FCC REPORT

Applicant: SHENZHEN GOTRON ELECTRONIC CO., LTD

Address of Applicant: 518, 5F, R&D building, Tsinghua Hi-Tech park(North) Nanshan

district, Shenzhen 518057 P.R. China

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: GQ3071, Armor 6, Armor 6S

Trade mark: ulefone

FCC ID: 2AOWK3071

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.225

Date of sample receipt: 09 Nov., 2018

Date of Test: 12 Nov., to 06 Dec., 2018

Date of report issue: 07 Dec., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	07 Dec., 2018	Original

Tested by: Or Dec., 2018

Test Engineer

Reviewed by: 07 Dec., 2018

Project Engineer

3 Contents

		Page
1 (COVER PAGE	1
2 \	VERSION	2
	CONTENTS	
4 1	TEST SUMMARY	4
	GENERAL INFORMATION	
5.1	CLIENT INFORMATION	
5.2		
5.3	TEST MODE	6
5.4	DESCRIPTION OF SUPPORT UNITS	6
5.5	LABORATORY FACILITY	6
5.6		
5.7		
6 T	TEST RESULTS ANDMEASUREMENT DATA	8
6.1	ANTENNA REQUIREMENT	8
6.2	RADIATED EMISSION	9
6.3		
6.4		18
6.5	CONDUCTED EMISSION	20
7 T	TEST SETUP PHOTOS	23
8 E	EUT CONSTRUCTIONAL PHOTOS	24

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
Field strength of the fundamental signal	15.225 (a)	Pass
Spurious emissions	15.225(d)& 15.209	Pass
20dB Bandwidth	15.215(c)	Pass
Frequency tolerance	15.225 (e)	Pass
Conducted Emission	15.207	Pass

Remarks:

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN GOTRON ELECTRONIC CO., LTD
Address:	518, 5F, R&D building, Tsinghua Hi-Tech park(North) Nanshan district, Shenzhen 518057 P.R. China
Manufacturer:	SHENZHEN GOTRON ELECTRONIC CO., LTD
Address:	518, 5F, R&D building, Tsinghua Hi-Tech park(North) Nanshan district, Shenzhen 518057 P.R. China

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	GQ3071, Armor 6, Armor 6S
Operation Frequency:	13.56MHz
Channel numbers:	1
Modulation type:	ASK
Antenna Type:	Internal Antenna
Antenna gain:	0dBi
Power supply:	Rechargeable Li-ion Battery DC3.85V/5000mAh
AC adapter:	Model: APS-KI018WU-G Input: AC100-240V, 50/60Hz, 0.5A Output: DC 5V/7V/9V, 2.0A DC 12V, 1.5A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	Different model names

5.3 Test mode

Transmitting mode:	Keep the EUT in tran	Keep the EUT in transmitting mode with modulation						
Pre-Test Mode:								
CCIS has verified the construction and function in typical operation, The EUT was placed on three different polar directions; i.e. X axis, Y axis, Z axis. which was shown in this test report and defined as follows:								
Axis X Y Z								
Field Strength(dBuV/m)	dBuV/m) 54.47 52.42 50.21							

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup": Y axis (see the test setup photo).

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen ZhongjianNanfang Testing Co., Ltd.
No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instrumentslist

Radiated Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020		
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019		
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019		
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020		
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018		
nom Antenna	SCHWARZBECK	DDNA 9170	DDNA9170362	11-21-2018	11-20-2019		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	00044	03-16-2018	03-15-2019		
EMI Test Software	AUDIX	E3	V	ersion: 6.11091	9b		
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019		
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019		
Chaotrum analyzar	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018		
Spectrum analyzer	Notice & Scriwarz	F3F40	100303	11-21-2018	11-20-2019		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019		
Signal Generator	Rohde & Schwarz	SMX	835454/016	03-07-2018	03-06-2019		
Signal Generator	R&S	SMR20	1008100050	03-07-2018	03-06-2019		
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019		
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019		
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019		

Conducted Emission:									
Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	07-22-2017	07-21-2020				
EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-07-2018	03-06-2019				
LISN	CHASE	MN2050D	CCIS0074	03-19-2018	03-18-2019				
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019				
Coaxial Cable	CCIS	N/A	CCIS0086	03-07-2018	03-06-2019				
EMI Test Software	AUDIX	E3	Version: 6.110919b						

6 Test results and Measurement Data

6.1 Antenna requirement

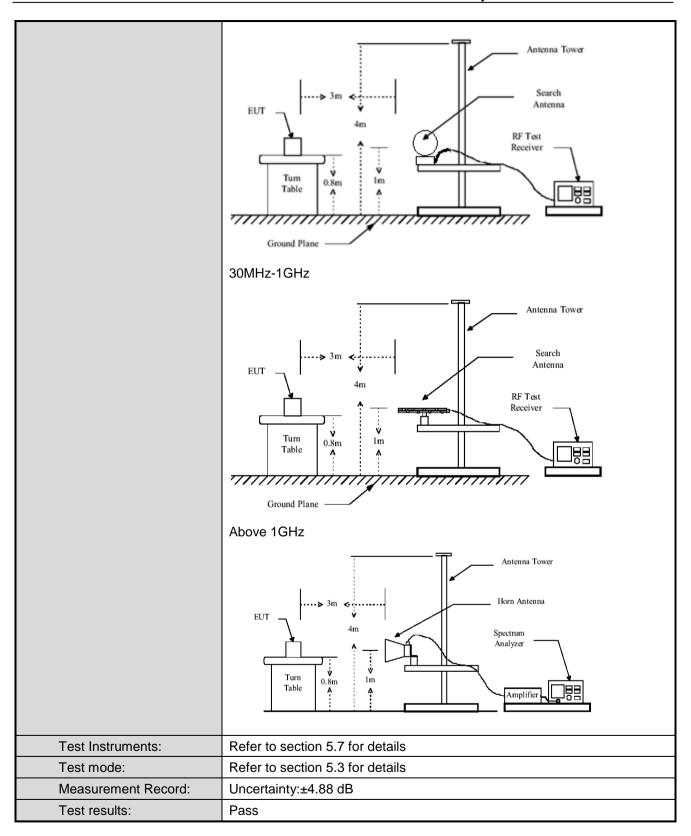
Standard requirement:	FCC Part15 C Section 15.203
-----------------------	-----------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

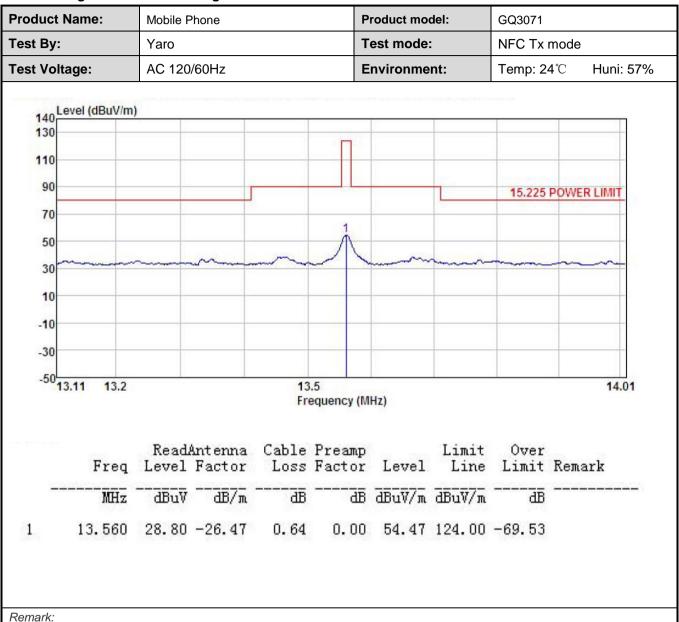
E.U.T Antenna:

The EUT make use of an integrated antenna, The typical gain of the antenna is 0dBi.



6.2 Radiated Emission

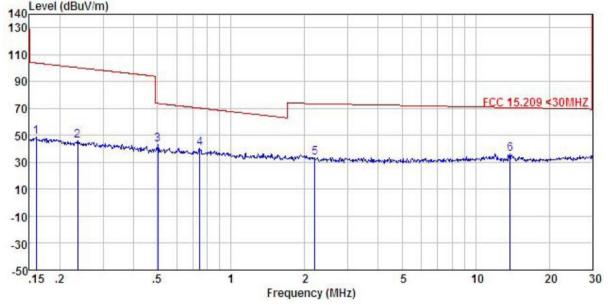
Test Requirement:	FCC Part15 C Se	ection 15 22!	5(a) and 15 20				
Test Method:	ANSI C63.10: 2013						
	9 kHz to 1000MHz						
Test Frequency Range:			2: A l:	- Obb	\		
Test site:	Measurement Dis	,	T	1	er)	1	
Receiver setup:	Frequency	Detector	RBW	VBW		Remark	
	9kHz-150kHz	Quasi-peal		600Hz		Quasi-peak Value	
	150kHz-30MHz	Quasi-peal		30kHz 300KH		Quasi-peak Value	
	30MHz-1GHz Above 1GHz	Quasi-peal Peak	1MHz	3MHz		Quasi-peak Value Peak Value	
Limit:	Frequen		Limit (uV/m			nit (dBuV/m @3m)	
(Field strength of the	13.553MHz-13		15848			124.0	
fundamental signal)	13.410MHz-13.5 13.567MHz-13		334			90.5	
	13.110MHz-13.4 13.710MHz-14	.010MHz	106			80.5	
		cified, the resumaking measumine the prop	ults shall be exturementsat a more extrapolation	rapolated inimum of n factor or	to the factorial two	ne specified distances on atleast using thesqu Zare of	
Limit:	Frequency (ŕ	Limit (uV/r			Distance (m)	
(Spurious Emissions)	0.009-0.4	.90	2400/F(kHz)			300	
,	0.490-1.705		24000/F(kHz)			30	
	1.705-30		30			30	
	30-88	100			3		
	88-216		150			3	
	216-960		200			3	
Took Dancadous	Above 1G		the top of a rotating table 0.8 meters above				
Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limits pecified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
Test setup:	9kHz-30MHz						
	1						



Measurement Data:

Field Strength of fundamental signal:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.



Spurious Emissions:

Test frequency range: 150 kHz- 30 MHz

root moquemoy rang					
Product Name:	Mobile Phone	Product model:	GQ3071		
Test By:	Yaro	Test mode:	NFC Tx mode		
Test Frequency:	150 kHz ~ 30 MHz	Polarization:	Vertical		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
140 Level (dBuV/m					
440					

	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBu∜	dB/m		<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	0.160	22.93	-26.17	0.28	0.00	48.54	103.81	-55.27	
2	0.237	20.59	-26.22	0.34	0.00	46.21	100.38	-54.17	
3	0.502	17.33	-26.30	0.45	0.00	42.98	73.79	-30.81	
4	0.747	14.87	-26.30	0.57	0.00	40.64	70.28	-29.64	
5	2.201	8.00	-26.51	0.65	0.00	33.64	73.60	-39.96	
1 2 3 4 5	13.841	10.70	-26.48	0.65	0.00	36.37	70.71	-34.34	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.

Product Name:	Mobile Phone	Product model:	GQ3071
Test By:	Yaro	Test mode:	NFC Tx mode
Test Frequency:	150 kHz ~ 30 MHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	0.209	20.77	-26.21	0.33	0.00	46.39	101.44	-55.05	
2	0.266	20.48	-26.23	0.35	0.00	46.10	99.35	-53.25	
3	0.747	15.68	-26.30	0.57	0.00	41.45	70.28	-28.83	
1 2 3 4 5 6	0.968	11.44	-26.30	0.61	0.00	37.25	67.99	-30.74	
5	1.928	11.31	-26.49	0.65	0.00	36.97	73.81	-36.84	
6	15.066	12.82	-26.50	0.67		38.49	70.58	-32.09	

Remark.

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of 9 kHz~150 kHz are background noise and very lower than the limit, not show in test report.

Test frequency range: 30MHz-1000MHz

Product	Name:	Mobile Pho	ne		Prod	duct model:	G	GQ3071 NFC Tx mode		
Test By:		Yaro			Tes	t mode:	N			
Test Fre	quency:	30 MHz -10	<u></u>		Pola	Polarization:		ertical		
Test Vol	tage:	AC 120/6	 ЭНz		Env	rironment:	Te	emp: 24 ℃	Huni:	57%
80 Leve	el (dBuV/m)									
70										
60								FCC PAR	TAE CLAS	ce D
50								FCC PAR	115 CLAS	5 B
40	1		2							
30	months of the	1	Vol.		7.00	5		6		المدرور
20	1	W W		3 11 14	n. There	A SAME	my me	chapage to have been been been been been been been be	Laborate March Annual	Mara.
X. S.		100		WIW	Mr.	Pr. Uk.	andry.			
10										
030	50		100	Freq	200 uency (MH			500		1000
		ReadA	Intenna		3 30	185	Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level			Remark	
5	MHz	dBu∀			<u>ab</u>	dBuV/m	dBuV/m	<u>ab</u>		
1 2 3	43.812 86.200	53.33	13.50 9.30	1.26 1.91	29.87 29.59		40.00	-5.05	QP	
3	129.015	38.71	8.84	2.27	29.33	20.49	43.50	-23.01	QP	

Remark:

4

5

184.490

303.544

515.437

38.64

37.30

33.30

10.44

13.68

17.66

2.76

2.95

3.70

28.94

28.46 29.00 22.90

25.47

25.66

43.50 -20.60 QP

46.00 -20.53 QP

46.00 -20.34 QP

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct	Name:	Mobile Phone			Product model:			GQ3071		
est By:		Yaro			Tes	t mode:	N	NFC Tx mode Horizontal		
est Fre	quency:	30 MHz -1	G		Pola	arization:	Н			
est Vol	tage:	AC 120/6	60Hz		Env	rironment:	Т	emp: 24℃	Huni:	57%
Lev	el (dBuV/m)									
80										
70										
Coles .										
60								FCC PAI	RT15 CLAS	SSB
50								<u> </u>	100	
764			1							_
40							5			
30			2		4.			6		
		1	mi .	3	of the same	. [عاريون ا	Anthony	Market
20	makes of the man of the man of	1 my	1 Marie	Y MALL A	AN)	de service de la constitución de	Marina	Spot and and other		
10		Manual .		~~						
030	50		100	AUX.	200			500		1000
		D J	Antenna		quency (MH	The state of the s	Limit	Over		
	Freq		Factor		Preamp Factor		Limit		Remark	
2	MHz	dBu∀	<u>dB</u> /m			dBu√/m	35			
	MHZ	and a	ш/ m	ш	ш	and a / W	and a / W	ш		
1	53.882	35.89	13.40	1.34	29.80	20.83		-19.17	10 POT C 10 A 1	
1 2 3 4 5	86.503 116.132	44.30 38.52	9.36 10.99	1.91 2.12	29.59 29.42	25.98 22.21		-14.02 -21.29	QP QP	
4	179.386	44.53	9.78	2.73	28.98	28.06		-15.44		
	305.680	45.36	13.72	2.96	28.46	33.58		-12.42		
5	515.437	34.61	17.66	3.70		26.97		-19.03		

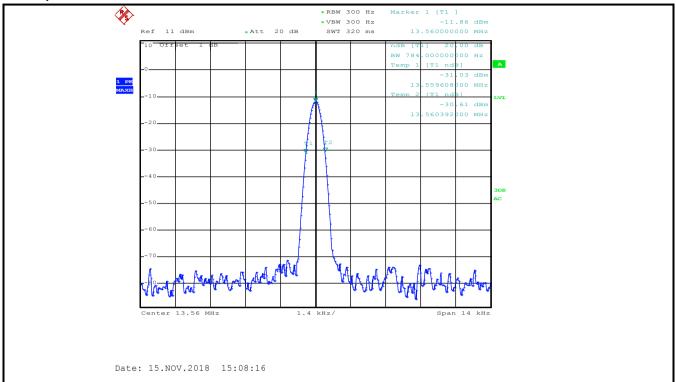
Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

6.3 20dB Bandwidth

Test Requirement:	FCC Part15 C Section 15.215 (c)
Test Method:	ANSI C63.4:2014
Receiver setup:	RBW=200Hz, VBW=300Hz, detector: Peak
Limit:	The fundamental emission be kept within atleast the central 80% of the permitted band
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed


Measurement Data

20dB bandwidth (kHz)	Limit (kHz)	Results				
0.784	11.2	Passed				
Note: For 13.56MHz, permitted Band is 14 kHz, so the Limit is 11.2 kHz.						

Test plot as follows:

6.4 Frequency Tolerance

T 10 1	[500 B 45 0 D 6 45 005 ()
Test Requirement:	FCC Part15 C Section 15.225 (e)
Test Method:	ANSI C63.10: 2013
Receiver setup:	RBW=200Hz, VBW=300Hz, span=14kHz, detector: Peak
Limit:	±0.01% of the operating frequency
Test mode:	Transmitting mode
Test Procedure:	 Frequency stability V.S. Temperature measurement The equipment under test was powered by a fresh battery. RF output was connected to spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -20°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached Frequency stability V.S. Voltage measurement Set chamber temperature to 25°C. Use a variable DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency. Reduce the input voltage to specify extreme voltage variation (+/-15%) and endpoint, record the maximum frequency change.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data:

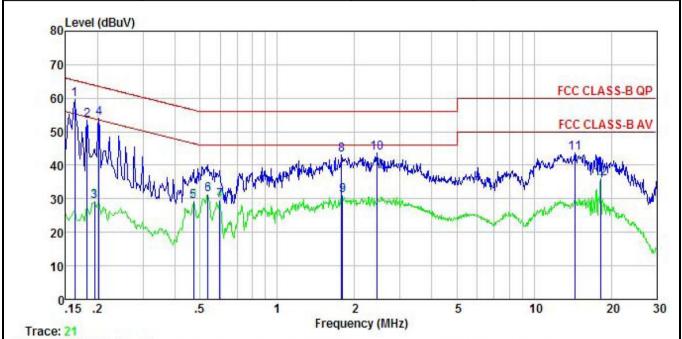
a) Frequency stability V.S. Temperature measurement

Voltage (Vdc)	Temperature (°C)	Frequency Tolerance (MHz)	Frequency Error (%)	Limit (%)	Results
	-20	13.561068	0.008	0.01	Pass
	-10	13.561067	0.008	0.01	Pass
	0	13.561067	0.008	0.01	Pass
3.85	+10	13.561065	0.008	0.01	Pass
3.00	+20	13.561066	0.008	0.01	Pass
	+30	13.561067	0.008	0.01	Pass
	+40	13.561065	0.008	0.01	Pass
	+50	13.561064	0.008	0.01	Pass

b) Frequency stability V.S. Voltage measurement

Temperature (°C)	Voltage (Vdc)	Frequency Tolerance (MHz)	(MHz) (%)		Results
	3.50	13.561065	0.008	0.01	Pass
25	3.85	13.561067	0.008	0.01	Pass
	4.40	13.561068	0.008	0.01	Pass

6.5 Conducted Emission


Test Requirement:	FCC Part15	B Section 15.	207						
Test Method:	ANSI C63.4:	ANSI C63.4:2014							
TestFrequencyRange:	150kHz to 30	150kHz to 30MHz							
Class / Severity:	Class B								
Receiver setup:	RBW=9kHz.	VBW=30kHz							
Limit:				Limit	(dBµV)				
·	Frequency	range (MHz)	Qu	asi-peak		Average			
		5-0.5	66	6 to 56*	ţ	56 to 46*			
		.5-5		56		46			
		5-30		60		50			
Test setup:	* Decreases	with the logar		equency.					
Test procedure	Remark: E.U.T. Equipmer LISN: Line Impec Test table height	e/Insulation plane nt Under Test dence Stabilization / t=0.8m T and simulato	T EMI Rece	ected to the main	•	•			
	impedance 2. The peripe that proving (Please reasonable) 3. Both side order to find the interess.	ce for the mean wheral devices des a 500hm/ efer to the blooms and the maxim	suring equipi are also con 50uH couplin ck diagram o are checked um emission must be char	nected to the mag impedance we feet the test setup for maximum contents.	ain power fith 50ohm and photogonducted in stitions of e	through a LISN termination. graphs). nterference. In quipment and all			
Test environment:	Temp.: 22.5°C Humid.: 55% Press.: 101kPa								
	Uncertainty: 3.28dB								
Measurement Record:	Uncertainty:	3.20UD		Refer to section 5.7 for details					
Measurement Record: Test Instruments:			tails						
	Refer to sec								

Measurement Data:

Product name:	Mobile Phone	Product model:	GQ3071		
Test by:	Yaro	Test mode:	NFC Tx mode		
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line		
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%		

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u>	₫B	dBu₹	dBu∜	<u>dB</u>	
1	0.162	48.63	0.17	10.77	59.57	65.34	-5.77	QP
2	0.182	42.40	0.16	10.77	53.33	64.42	-11.09	QP
3	0.194	18.27	0.15	10.76	29.18	53.84	-24.66	Average
2 3 4 5 6 7 8 9	0.202	43.02	0.15	10.76	53.93	63.54	-9.61	QP
5	0.471	18.33	0.12	10.75	29.20	46.49	-17.29	Average
6	0.538	20.28	0.12	10.76	31.16	46.00	-14.84	Average
7	0.598	18.72	0.13	10.77	29.62	46.00	-16.38	Average
8	1.781	32.09	0.14	10.95	43.18	56.00	-12.82	QP
9	1.800	19.83	0.14	10.95	30.92	46.00	-15.08	Average
10	2.448	32.49	0.15	10.94	43.58	56.00	-12.42	QP
11	14.440	32.40	0.32	10.90	43.62	60.00	-16.38	QP
12	18.135	24.72	0.29	10.92	35.93	50.00	-14.07	Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.