing the interface for any communication with an external host application processor. The module itself acts as a USB device and can be connected to any USB host equipped with compatible drivers.

Note: RAK2287-SPI version don't have this interface.

2.8 UART and I2C interface

RAK2287 integrates ZOE-M8Q GPS module which has UART and I2C interface. The PINs on golden finger provide an UART connection and an I2C connection, which allows direct access to the GPS module. The PPS signal is not only connected to SX1302 internally, but also connected to golden finger which can be used by host board.

2.9 **RESET**

RAK2287 card includes the RESET active-high input signal to reset the radio operations as specified by the SX1302 Specification.

2 10 Antenna RF Interface

The modules have two RF interfaces over standard UFL connector (Hirose U. FL-R-SMT) with the characteristic impedance of 50Ω . Port (J1) is the LoRa antenna interface and Port (J2) is the GPS antenna interface.

2.11 Electrical Characteristics

Stressing the device above one or more of the ratings listed in the Absolute Maximum Rating section may cause permanent damage. These are stress ratings only. Operating the module at these or at any conditions other than those specified in the Operating Conditions sections of the specification should be avoided. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. The operating condition range define those limit within which the functionality of the device is guaranteed. Where application information is given, it is advisory only and does not form part of the specification.

2.11.1 Absolute Maximum Rating

Limiting values given below are in accordance with the Absolute Maximum Rating System (IEC 134).

Symbol	Description	Condition	Min.	Max.
3.3Vaux	Module supply voltage	Input DC voltage at 3.3Vaux pins	-0.3V	3.6V
USB	USB D+/D- pins	Input DC voltage at USB interface pins		3.6V
RESET	SX1302 reset input	Input DC voltage at RESET input pin	-0.3V	3.6V
SPI	SPI interface	Input DC voltage at SPI interface pin	-0.3V	3.6V
PPS	GPS pps output	Output DC voltage at PPS output pin	-0.3V	3.6V
Rho_ANT	Antenna ruggedness	Output RF load mismatch ruggedness at ANT1		10:1VSW R

Tstg Storage Temperature	–40°C	85°C
--------------------------	-------	------

Table 3 | Absolute Maximum Ratings

The product is not protected against overvoltage or reversed voltages. If necessary, voltage spikes exceeding the power supply voltage specification, given in table above, must be limited to values within the specified boundaries by using appropriate protection devices.

2.11.2 Maximum ESD

The table below lists the maximum ESD.

Parameter	Min	Typical	Max	Remarks
ESD_HBM			1000V	Charged Device Model JESD22-C101 CLASS III
ESD_CDM			300V	Charged Device Model JESD22-C101 CLASS III

Table 4 | Maximum ESD Ratings

ESD HANDLING: Although this module is designed to be as robust as possible, electrostatic discharge (ESD) can damage this module. This module must be protected at all times from ESD when handling or transporting. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD handling precautions should be used at all times.

2.11.3 Operating Conditions

The table below lists the operation temperature range.

Parameter	Min.	Typical	Max.	Remarks
Normal operating temperature	–40°C	+25°C	+85°C	Normal operating temperature range

Table 5 | Operation Temperature Range

Note: unless otherwise indicated, all operating condition specifications are at an ambient temperature of 25° C. Operation beyond the operating conditions is not recommended and extended exposure beyond them may affect device reliability.

The table below lists the power supply range.

Input voltage at 3.3Vaux must be above the normal operating range minimum limit to switch-on the module.

Symbol	Parameter	Min.	Typical	Max.
3.3Vaux	Module supply operating input voltage	3.0 V	3.3 V	3.6 V

Table 6 | PowerSupply Range

2.11.4 Power Consumption

Mode	Condition	Min	AVG	Max
Active- Mode(TX)	The power of TX channel is 13.39dBm and 3.3V supply.	511mA	512mA	513mA
Active- Mode(RX)	TX disabled and RX enabled.	70mA	81.6 mA	101 mA

Table 7 | Power Consumption

2.11.5 **RF Characteristics**

The following table gives typically sensitivity level of the RAK2287 card.

Signal Bandwidth/[KHz]	Spreading Factor	Sensitivity /[dBm]
500	12	-133
500	7	-120

Table 8 | LoRa RF Characteristics

Note: The above parameters changes in difference region to compliance with the local regulatory requirements, contract Rakwireless for detail.

Schematics Reference

RAK2287 card refers to Semtech's reference design of SX1302. The SPI interface or USB interface converts SPI to USB2.0 by STM32L412Kx, and can be used on PCIE connector. The next figure shows the minimum application schematic of RAK2287 card. You should use it at least 3.3V/1A DC power, connect SPI interface or USB interface to the main processor.

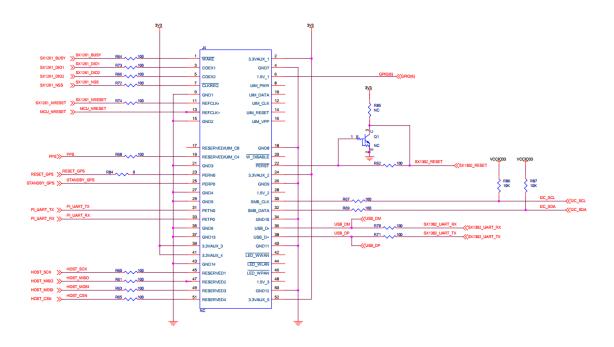


Figure 4 | RAK2287Card Minimum Schematic Reference

Contact Information

Document Center: https://doc.rakwireless.com/

Resource Downloads: https://downloads.rakwireless.com.cn/cn/

Forum Supports: https://forum.rakwireless.com/

Email: info@rakwireless.com

5 Warning

FCC Warning:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions.

(1) This device may not cause harmful interference;

(2) This device must accept any interference received, including interference that may cause undesired operation.

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

INTEGRATION INSTRUCTIONS

- 1. This module has been tested and found to comply with the FCC Part15.247 for Modular Approval.
- 2. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time- averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091. This modular should be installed and operated with minimum distance 20 cm between the radiator& your body.
- 3. The U.FL connector antenna has been approved for the modular. The maximum antenna gain is 3dBi. For situations where the host manufacturer is responsible for an external connector, the integration instructions shall inform the installer that a unique antenna connector must be used on the Part 15 authorized transmitters used in the host product.
- 4. When the module is installed in the host device, the FCC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily removed. If not, a second label must be placed on the outside of the final device that contains the following text: —Contains FCC ID: 2AF6B-RAK2287.
- 5. The Shenzhen Rakwireless Technology Co., Ltd. uses various test mode programs for test set up which operate separate from production firmware. Host integrators should contact Shenzhen Rakwireless Technology Co., Ltd. for assistance with test modes needed for module/host compliance test requirements.
- 6. The Shenzhen Rakwireless Technology Co., Ltd. modular transmitter is only FCC authorized for the FCC Part15.247 listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuity), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

ISED Warning:

This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

- 1. This device may not cause interference.
- 2. This device must accept any interference, including interference that may cause undesired operation of the device.

L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- 1. L'appareil ne doit pas produire de brouillage;
- 2. L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

This equipment complies with ISED radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator& your body. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter located or operating in conjunction with any other antenna or transmitter.

Cet équipement est conforme avec les limites d'exposition à la radiation de l'ISED émises dans un environnement contrôlé. Cet équipement devrait être installé et fonctionnel avec un minimum de distance entre le radiateur et votre corps d'au moins 20 cm. Ce transmetteur ne doit pas être co-situé près d'une autre antenne ou en conjonction avec un autre transmetteur.

The host product shall be properly labelled to identify the modules within the host product. The ISED certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labelled to display the ISED certification number for the module, preceded by the word "contains" or similar wording expressing the same meaning, as follows:

Contains IC: 25908-RAK2287

Le numéro d'homologation d'ISDE, le NIVM, le NMP et le NIVL ne doivent pas nécessairement être adjacents.

Le numéro d'homologation se compose d'un numéro de compagnie (NC), attribué par le Bureau d'homologation et de services techniques d'ISDE, suivi du numéro de produit unique (NPU) attribué par le requérant. Le numéro d'homologation doit apparaître comme suit : IC: 25908-RAK2287

Revision History

Revision	Description	Date
1.0	Initial version	2018-12-21
1.1	Modify the figures, add the source code chapter	2019-01-02
1.2	Rectify mistakes	2020-02-26

Document Summary

Prepared by	Checked by:	Approved by:
Penn	Jeff	

About RAKwireless:

RAKwireless is a pioneer in providing innovative and diverse Cellular and LoRaWAN connectivity solutions for both Edge and Gateway IoT devices. We believe that through easy to use and modular designs we can accelerate the time to market for various IoT Applications in order to optimize system deployment in both Developer and Commercial settings.