

A111 - Pulsed Coherent Radar

Operational description, User manual, and Installation instruction

A111 Overview

The A111 is a radar system based on pulsed coherent radar (PCR) technology and is setting a new benchmark for power consumption and distance accuracy – fully integrated in a small package of 29 mm².

The A111 60 GHz radar system is optimized for high precision and ultra-low power, delivered as a one package solution with integrated Baseband, RF front-end and Antenna in Package (AiP). This will enable easy integration into any portable battery driven device.

The A111 is based on leading-edge patented sensor technology with pico-second time resolution, capable of measuring absolute distance with mm accuracy up to a range of 2 m ⁽¹⁾ and with configurable update rate.

The A111 60 GHz radar remains uncompromised by any natural source of interference, such as noise, dust, color and direct or indirect light.

Applications

- High precision distance measurements with mm accuracy and high update rate
- Ultra-low power consumption, e.g. average power consumption 0.2 mW at 0.1 Hz update rate, 3 mW at 10 Hz update rate and 20 mW at 100 Hz update rate
- Proximity detection with high accuracy and the possibility to define multiple proximity zones
- Motion detection, Speed detection
- Enables material detection
- High precision object tracking, enabling gesture control
- High precision tracking of 3D objects
- Monitor vital life signs such as breathing and pulse rate

Features

• Fully integrated sensor

- 60 GHz Pulsed Coherent Radar (PCR)
- Integrated Baseband, RF front-end and Antenna in Package (AiP)
- 5.5 x 5.2 x 0.88 mm fcCSP, 0.5 mm pitch

Accurate distance ranging and movements

- Measures absolute range up to 2 m (1)
 - o Absolute accuracy in mm
- Relative accuracy in µm
- Possible to recognize movement and gestures for several objects
- Support continuous and single sweep mode
- HPBW typical of 65 (H-plane) and 53 degrees (E-plane)

• Easy integration

- One chip solution with integrated Baseband and RF
- Can be integrated behind plastic or glass without any need for a physical aperture
- Single reflowable component
- 1.8 V single power supply, enable with Power on Reset (PoR)
- Clock input for crystal 24 MHz
- SPI interface for data transfer, up to 50 MHz SPI clock support
- INTERRUPT support

^{(1) 2}m ranging is guaranteed for an object size, shape and dielectric properties corresponding to a spherical corner reflector of 5 cm radius.

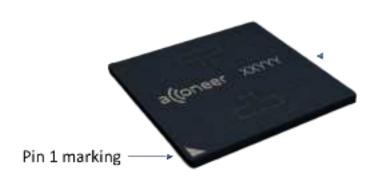
Table of Contents

2	Re	Revision History					
3	De	escription	5				
	3.1	Functional Block Diagram	6				
4	Pi	n Configuration and Functions	7				
5	Sp	oecifications	9				
	5.1	Absolute Maximum Ratings	9				
	5.2	Environmental Sensitivity	9				
	5.3	Recommended Operating Conditions	10				
	5.4	Electrical Specification	10				
	5.5	Power Consumption Summary	11				
6	Ti	ming Requirements	13				
	6.1	Serial Peripheral Interface	13				
7	Ту	pical Characteristics	15				
	7.1	Radar Loop Gain Pattern	15				
	7.2	Relative Phase Accuracy	16				
8	Fι	unctional Description	17				
	8.1	Acconeer Software	18				
	8.2	Software Integration	18				
	8.3	Power Sequences	19				
9	La	ayout Recommendations	22				
	9.1	XTAL	23				
	9.2	Power Supply	24				
1() Re	egulatory Approval	26				
	10.1	ETSI	26				
	10	0.1.1 EU type examination certificate	26				
	10.2	Declaration of conformity FCC	27				
1	1 M	echanical Data	28				
	11.1	Moisture Sensitivity Level and Recommended Reflow Profile	30				
	11.2	RoHS and REACH Statement	30				
12	2 Ak	obreviations	31				
ח	ieclai	mor	32				

2 Revision History

Revision	Comment
V1.0	Released version

3 Description


The A111 is an optimized low-power, high-precision, 60 GHz radar sensor with integrated Baseband, an RF front-end and an Antenna in Package (AIP).

The sensor is based on pulsed coherent radar (PCR) technology, featuring a leading-edge patented solution with picosecond time resolution. The A111 is the perfect choice for implementing high-accuracy, high-resolution sensing systems with low-power consumption.

Ordering information

Part number	Package	Size (nom)	Primary component container
A111-001-T&R	fcCSP50	5.2 x 5.5 x 0.88 mm	Tape & reel
A111-001-TY	fcCSP50	5.2 x 5.5 x 0.88 mm	13" Tray

Acconeer A111 marking

A111 marking:

- XX = Product code
- YYYY = Lot number

3.1 Functional Block Diagram

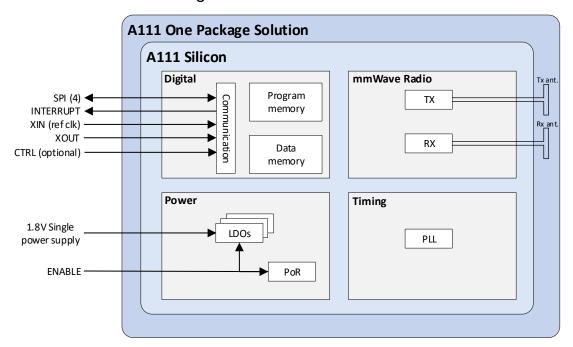


Figure 3.1 The A111 functional block diagram.

The A111 silicon is divided into four functional blocks: Power, Digital, Timing and mmWave radio.

The Power functional block includes LDOs and a Power on Reset (PoR) block. Each LDO creates its own voltage domain. The PoR block generates a Reset signal on each power-up cycle. The host interfaces the Power functional block of the sensor via 1.8 V Single power supply and ENABLE.

The Digital functional block includes sensor control. The data memory stores the radar sweep data from the ADC. The host interfaces the Sensor via an SPI interface, a Clock (XIN, XOUT), INTERRUPT signal and optional CTRL signal.

The Timing block includes the timing circuitry. The PLL digital clock output is used to drive digital logic and is synthesized from external crystal (XIN/XOUT). The operational oscillator (XIN) frequency is 24MHz.

The mmWave radio functional block generates and receives radar pulses and includes transmitter (TX), receiver (RX) and interfaces toward the integrated antennas. The A111 operates in the 57-64 GHz band.

4 Pin Configuration and Functions

The below figure shows the A111 pin configuration, top view:

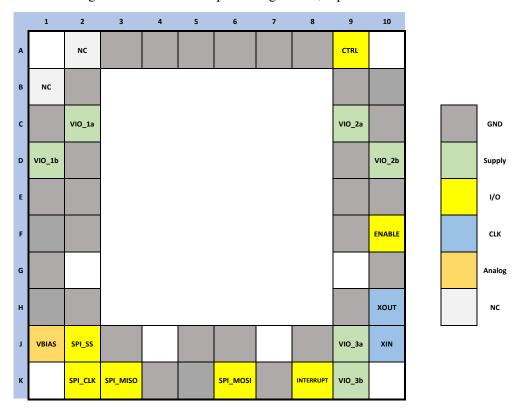


Figure 4.1. Pin configuration of the A111 sensor, top view.

The below table shows the A111 total number of 50 pins:

Pin	Pin name	Pin type	Description	Comment
A2	NC		Must no connect	
A3-A8	GND	Ground	Must be connected to solid ground plane	
A9	A9 CTRL I/O Optional control signal. Must be connected to either host MCU or ground		optional	
B1	NC		Must no connect	
B2, B9	GND	Ground	Must be connected to solid ground plane	
B10	GND	Ground	Must be connected to solid ground plane	
C1	GND	Ground	Must be connected to solid ground plane	
C2	VIO_1a	Supply voltage	Supply voltage, RF part (1)	
C9	VIO_2a	Supply voltage	Supply voltage, RF part (1)	
C10	GND	Ground	Must be connected to solid ground plane	
D1	VIO_1b	Supply voltage	Supply voltage, RF part (1)	
D2, D9	GND	Ground	Must be connected to solid ground plane	
D10	VIO_2b	Supply voltage	Supply voltage, RF part (1)	

Pin	Pin name	Pin type	Description	Comment
E1, E2, E9, E10	GND	Ground	Must be connected to solid ground plane	
F1 GND Ground		Ground	Must be connected to solid ground plane	
F2, F9	GND	Ground	Must be connected to solid ground plane	
F10	ENABLE	I/O	To control OFF/ON/Reset	
			Recommended to be connected to host MCU available GPIO	
G1, G10	GND	Ground	Must be connected to solid ground plane	
H1	GND	Ground	Must be connected to solid ground plane	
H2, H9	GND	Ground	Must be connected to solid ground plane	
H10	XOUT	CLK	XTAL output	
J1	VBIAS	Analog	The analog VBIAS must be connected to VIO_3	
J2	SPI_SS	I/O	SPI slave select, active low select.	
J3, J5, J6, J8	GND	Ground	Must be connected to solid ground plane	
J9	VIO_3a	Supply voltage	Supply voltage, digital part (1)	
J10	XIN	CLK	XTAL input	
K2	SPI_CLK	I/O	SPI Serial Clock	
K3	SPI_MISO	I/O	Master Input – Slave Output	
K4	GND	Ground	Must be connected to solid ground plane	
K5	GND	Ground	Must be connected to solid ground plane	
K6	SPI_MOSI	I/O	Master Output - Slave Input	
K7	GND	Ground	Must be connected to solid ground plane	
K8 INTERRUPT I/O		I/O	Interrupt signal, that is used as an interrupt in the host, more details are found in section 7, <i>Description</i> .	mandatory
K9	VIO_3b	Supply voltage	Supply voltage, digital part (1)	

Table 4.1. A111 sensor pin list.

⁽¹⁾ VIO_1a and VIO_1b are short circuit inside the sensor. VIO_2a and VIO_2b are short circuit inside the sensor. VIO_3a and VIO_3b are short circuit inside the sensor.

5 Specifications

5.1 Absolute Maximum Ratings

The below table shows the A111 absolute maximum ratings over operating temperature range, on package, unless otherwise noted:

Parameter	Description	Min.	Max.	Unit
VIO_1 (1)	1.8 V RF power supply	0	2.0	V
VIO_2 (1)	1.8 V RF power supply	0	2.0	V
VIO_3	1.8 V digital power supply	0	2.0	V
I/O	I/O supply voltage	-0.5	VIO_3+0.5	V
T _{OP}	Operating temperature range	-40	85	°C
T _{STG}	High temperature storage		150	°C

Table 5.1. Absolute maximum ratings.

Stresses beyond those listed in Table 5.1 may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions or at any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods of time may affect device reliability.

5.2 Environmental Sensitivity

The below table shows the A111 environmental sensitivity:

Parameter	Standard	Max.	Unit
Storage temperature	JESD22-A103 (1)	150(1)	∘C
Reflow soldering temperature (1)	J-STD-020 (1)	260	ºC
Moisture Sensitivity Level	JESD22-A113 (1)	MSL3	
ESD, Charge Device Model (CDM)	JS-002, Class C2	500	V
ESD, Human Body Model (HBM)	JS-001, Class 1C	1000	V
Latch-up	JESD78, Class I	Pass	

Table 5.2. Environmental sensitivity.

⁽¹⁾ VIO_1 and VIO_2 must never exceed VIO_3.

⁽¹⁾ For reference only. The package is generically qualified by the manufacturer. Acconeer does not guarantee adherence to standard.

5.3 Recommended Operating Conditions

The below table shows the A111 recommended operating conditions, on package:

Parameter	Min.	Тур.	Max.	Unit
Operating power supply voltage, VIO_1	1.71	1.8	1.89	V
Operating power supply voltage, VIO_2	1.71	1.8	1.89	V
Operating power supply voltage, VIO_3	1.71	1.8	1.89	V
I/O operating range	-0.3		VIO_3+0.3	V
Operating temperature (T _{op})	-40		85	ōC

Table 5.3. Recommended operating conditions.

5.4 Electrical Specification

The below table shows the A111 electrical DC specification conditions, on package, T_{op} = -40°C to 85°C:

Parameter	Min.	Тур.	Max.	Unit
Current into any power supply	0		100	mA
I/O V _{IL} Low-level input voltage	-0.3		0.10*VIO_3	V
I/O V _{IH} High-level input voltage	0.90*VIO_3		VIO_3+0.3	V
I/O V _{OL} Low-level output voltage	0		0.4	V
I/O V _{OH} High-level output voltage	1.6		VIO_3	V
I/O I _{OL} (VOL = 0.4V)	4.56	7.8	12.4	mA
I/O I _{OH} (VOH = VIO_3-0.4)	3.42	5.8	9.16	mA
I/O I _{IL} Low-level input current			<1	μΑ
I/O I _{IH} High-level input current			<1	μΑ

Table 5.4. Electrical DC conditions.

The below table shows the A111 electrical AC specification conditions, on package, at T_{op} = -40°C to 85°C:

Parameter	Min.	Тур.	Max.	Unit
I/O output operating frequency ⁽¹⁾	0		100	MHz
I/O minimum positive and negative pulse	6.25			ns

Table 5.5. Electrical AC conditions.

5.5 Power Consumption Summary

Table 5.6 summarizes the steady-state current consumption for the sensor states, average current ratings at all power terminals (VIO_1, VIO_2, VIO_3), VIO 1.8 V, at $T_{op} = -40$ °C to 85°C:

Parameter		Тур.	Max.	Unit
OFF	VIO_1	29	143	μΑ
OFF	VIO_2	32	163	μΑ
OFF	VIO_3	0	22	μΑ
HIBERNATE	VIO_1	29	143	μΑ
HIBERNATE	VIO_2	32	164	μΑ
HIBERNATE	VIO_3	413	2190	μΑ
SLEEP	VIO_1	765	935	μΑ
SLEEP	VIO_2	770	942	μΑ
SLEEP	VIO_3	1.59	3.36	mA
READY ⁽¹⁾	VIO_1	1.32	1.70	mA
READY ⁽¹⁾	VIO_2	768	946	μΑ
READY ⁽¹⁾	VIO_3	31.0	36.4	mA
READY ⁽²⁾	VIO_1	1.28	1.64	mA
READY ⁽²⁾	VIO_2	770	942	μΑ
READY ⁽²⁾	VIO_3	1.59	3.36	mA
ACTIVE	VIO_1	2.86	3.58	mA
ACTIVE	VIO_2	1.34	1.72	mA
ACTIVE	VIO_3	60.7	69.7	mA
MEASURE, PROFILE 1	VIO_1	3.89	4.66	mA
MEASURE, PROFILE 1	VIO_2	2.02	2.40	mA
MEASURE, PROFILE 1	VIO_3	67.5	77.0	mA
MEASURE, PROFILE 2	VIO_1	3.96	4.73	mA
MEASURE, PROFILE 2	VIO_2	2.08	2.46	mA
MEASURE, PROFILE 2	VIO_3	67.5	77.0	mA
MEASURE, PROFILE 3	VIO_1	4.23	5.03	mA
MEASURE, PROFILE 3	VIO_2	2.38	2.77	mA
MEASURE, PROFILE 3	VIO_3	68.1	77.6	mA

⁽¹⁾ Load capacitance 2 pF.

MEASURE, PROFILE 4	VIO_1	5.09	5.94	mA
MEASURE, PROFILE 4	VIO_2	3.36	3.77	mA
MEASURE, PROFILE 4	VIO_3	68.1	77.6	mA
MEASURE, PROFILE 5	VIO_1	6.21	7.14	mA
MEASURE, PROFILE 5	VIO_2	4.68	5.15	mA
MEASURE, PROFILE 5	VIO_3	68.1	77.6	mA

Table 5.6. Average current ratings at power terminals for the sensor states.

⁽¹⁾ based on non Sparse service configuration

⁽²⁾ based on Sparse service configuration

6 Timing Requirements

6.1 Serial Peripheral Interface

The Serial Peripheral Interface (SPI) is a 4-wire serial bus, used for configuration and reading output from the A111 radar sensor. The A111 radar sensor is an SPI slave device connected to the SPI master, as described in Figure 6.1. The A111 allows several devices to be connected on the same SPI bus, with a dedicated slave-select signal. Daisy-chain is not supported.

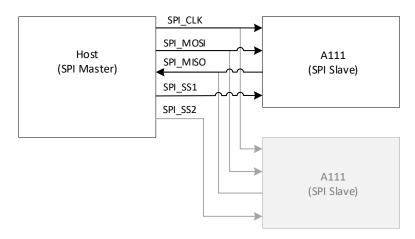


Figure 6.1. SPI master-slave connection.

The serial data transfer input (MOSI) and output (MISO) to the A111 are synchronized by the SPI_CLK. The Slave Select signal (SS) must be low before and during transactions. The MOSI is always read on the rising edge of SCLK and the MISO changes value on the falling edge of SPI_CLK (SPI mode 0, CPOL/CPHA = 0). SS requires release in between transactions. See Figure 6.2 and Table 6.1 for timing characteristics.

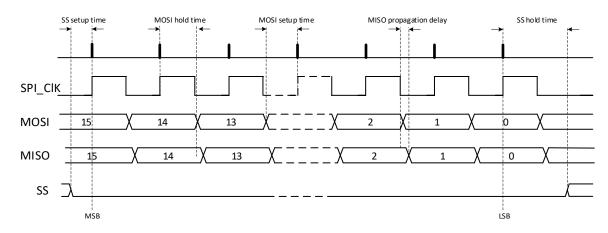


Figure 6.2. Timing diagram of SPI, CPOL=0 and CPHA=0.

Parameter	Min.	Тур.	Max.	Unit
Clock frequency (1)			50	MHz
SS setup time	1.0			ns
SS hold time	2.0			ns
MOSI setup time	1.0			ns
MOSI hold time	2.5			ns
MISO propagation delay (1)			5.5	ns

Table 6.1. SPI timing characteristics.

^{(1) 10}pF load on SPI_MISO

7 Typical Characteristics

7.1 Radar Loop Gain Pattern

The Radar Loop Gain (RLG) pattern includes the gain in both the TX and RX radar paths and is defined as the angular separation between the two points at which the gain has decreased by 3 dB relative to the maximum main lobe value, when the radar itself is used to measure the reflected power. For details regarding the measurement setup, refer to "Hardware and physical integration guideline", chapter 1.2.

Conditions: $T_A = 25$ °C, $V_{DD} = 1.8$ V. Tested on 5 XR112 devices.

Figure 7.1 and Figure 7.2 shows the RLG radiation pattern normalized to free space sensor boresight at elevation plane (E-plane) and azimuth plane (H-plane).

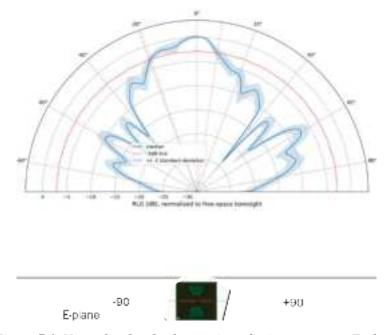


Figure 7.1. Normalized radar loop gain radiation pattern at E-plane.

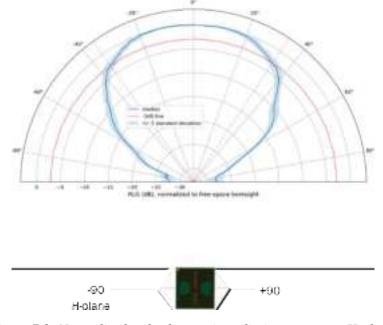


Figure 7.2. Normalized radar loop gain radiation pattern at H-plane.

7.2 Relative Phase Accuracy

Conditions: $T_A = 25$ °C, $V_{DD} = 1.8$ V. Statistical result based on sweep count 100, 20 tested devices.

Standard deviation of phase estimation, measured at a distance of 0.35 m. Object metal cylinder, 40 mm in diameter.

Average STD of relative phase estimation:

6.1 degrees in relative phase accuracy, translates to 42 µm in relative distance accuracy.

8 Functional Description

The below figure shows the A111 system integration with Host MCU:

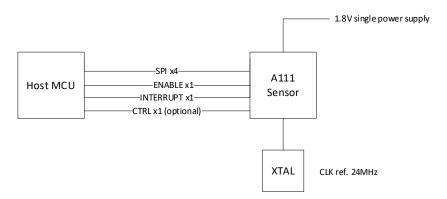


Figure 8.1. System integration.

The Acconeer software is executed on Host MCU that handles sensor initiation, configuration, sweep acquisition and signal processing.

The Serial Peripheral Interface (SPI) is a 4-wire serial bus, used for configuration and reading output from the A111 radar sensor. The A111 radar sensor is an SPI slave device, connected to the SPI master (Host MCU), and allows several devices to be connected on same SPI bus, with a dedicated slave-select signal. Daisy-chain is not supported.

The sensor provides support for ENABLE and INTERRUPT as interrupt signal, always output, that is used as an interrupt in the Host MCU. The sensor supports an optional control signal: CTRL, which is configured through software, e.g. for controlling the operating state of the sensor to idle in Hibernate.

8.1 Acconeer Software

The Acconeer software has been written in C and is portable to any OS and HW platform. The Acconeer software is executed on Host MCU and delivered as binaries, except for integration software that is delivered as source code.

The below figure shows the A111 software offer.

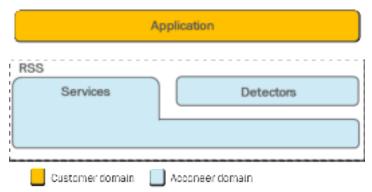


Figure 8.2. Acconeer Software offer.

The RSS (Radar System Software) provides output at two different levels, Service and Detector. RSS provides an API (Application Programming Interface) for Application utilization of various Services and Detectors.

The Service output is pre-processed sensor data as a function of distance, e.g. Envelope data (amplitude of sensor data), Power bin data (integrated amplitude data in pre-defined range intervals), IQ modulated data (representation in cartesian) etc.

Detectors are built on Service data as input and the output is a result, e.g. Distance detector that presents distance and amplitude result based on envelope Service etc.

Customer can either use Acconeer detector or develop their own signal processing based on Service data.

Acconeer provides several example applications to support customer own application development. Also, customer guidelines are provided for application development utilizing the Acconeer RSS API.

Acconeer provides several reference drivers as source code, e.g. Support for Cortex M4, Cortex M7 MCU's.

8.2 Software Integration

Integration software shall implement functions defined in a definitions file provided in Acconeer Software offer. This includes handling of SPI, ENABLE, INTERRUPT and CTRL, as well as potential OS functions.

See reference HAL - User Guide for guideline on software integration and HAL implementation (https://www.acconeer.com/products).

8.3 Power Sequences

The power-up sequence is described using the recommended integration shown in the below figure:

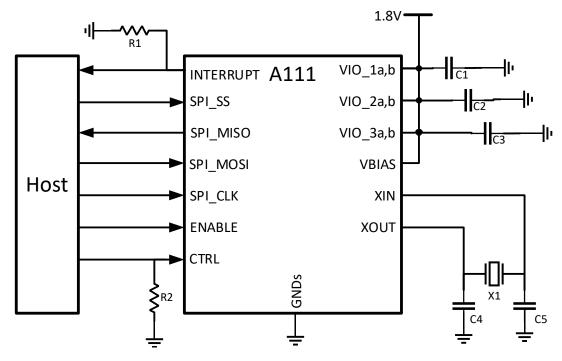


Figure 8.3. Recommended integration of the A111 radar sensor.

The power up sequence is shown in below figure.

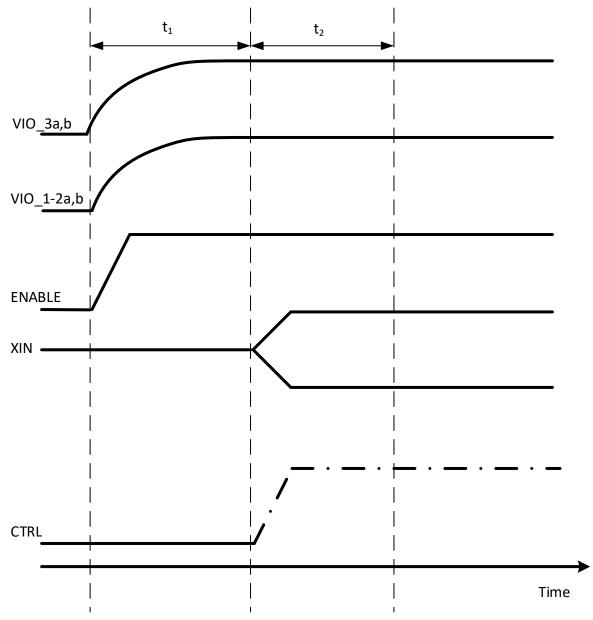


Figure 8.4. Power up sequence.

The power up sequence is initiated by turning on VIO_3a,b. It must be turned on before or simultaneously with ENABLE and VIO_1-2a,b. ENABLE and VIO_1-2a,b can be turned on in any order and independently of each other. A111 should however not be considered as in state "ON" until all supply voltage levels are stable and ENABLE is high. The time constant t_1 in figure 7.4 denotes this time. The actual value of t_1 depends on the power supply and the decoupling capacitors used. If the CTRL signal is used, it must be held at 0V during time t_1 .

Next step in the power up sequence is to have a settling time for the XTAL oscillator to stabilize, shown as time t_2 in Figure 8.4. This may take up to several milliseconds depending on the XTAL performance. It is advised to have the clock inactive at 0 V while ENABLE is inactive.

Now the A111 radar sensor is ready for SPI communication.

After power up is complete, the sensor is loaded with a program. Up until the point where the sensor's program is started, the INTERRUPT is high impedance. However, after the sensor's program has started the INTERRUPT is configured to a push-pull CMOS output. It is therefore required that the host I/O is configured as input before any programs are started on the sensor.

The power down sequence is described in Figure 8.5.

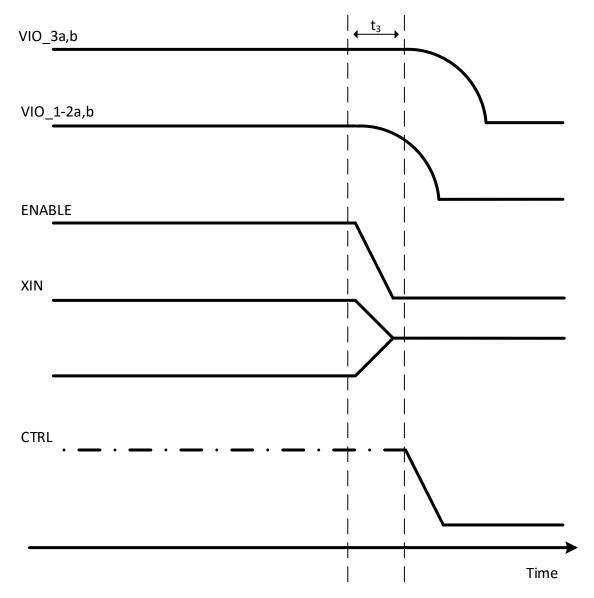


Figure 8.5. The power down sequence.

The power down sequence is initiated by setting "ENABLE" low. The crystal oscillator will be disabled when ENABLE is set low.

After that, VIO_1-2a,b can be turned off. Time constant t_3 (refer to Figure 8.5) later, VIO_3a,b can be disabled. The constant $t_3 \ge 0$. The I/O inputs on A111 (including CTRL if it is being used) must be set to 0V before or simultaneously with VIO_3a,b going low, otherwise the internal ESD protection diodes will draw current from the I/O source.

9 Layout Recommendations

The sensor antennas are of a folded dipole type, with its main ground reference being the internal package ground plane, extending below the whole area of the sensor. To further enhance the directivity of the sensor, the package ground plane should be extended by soldering all GND pads to the PCB top layer ground. In terms of regulatory compliance, any openings in the ground plane inside the A111 footprint must be significantly smaller than the wavelength (5 mm in free space) to effectively shield off any disturbance.

Figure 9.1 shows the simulated relative radar loop gain (RLG) as function of ground plane side length, assuming a square ground plane. As the ground plane size increases, the RLG increases because of increased antenna directivity. Constructive and destructive interference results in a non-monotonic increase in RLG.

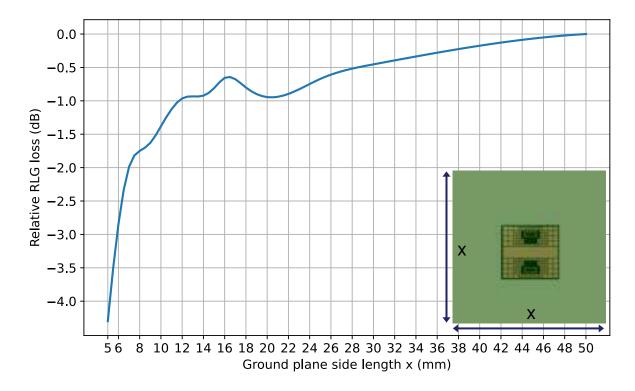


Figure 9.1. Simulated relative radar loop gain as function of ground plane side length (x). Ground plane is a solid square ground plane.

VIO_1a and VIO_1b are internally connected and connecting both on the PCB is recommended as well. Likewise, VIO_2a, VIO_2b and, VIO_3a, VIO_3b are internally connected and connecting both is recommended on the PCB as well. It is recommended to have decoupling capacitors on the supplies placed as close as possible to the supply terminals. A1 μF decoupling capacitance on each supply pin pair is recommended.

More detailed PCB layout guidelines can be found in the "Hardware and physical integration guideline".

Bill of Material (BoM)

The below table shows BOM for integration of the A111 using a crystal as input clock source:

Component	Value	Description
C1, C2, C3	1 μF	VIO_1, VIO_2, VIO_3 decoupling
R1, R2	100 kΩ	INTERRUPT and CTRL pull down resistor
X1		XTAL 24 MHz, Epson TSX-3225
C4, C5	8 pF ⁽¹⁾	XTAL freq. tuning capacitor

Table 9.1. BOM list.

(1) See details in chapter 9.1 XTAL for C4, C5 value calculation.

9.1 XTAL

The input clock origin from a crystal (XTAL), connected to XIN and XOUT.

The A111 sensor has a built-in XTAL oscillator and adding an external XTAL component, as shown in the Figure 9.2.

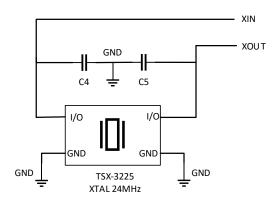


Figure 9.2. External XTAL schematics.

To enable the internal XTAL oscillator to drive the external resonator, the relation in Equation 1 must be fulfilled.

$$f * C_{pin}^{0.8} * R_{ESR}^{0.61} < 0.7$$
 (Equation 1)
 $C = 2(C_L - C_{stray})$ (Equation 2)
 $C_{pin} = C + C_{stray} * 2$ (Equation 3)

The capacitance values are calculated in Equation 2. C_L and R_{ESR} are XTAL parameters and vary from XTAL to XTAL. The stray capacitance is the sum of the capacitance between XIN and XOUT, that is, the PCB trace capacitance plus package capacitance; 2 to 5 pF is a general estimation.

Example:

- f = 24 MHz
- $C_L = 9 pF$
- $R_{ESR} = 40 \text{ ohm}$

Assuming $C_{\text{stray}} = 5 \text{ pF}$ gives C4, C5 = 8 pF and that the condition is met with the result $0.58 \le 0.7$.

9.2 Power Supply

The A111 sensor has got three power supplies where the VIO_3 power supply is sensitive to power supply ripple. Power supply ripple on VIO_3 may degrade performance since VIO_3 supplies the internal clock generation blocks. Table 9.2 provides the required power supply ripple specification for VIO_3.

Frequency (Hz)	Min.	Тур.	Max.	Unit
10 000			18.7	mV_{pp}
100 000			2.6	mV_{pp}
1 000 000			0.26	mV_{pp}
3 000 000			0.09	mV_{pp}
10 000 000			0.23	mV_{pp}
100 000 000			3.0	mV_{pp}

Table 9.2. *Required power supply ripple specification for VIO_3*.

LC filter solution

When the VIO_3 voltage source is connected to a switching power supply, a post LC filter as displayed in Figure 9.3 can be designed satisfy the ripple specification. The exact values for LC filter depend on switching frequency and ripple amplitude of the supply regulator. Be aware of LC filter peaking at the series resonance frequency $f=1/(2\pi\sqrt{LC})$. A small snubber resistor, 250 m Ω in the example filter, can be inserted to lower the Q factor.

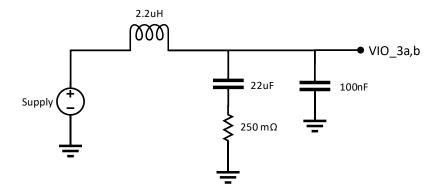


Figure 9.3. LC supply filter.

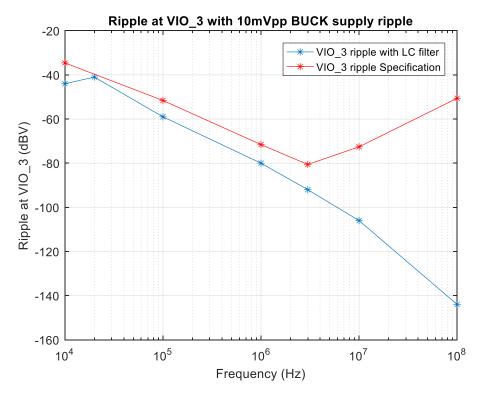


Figure 9.4. Simulated performance with 10 mVpp supply ripple with LC supply filter.

10 Regulatory Approval

To be noted is that some regulatory specifications also specify the usage of the sensor, so users of the sensor must check regulatory requirements for their own use case and determine if the regulatory approvals described below are sufficient.

10.1ETSI

Hereby, Acconeer declares that the A111 sensor is compliant with directive 2014/53/EU.

10.1.1 EU type examination certificate

10.2 Declaration of conformity FCC

Hereby, Acconeer declares that the A111 sensor has limited single-modular transmitter approval granted by FCC. Acconeer has not approved any changes to this device. Any changes or modifications to this device could invalidate the FCC approval.

The A111 sensor meets the title 47 of the Code of Federal Regulations, part 15 section 15.255 (c)(3) for pulsed field disturbance sensors/radars operating in the 57–64 GHz band. The transmit duty cycle is evaluated during any $0.3~\mu s$ time window by summing the total time that pulses are emitted during this time window. The A111 sensor is not permitted for use on satellites or aircrafts, where there is little attenuation of RF signals by the body/fuselage of the aircraft. The host product manufacturer is responsible for compliance with any other FCC rules that apply to the host not covered by the modular transmitter grant of certification, including Part 15 Subpart B and Suppliers declaration of conformity, unless final device is expressly exempted by the rules.

The host manufacturer should refer to guidance in KDB 996369 and ensure that the module limiting conditions are fulfilled for the host product and that the installation instructions provided by Acconeer in this document have been followed. Host product manufacturers are responsible to perform a limited set of transmitter module verification testing, including radiated spurious emissions test, to ensure that the product is in compliance with the FCC rules.

The product has integrated antennas in package, it is not possible to connect trace antenna.

MPE RF exposure testing is not needed as the available maximum time-averaged power of the module is no more than 1 mW, according to 47 CFR 1.1307(b)(3)(i)(A). Co-location of this module with other transmitters that operate simultaneously are required to be evaluated using the FCC multi-transmitter procedures.

The modular approval covers use with dielectric lens that converge or diverge the electromagnetic waves at least in one plane of radiation (E or H plane). Only lenses that result in the same or lower EIRP are covered by the limited single-modular transmitter approval.

The host device shall be labelled to identify the modules within the host device, which means that the host device shall be labelled to display the FCC ID of the module preceded by words "Contains transmitter module" or "Contains", E.g.

Contains FCC ID: 2AQ6KA1004

The module integrator must include below statement:

This device complies with Part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

11 Mechanical Data

The A111 is available in fcCSP package for mounting on a substrate. The below table shows mechanical data:

Parameter	Min.	Тур.	Max	Unit
Body X	5.15	5.20	5.25	mm
Body Y	5.45	5.50	5.55	mm
Body Z (height)		0.821	0.899	mm
Ball pitch	0.45	0.50	0.55	mm
Ball diameter	0.25	0.30	0.35	mm
Ball height	0.15	0.24		mm
Ball count		50		#

Table 11.1. Mechanical data.

The A111 footprint is shown in Figure 11.1.

Figure 11.1. A111 footprint.

The physical layout of the A111 sensor is shown in Figure 11.2, 11.3 and 11.4.

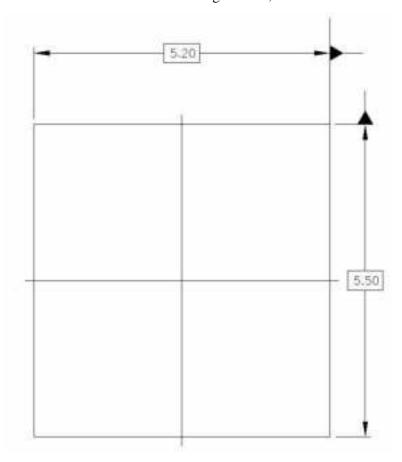


Figure 11.2. Physical layout of the A111 sensor, top view.

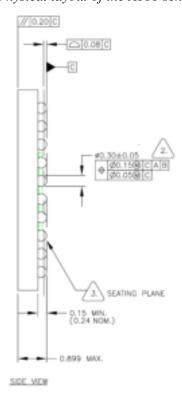


Figure 11.3. Physical layout of the A111 sensor, side view.

Primary datum C and seating plane are defined by the spherical crowns of the solder balls. Dimension is measured at the maximum solder ball diameter, parallel to primary datum C. All dimensions and tolerances conform to ASME Y14.5-2009.

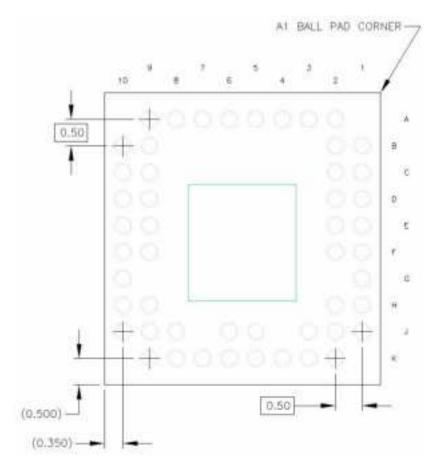


Figure 11.4. Physical layout of the A111 sensor, bottom view.

The bottom view shows 50 solder balls. The pitch of the BGA balls is 500 μ m, the ball diameter is 300 μ m ± 5 μ m and the collapsed ball height is 0.244 \pm 0.050 mm.

11.1 Moisture Sensitivity Level and Recommended Reflow Profile

Acconeer A111 sensor is a Moisture Sensitive Devices (MSD) in accordance to the IPC/JEDEC specification. The Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions required. A111 sensor is rated at MSL level 3.

Maximum number of reflow passes recommended for A111 is 2.

Soldering process qualified during qualification with "Preconditioning MSL 3: 30°C. 60%r.h., 192h, according to JEDEC JSTD20", and qualified for soldering heat resistance according to JEDEC J-STD-020.

11.2 RoHS and REACH Statement

Acconeer A111 sensor meet the requirements of Directive 2011/65/EC of the European Parliament and of the Council on the Restriction of Hazardous Substances (RoHS) and the requirements of the REACH regulation (EC 1907/2006) on Registration, Evaluation, Authorization and Restriction of Chemicals.

12 Abbreviations

ADC	Analog digital converter
AiP	Antenna in package
API	Application programming interface
BGA	Ball grid array
ВОМ	Bill of materials
CE	"Conformité Européene" (which literally means "European Conformity")
СРНА	Clock phase
CPOL	Clock polarity
EIRP	Equivalent isotropically radiated power
ESD	Electrostatic discharge
ETSI	European Telecommunications Standards Institute
FCC	Federal Communications Commission
fcCSP	Flip-chip chip-scale package
GND	Ground
HAL	Hardware abstraction layer
HPBW	Half power beamwidth
LDO	Low-dropout regulator
MCU	Microcontroller unit
MISO	Master input, slave output
MOSI	Master output, slave input
NC	No connect
PCR	Pulse coherent radar
PLL	Phase locked loop
PoR	Power on reset
RCS	Radar cross section
RF	Radio frequency
RX	Receiver
SPI	Serial peripheral interface
SS	Slave select
STD	Standard deviation
TCXO	Temperature compensated crystal oscillator
TX	Transceiver
XTAL	Crystal

Disclaimer

The information herein is believed to be correct as of the date issued. Acconeer AB ("**Acconeer**") will not be responsible for damages of any nature resulting from the use or reliance upon the information contained herein. Acconeer makes no warranties, expressed or implied, of merchantability or fitness for a particular purpose or course of performance or usage of trade. Therefore, it is the user's responsibility to thoroughly test the product in their particular application to determine its performance, efficacy and safety. Users should obtain the latest relevant information before placing orders.

Unless Acconeer has explicitly designated an individual Acconeer product as meeting the requirement of a particular industry standard, Acconeer is not responsible for any failure to meet such industry standard requirements.

Unless explicitly stated herein this document Acconeer has not performed any regulatory conformity test. It is the user's responsibility to assure that necessary regulatory conditions are met and approvals have been obtained when using the product. Regardless of whether the product has passed any conformity test, this document does not constitute any regulatory approval of the user's product or application using Acconeer's product.

Nothing contained herein is to be considered as permission or a recommendation to infringe any patent or any other intellectual property right. No license, express or implied, to any intellectual property right is granted by Acconeer herein.

Acconeer reserves the right to at any time correct, change, amend, enhance, modify, and improve this document and/or Acconeer products without notice.

This document supersedes and replaces all information supplied prior to the publication hereof.

© 2022 by Acconeer - All rights reserved

Acconeer AB Västra Varvsgatan 19 211 77 MALMÖ Sweden www.acconeer.com info@acconeer.com +46 10 218 92 00