

TEST REPORT

Product Name : Smart Watch

Brand Mark : N/A Model No. : 2051

2051A、2051B、2051C、2051D、2051E、

Extension Model : 2051F、2051G、2051H、2051I、2051J、

2051K

Report Number : BLA-EMC-202108-A6902

FCC ID : 2AB73-2051

Date of Sample Receipt : 2021/8/16

Date of Test : 2021/8/18 to 2021/8/26

Date of Issue : 2021/8/27

Test Standard: 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Prepared for:

Joint Chinese Ltd

Building 4 & 6, Huafeng Tech Park, Guangtian Road, Luotian Industrial Area, Songgang Town, Bao'an District, Shenzhen, China

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.
Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District,
Shenzhen, Guangdong Province, China

TEL: +86-755-23059481

Compiled by:

Approved by:

Review by:

Date:

Page 2 of61

REPORT REVISE RECORD

Version No.	on No. Date Description	
00	2021/8/26	Original

TABLE OF CONTENTS

1	TES	ST SUMMARY	5
2	GE	NERAL INFORMATION	6
3	GE	NERAL DESCRIPTION OF E.U.T	6
4	TES	ST ENVIRONMENT	7
5	TES	ST MODE	7
6		ASUREMENT UNCERTAINTY	
		SCRIPTION OF SUPPORT UNIT	
7			
8		BORATORY LOCATION	
9	TES	ST INSTRUMENTS LIST	9
10	СО	NDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	13
	10.1	LIMITS	13
	10.2	BLOCK DIAGRAM OF TEST SETUP	13
	10.3	PROCEDURE	13
	10.4	TEST DATA	15
11	СО	NDUCTED BAND EDGES MEASUREMENT	17
	11.1	LIMITS	17
	11.2	BLOCK DIAGRAM OF TEST SETUP	
	11.3	TEST DATA	18
12	2 PO	WER SPECTRUM DENSITY	19
	12.1	LIMITS	19
			19
	12.3	TEST DATA	19
13	з со	NDUCTED PEAK OUTPUT POWER	20
	13.1	LIMITS	20
	13.2	BLOCK DIAGRAM OF TEST SETUP	
	13.3	TEST Data	21
14	ı MIN	NIMUM 6DB BANDWIDTH	22
	14.1	LIMITS	
	14.1	BLOCK DIAGRAM OF TEST SETUP	
	14.3	TEST DATA	

15	ANT	ENNA REQUIREMENT	23
1	5.1	CONCLUSION	23
16	RAD	IATED SPURIOUS EMISSIONS	24
1	6.1	LIMITS	24
1	6.2	BLOCK DIAGRAM OF TEST SETUP	25
1	6.3	PROCEDURE	25
1	6.4	TEST DATA	27
17	RAD	IATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	35
1	7.1	LIMITS	35
1	7.2	BLOCK DIAGRAM OF TEST SETUP	36
1	7.3	PROCEDURE	36
1	7.4	TEST DATA	38
18	CON	DUCTED SPURIOUS EMISSIONS	42
1	8.1	LIMITS	42
1	8.2	BLOCK DIAGRAM OF TEST SETUP	42
1	8.3	TEST DATA	43
19	APP	ENDIX	44
1	9.1	Maximum Conducted Output Power	44
1	9.2	-6dB Bandwidth	46
1	9.3	Occupied Channel Bandwidth	48
1	9.4	MAXIMUM POWER SPECTRAL DENSITY LEVEL	50
1	9.5	BAND EDGE	52
1	9.6	CONDUCTED RF SPURIOUS EMISSION	55
APF	PENDI	X A: PHOTOGRAPHS OF TEST SETUP	59

APPENDIX B: PHOTOGRAPHS OF EUT......61

Page 5 of 61

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass

Page 6 of 61

2 GENERAL INFORMATION

Applicant	Joint Chinese Ltd
Address	Building 4 & 6, Huafeng Tech Park, Guangtian Road, Luotian Industrial Area, Songgang Town, Bao'an District, Shenzhen, China
Manufacturer	Joint Chinese Ltd
Address	Building 4 & 6, Huafeng Tech Park, Guangtian Road, Luotian Industrial Area, Songgang Town, Bao'an District, Shenzhen, China
Factory	Joint Chinese Ltd
Address	Building 4 & 6, Huafeng Tech Park, Guangtian Road, Luotian Industrial Area, Songgang Town, Bao'an District, Shenzhen, China
Product Name	Smart Watch
Test Model No.	2051

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	N/A
Software Version	N/A
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi

Page 7 of 61

4 TEST ENVIRONMENT

Environment	Temperature	Voltage	
Normal	25℃	DC3.7V	

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION		
TX	Keep the EUT in transmitting mode		
Transmitting mode	Keen ine Elli in continuousiv transmitting mode with modulation		
Remark: Full battery is used during all test except ac conducted emission, during the test, GFSK modulation were all pre-scanned only worse case is reported.			

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)		
Radiated Emission(9kHz-30MHz)	±4.34dB		
Radiated Emission(30Mz-1000MHz)	±4.24dB		
Radiated Emission(1GHz-18GHz)	±4.68dB		
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB		

Parameter	Expanded Uncertainty (Confidence of 95%)	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±1.5 dB	
Power Spectral Density, conducted	±3.0 dB	
Unwanted Emissions, conducted	±3.0 dB	
Temperature	±3 °C	
Supply voltages	±3 %	
Time	±5 %	
Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB	
Radiated Emission (1GHz ~ 18GHz)	±4.44 dB	

Page 8 of61

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
AC Adapter (UGREEN)	UGREEN	CD112	N/A	N/A

8 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co., Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province,

China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

No tests were sub-contracted.

Page 9 of61

9 TEST INSTRUMENTS LIST

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)						
Equipment Manufacturer Model S/N Cal.Date Cal.Due						
Shield room	SKET	833	N/A	2020/11/25	2023/11/24	
Receiver	R&S	ESPI3	101082	2020/10/12	2021/10/11	
LISN	R&S	ENV216	3560.6550.15	2020/10/12	2021/10/11	
LISN	AT	AT166-2	AKK1806000003	2020/10/12	2021/10/11	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	

Test Equipment Of Conducted Band Edges Measurement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of F	Test Equipment Of Power Spectrum Density					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11	
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11	
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11	

Test Equipment Of Conducted Peak Output Power					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Page 10 of61

Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

Test Equipment Of Minimum 6dB Bandwidth					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11
Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11

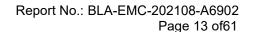
Test Equipment Of Antenna Requirement					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due

Test Equipment Of	Test Equipment Of Radiated Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber	SKET	966	N/A	2020/11/10	2023/11/9	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25	
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25	
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15	

Page 11 of61

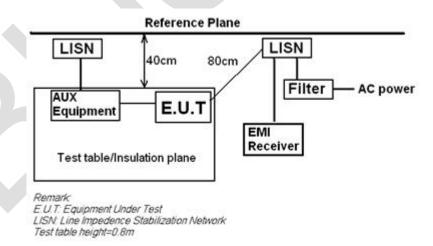
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A

Test Equipment Of	Test Equipment Of Radiated Emissions which fall in the restricted bands					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due	
Chamber	SKET	966	N/A	2020/11/10	2023/11/9	
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11	
Receiver	R&S	ESR7	101199	2020/10/12	2021/10/11	
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2020/9/26	2022/9/25	
Horn Antenna	Schwarzbeck	9120D	01892 P:00331	2020/9/26	2022/9/25	
Amplifier	SKET	PA-000318G-45	N/A	2020/10/16	2021/10/15	
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A	
Loop antenna	SCHNARZBECK	FMZB1519B	00102	2020/9/26	2022/9/25	
Controller	SKET	N/A	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A	
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A	


Test Equipment Of Conducted Spurious Emissions					
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Spectrum	R&S	FSP40	100817	2020/10/12	2021/10/11
Spectrum	Agilent	N9020A	MY49100060	2020/10/12	2021/10/11

Page 12 of61

Signal Generator	Agilent	N5182A	MY49060650	2020/10/12	2021/10/11
Signal Generator	Agilent	E8257D	MY44320250	2020/10/12	2021/10/11


10 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 6.2			
Test Mode (Pre-Scan)	Transmitting mode			
Test Mode (Final Test)	Transmitting mode			
Tester	Jozu			
Temperature	С			
Humidity	60%			

10.1 LIMITS

Frequency of	Conducted limit(dBµV)					
emission(MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
*Decreases with the logarithm of the frequency.						

10.2 BLOCK DIAGRAM OF TEST SETUP

10.3 PROCEDURE

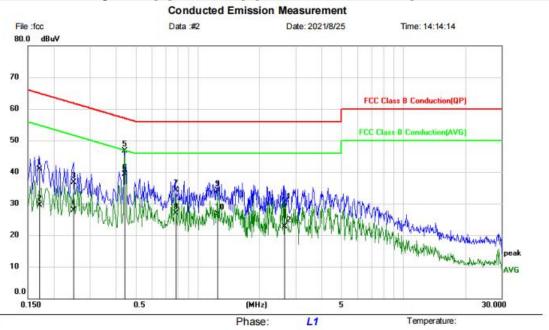
- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

Page 14 of61

3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,

4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.


Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Humidity:

10.4 TEST DATA

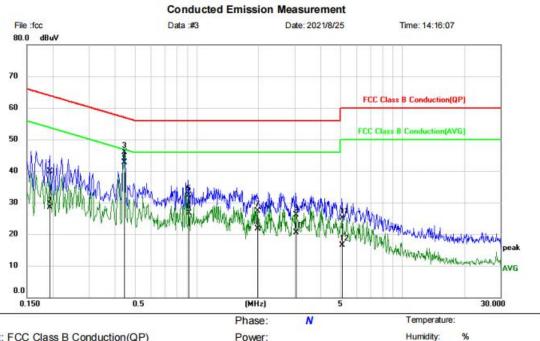
[TestMode: Transmitting mode]; [Line: Line] ;[Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Smart Watch M/N: 2051 Mode: BLE mode

Note:

Site


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1700	31.03	9.82	40.85	64.96	-24.11	QP	
2		0.1700	19.62	9.82	29.44	54.96	-25.52	AVG	
3		0.2500	26.93	9.84	36.77	61.76	-24.99	QP	
4		0.2500	18.03	9.84	27.87	51.76	-23.89	AVG	
5		0.4420	36.82	9.85	46.67	57.02	-10.35	QP	
6	*	0.4420	29.39	9.85	39.24	47.02	-7.78	AVG	
7		0.7820	24.45	9.89	34.34	56.00	-21.66	QP	
8		0.7820	17.11	9.89	27.00	46.00	-19.00	AVG	
9		1.2500	24.09	9.93	34.02	56.00	-21.98	QP	
10		1.2500	16.77	9.93	26.70	46.00	-19.30	AVG	
11		2.6420	20.21	9.96	30.17	56.00	-25.83	QP	
12		2.6420	12.65	9.96	22.61	46.00	-23.39	AVG	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: Transmitting mode]; [Line: Nutral] ;[Power:AC120V/60Hz]

Limit: FCC Class B Conduction(QP)

EUT: Smart Watch M/N: 2051

Mode: BLE mode

Note:

Site

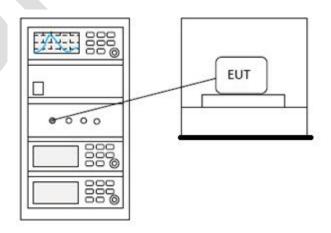
No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1940	30.20	9.75	39.95	63.86	-23.91	QP	
2		0.1940	18.79	9.75	28.54	53.86	-25.32	AVG	
3		0.4460	36.16	9.78	45.94	56.95	-11.01	QP	
4	*	0.4460	33.00	9.78	42.78	46.95	-4.17	AVG	
5		0.9140	22.55	9.83	32.38	56.00	-23.62	QP	
6		0.9140	16.79	9.83	26.62	46.00	-19.38	AVG	
7		1.9780	17.39	9.86	27.25	56.00	-28.75	QP	
8		1.9780	11.75	9.86	21.61	46.00	-24.39	AVG	
9		3.0340	16.24	9.90	26.14	56.00	-29.86	QP	
10		3.0340	10.67	9.90	20.57	46.00	-25.43	AVG	
11		5.0939	15.15	9.95	25.10	60.00	-34.90	QP	
12		5.0939	6.60	9.95	16.55	50.00	-33.45	AVG	

Power:

*:Maximum data x:Over limit !:over margin (Reference Only

Page 17 of 61

11 CONDUCTED BAND EDGES MEASUREMENT


Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Jozu		
Temperature	25℃		
Humidity	60%		

11.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

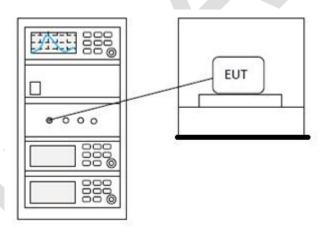
11.2 BLOCK DIAGRAM OF TEST SETUP

11.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

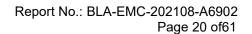
Page 18 of61

Page 19 of61


12 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 11.10.2			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Jozu			
Temperature	25℃			
Humidity	60%			

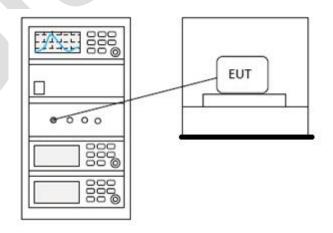
12.1 LIMITS


Limit: | ≤8dBm in any 3 kHz band during any time interval of continuous transmission

12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details


13 CONDUCTED PEAK OUTPUT POWER

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 7.8.5			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Jozu			
Temperature	25℃			
Humidity	60%			

13.1 LIMITS

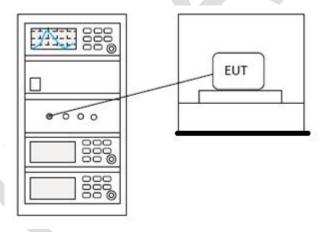
Frequency range(MHz)	Output power of the intentional radiator(watt)	
	1 for ≥50 hopping channels	
902-928	0.25 for 25≤ hopping channels <50	
	1 for digital modulation	
	1 for ≥75 non-overlapping hopping channels	
2400-2483.5	0.125 for all other frequency hopping systems	
	1 for digital modulation	
5505 5050	1 for frequency hopping systems and digital	
5725-5850	modulation	

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 22 of61


14 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247			
Test Method	ANSI C63.10 (2013) Section 11.8.1			
Test Mode (Pre-Scan)	TX			
Test Mode (Final Test)	TX			
Tester	Jozu			
Temperature	25℃			
Humidity	60%			

14.1 LIMITS

Limit:	≥500 kHz
L'illiet.	2500 KHZ

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

Page 23 of 61

15 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

15.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

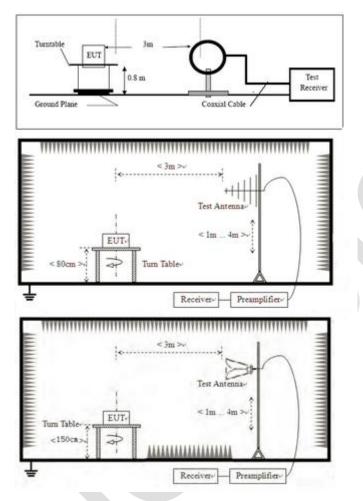
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0dBi.

Page 24 of61

16 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247		
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6		
Test Mode (Pre-Scan)	TX		
Test Mode (Final Test)	TX		
Tester	Jozu		
Temperature	25℃		
Humidity	60%		


16.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

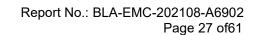
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

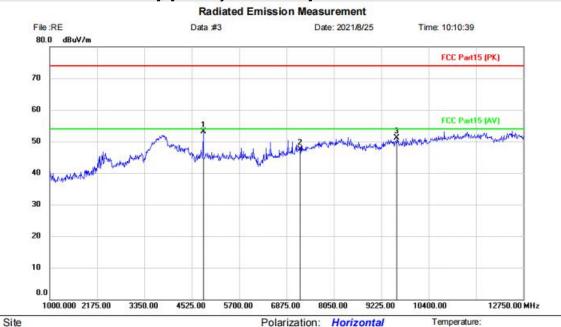
Page 26 of61


- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark:

- 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

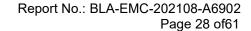
Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.
- 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

16.4 TEST DATA

[TestMode: TX low channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK) EUT: Smart Watch

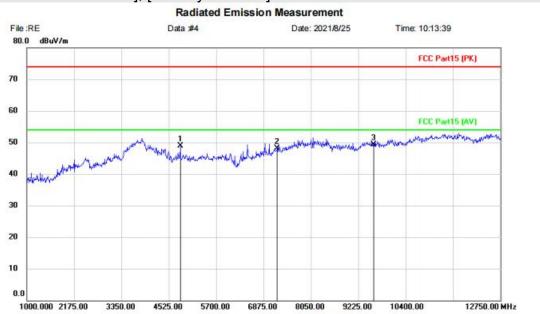

M/N: 2051 Mode: TX-L Note: Polarization: Horizontal Temperature:

Power: Humidity: 9

Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	4804.000	49.31	3.71	53.02	74.00	-20.98	peak			
2		7206.000	41.51	5.96	47.47	74.00	-26.53	peak			
3		9608.000	41.86	9.29	51.15	74.00	-22.85	peak	10		

*:Maximum data x:Over limit !:over margin (Reference Only



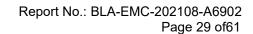
Temperature:

Humidity:

[TestMode: TX low channel]; [Polarity: Vertical]

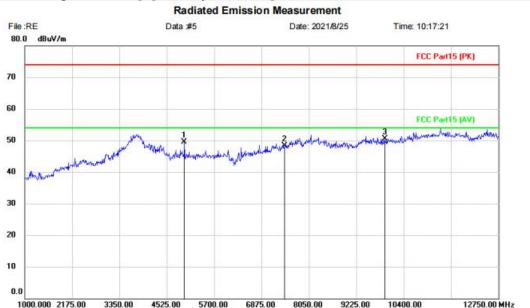
Site Limit: FCC Part15 (PK)

EUT: Smart Watch


M/N: 2051 Mode: TX-L Note: Polarization: Vertical

Power:

Distance:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4804.000	45.14	3.71	48.85	74.00	-25.15	peak			
2		7206.000	42.18	5.96	48.14	74.00	-25.86	peak			
3	*	9608.000	39.97	9.29	49.26	74.00	-24.74	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX high channel]; [Polarity: Vertical]

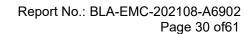
Site

Limit: FCC Part15 (PK)

EUT: Smart Watch M/N: 2051 Mode: TX-H

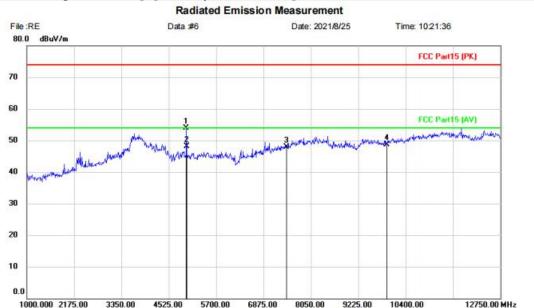
Note:

Polarization: Vertical


Power: Distance: Humidity: %

Temperature:

nur


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4959.750	45.80	3.75	49.55	74.00	-24.45	peak			
2		7440.000	41.36	6.86	48.22	74.00	-25.78	peak			
3	*	9920.000	40.28	10.16	50.44	74.00	-23.56	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX high channel]; [Polarity: Horizontal]

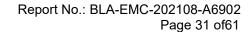
Site

Limit: FCC Part15 (PK)

EUT: Smart Watch M/N: 2051

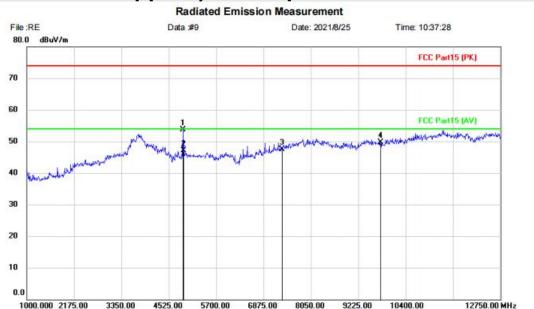
Mode: TX-H Note:

Polarization: Horizontal


Power:

Distance:

Temperature: Humidity:


Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
*	4959.750	50.12	3.75	53.87	74.00	-20.13	peak			
	4959.810	44.40	3.75	48.15	74.00	-25.85	peak	150	360	
	7440.000	40.95	6.86	47.81	74.00	-26.19	peak			
	9920.000	38.48	10.16	48.64	74.00	-25.36	peak			
		MHz * 4959.750 4959.810 7440.000	Mk. Freq. Level MHz dBuV * 4959.750 50.12 4959.810 44.40 7440.000 40.95	Mk. Freq. Level Factor MHz dBuV dB * 4959.750 50.12 3.75 4959.810 44.40 3.75 7440.000 40.95 6.86	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 4959.750 50.12 3.75 53.87 4959.810 44.40 3.75 48.15 7440.000 40.95 6.86 47.81	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 4959.750 50.12 3.75 53.87 74.00 4959.810 44.40 3.75 48.15 74.00 7440.000 40.95 6.86 47.81 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dB dBuV/m dB dB	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector * 4959.750 50.12 3.75 53.87 74.00 -20.13 peak 4959.810 44.40 3.75 48.15 74.00 -25.85 peak 7440.000 40.95 6.86 47.81 74.00 -26.19 peak	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm * 4959.750 50.12 3.75 53.87 74.00 -20.13 peak 4959.810 44.40 3.75 48.15 74.00 -25.85 peak 150 7440.000 40.95 6.86 47.81 74.00 -26.19 peak	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dBuV/m dB Detector cm degree * 4959.750 50.12 3.75 53.87 74.00 -20.13 peak 4959.810 44.40 3.75 48.15 74.00 -25.85 peak 150 360 7440.000 40.95 6.86 47.81 74.00 -26.19 peak

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX mid channel]; [Polarity: Horizontal]

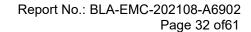
Site

Limit: FCC Part15 (PK)

EUT: Smart Watch

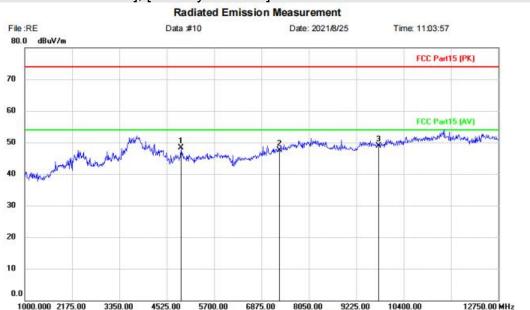
M/N: 2051 Mode: TX-M Note:

Polarization: Horizontal


Power:

Temperature: Humidity:

Distance:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	4877.500	50.37	3.37	53.74	74.00	-20.26	peak			
2		4883.640	43.77	3.34	47.11	74.00	-26.89	peak	150	0	
3		7326.000	41.00	6.44	47.44	74.00	-26.56	peak			
4		9768.000	40.11	9.63	49.74	74.00	-24.26	peak			

*: Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX mid channel]; [Polarity: Vertical]

Site

Limit: FCC Part15 (PK)

EUT: Smart Watch

M/N: 2051 Mode: TX-M Note: Polarization: Vertical

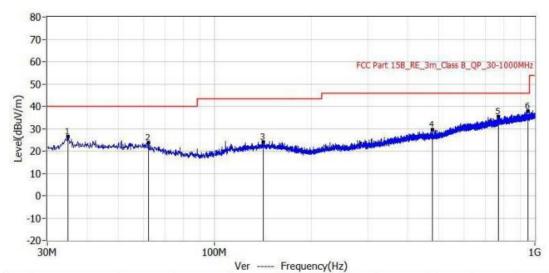
Power:

Humidity:

Temperature:

nidity: %

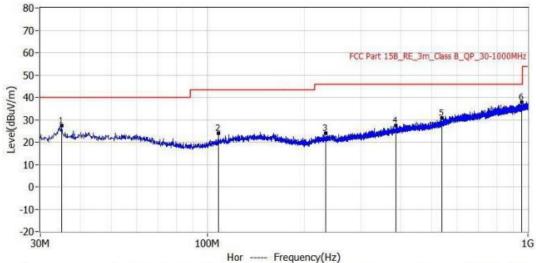
Distance:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4881.381	44.94	3.35	48.29	74.00	-25.71	peak			
2		7326.000	41.00	6.44	47.44	74.00	-26.56	peak			
3	*	9768.000	39.21	9.63	48.84	74.00	-25.16	peak			

*:Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX mode (SE) below 1G]; [Polarity: Vertical]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202108-A69	
EUT: Smart Watch	Test Engineer: Charlie	
M/N: 2051	Temperature:	
S/N:	Humidity:	
Test Mode: TX mode	Test Voltage:	
Note:	Test Data: 2021-08-25 14:10:06	



No.	Frequency	Limit dBuV/m	Level dBuV/m	Delta dB	Reading dBuV	Factor dB/m	Detector	Polar	Height cm	Angle deg
1*	34.729MHz	40.0	26.4	-13.6	2.9	23.5	QP	Ver	100.0	58.0
2*	62.010MHz	40.0	23.6	-16.4	0.5	23.1	QP	Ver	100.0	266.0
3*	141.429MHz	43.5	24.0	-19.5	0.3	23.7	QP	Ver	100.0	0.0
4*	478.140MHz	46.0	29.5	-16.5	1.3	28.2	QP	Ver	100.0	193.0
5*	768.776MHz	46.0	35.5	-10.5	2.0	33.5	QP	Ver	100.0	19.0
6*	952.713MHz	46.0	37.7	-8.3	2.1	35.6	QP	Ver	100.0	325.0

[TestMode: TX mode (SE) below 1G]; [Polarity: Horizontal]

Test Lab: BlueAsia EMC Lab (RE #1)	Project: BLA-EMC-202108-A69
EUT: Smart Watch	Test Engineer: Charlie
M/N: 2051	Temperature:
S/N:	Humidity:
Test Mode: TX mode	Test Voltage:
Note:	Test Data: 2021-08-25 14:12:04

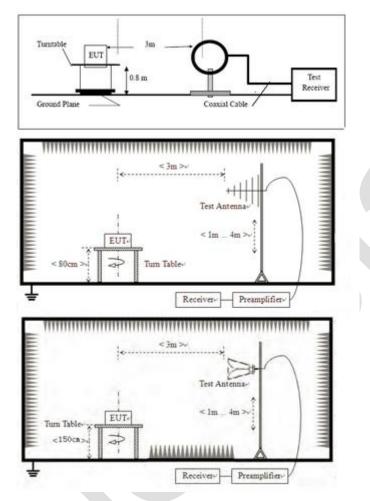
Limit Level Delta Reading Height Angle Factor No. Frequency Detector Polar dBuV/m dBuV/m dB dBuV dB/m cm deg 1* 34.971MHz 40.0 27.4 -12.6 3.8 23.6 QP Hor 100.0 20.0 107.964MHz 43.5 24.0 -19.5 2.5 21.5 QP Hor 100.0 104.0 -22.0 3* 24.0 22.5 234.185MHz 46.0 1.5 QP 100.0 286.0 Hor 386.596MHz 27.5 0.6 26.9 QP 4* 46.0 -18.5 100.0 0.0 Hor 539.371MHz 46.0 30.7 -15.3 1.2 29.5 QP Hor 100.0 158.0 954.895MHz 46.0 37.9 -8.1 2.3 35.6 QP Hor 100.0 272.0

Page 35 of 61

17 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.10.5					
Test Mode (Pre-Scan)	TX					
Test Mode (Final Test)	TX					
Tester	Jozu					
Temperature	25℃					
Humidity	60%					

17.1 LIMITS


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

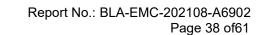
Page 36 of61

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 PROCEDURE

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

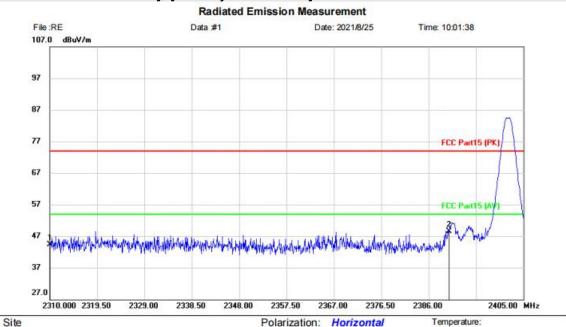
Page 37 of 61


h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

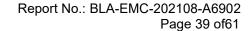
Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor


Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

17.4 TEST DATA

[TestMode: TX low channel]; [Polarity: Horizontal]

Limit: FCC Part15 (PK) EUT: Smart Watch

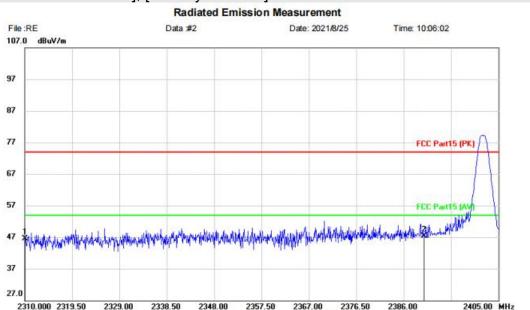

M/N: 2051 Mode: TX-L Note: Polarization: Horizontal Temperature:

Power: Humidity: 9

Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	48.93	-4.61	44.32	74.00	-29.68	peak			
2	*	2390.000	52.82	-4.27	48.55	74.00	-25.45	peak			

*:Maximum data x:Over limit !:over margin (Reference Only



Temperature:

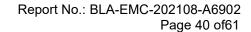
Humidity:

[TestMode: TX low channel]; [Polarity: Vertical]

Site

Limit: FCC Part15 (PK)

EUT: Smart Watch

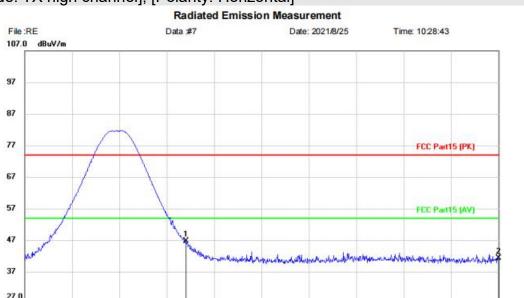

M/N: 2051 Mode: TX-L Note: Polarization: Vertical

Power:

Distance:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		2310.000	51.05	-4.61	46.44	74.00	-27.56	peak			
2	*	2390.000	51.54	-4.27	47.27	74.00	-26.73	peak			

*:Maximum data x:Over limit !:over margin (Reference Only



[TestMode: TX high channel]; [Polarity: Horizontal]

2480.00

2482.50

2485.00

Site

Limit: FCC Part15 (PK)

2475.000 2477.50

EUT: Smart Watch M/N: 2051

Note:

Polarization:	ı
---------------	---

2487.50

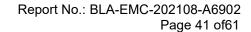
Power:

Distance:

2490.00 Horizontal

Temperature: Humidity:

2500.00 MHz


2495.00

2492.50

Mode: TX-H

No.	Mk.	Freq.	Reading Level	Correct	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2483.500	50.56	-3.84	46.72	74.00	-27.28	peak			
2		2500.000	45.16	-3.78	41.38	74.00	-32.62	peak			

*: Maximum data x:Over limit !:over margin (Reference Only

[TestMode: TX high channel]; [Polarity: Vertical]

Site

Limit: FCC Part15 (PK)

EUT: Smart Watch M/N: 2051

Mode: TX-H Note:

Polarization: Vertical

Temperature: Humidity: Power:

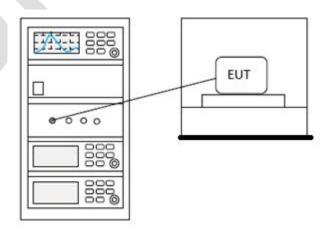
Distance:

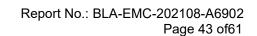
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	2483.500	53.20	-3.84	49.36	74.00	-24.64	peak			
2		2500.000	46.50	-3.78	42.72	74.00	-31.28	peak			

*: Maximum data x:Over limit !:over margin (Reference Only

Page 42 of61

18 CONDUCTED SPURIOUS EMISSIONS


Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX
Tester	Jozu
Temperature	25℃
Humidity	60%


18.1 LIMITS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

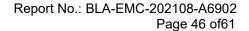
Page 44 of61

19 APPENDIX

19.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Duty	Total	Limit	Verdict
		(MHz)		Power (dBm)	Factor	Power	(dBm)	
					(dB)	(dBm)		
NVNT	BLE	2402	Ant1	-7.122	0	-7.122	30	Pass
NVNT	BLE	2442	Ant1	-6.57	0	-6.57	30	Pass
NVNT	BLE	2480	Ant1	-6.502	0	-6.502	30	Pass

Power NVNT BLE 2402MHz Ant1

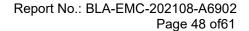

Power NVNT BLE 2442MHz Ant1

Power NVNT BLE 2480MHz Ant1

19.2 -6DB BANDWIDTH

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE	2402	Ant1	0.641	0.5	Pass
NVNT	BLE	2442	Ant1	0.645	0.5	Pass
NVNT	BLE	2480	Ant1	0.68	0.5	Pass

-6dB Bandwidth NVNT BLE 2402MHz Ant1

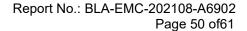

-6dB Bandwidth NVNT BLE 2442MHz Ant1

-6dB Bandwidth NVNT BLE 2480MHz Ant1

19.3 OCCUPIED CHANNEL BANDWIDTH

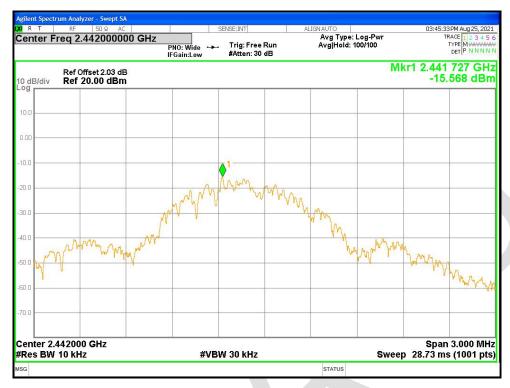
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE	2402	Ant1	1.118766282
NVNT	BLE	2442	Ant1	1.129095607
NVNT	BLE	2480	Ant1	1.184277974

OBW NVNT BLE 2402MHz Ant1


OBW NVNT BLE 2442MHz Ant1

OBW NVNT BLE 2480MHz Ant1

19.4 MAXIMUM POWER SPECTRAL DENSITY LEVEL


Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE	2402	Ant1	-16.16	8	Pass
NVNT	BLE	2442	Ant1	-15.568	8	Pass
NVNT	BLE	2480	Ant1	-16.067	8	Pass

PSD NVNT BLE 2402MHz Ant1

PSD NVNT BLE 2442MHz Ant1

PSD NVNT BLE 2480MHz Ant1

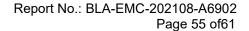
19.5 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-48.54	-30	Pass
NVNT	BLE	2480	Ant1	-48.67	-30	Pass

Band Edge NVNT BLE 2402MHz Ant1 Ref

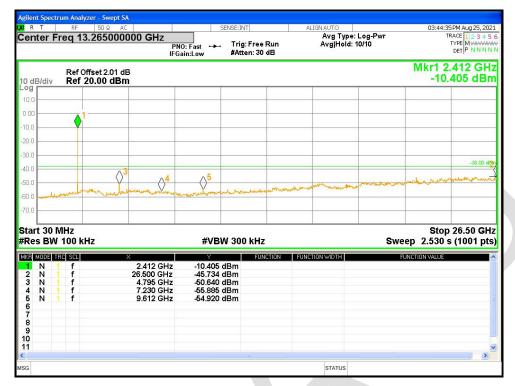
Band Edge NVNT BLE 2402MHz Ant1 Emission




Band Edge NVNT BLE 2480MHz Ant1 Ref

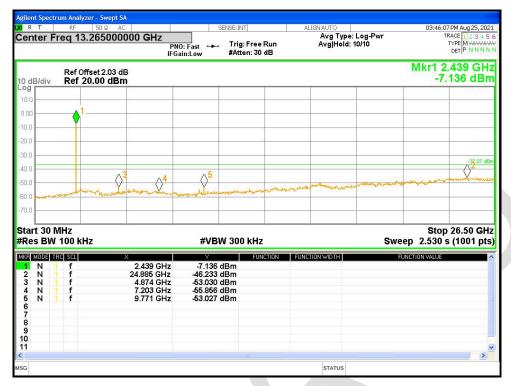
Band Edge NVNT BLE 2480MHz Ant1 Emission

19.6 CONDUCTED RF SPURIOUS EMISSION


Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE	2402	Ant1	-37.73	-30	Pass
NVNT	BLE	2442	Ant1	-39.16	-30	Pass
NVNT	BLE	2480	Ant1	-38.15	-30	Pass

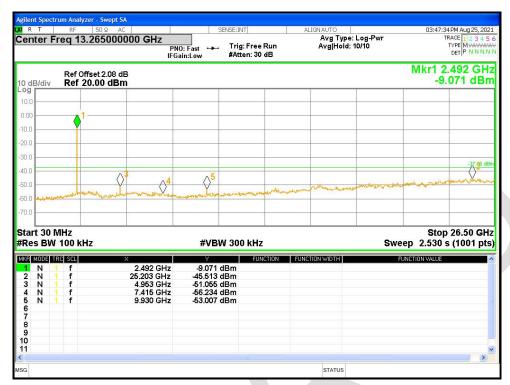
Tx. Spurious NVNT BLE 2402MHz Ant1 Ref

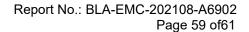
Tx. Spurious NVNT BLE 2402MHz Ant1 Emission



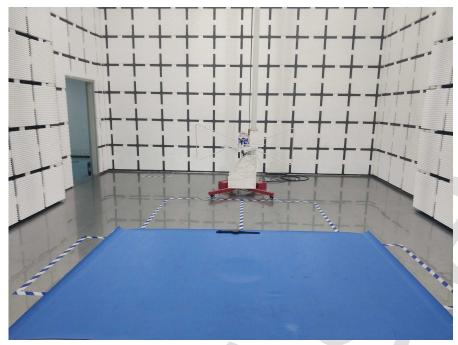
Tx. Spurious NVNT BLE 2442MHz Ant1 Ref

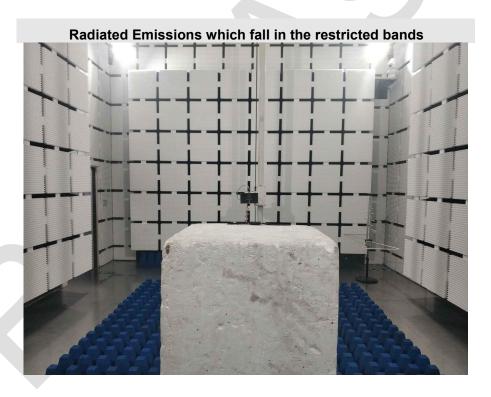
Tx. Spurious NVNT BLE 2442MHz Ant1 Emission




Tx. Spurious NVNT BLE 2480MHz Ant1 Ref

Tx. Spurious NVNT BLE 2480MHz Ant1 Emission




APPENDIX A: PHOTOGRAPHS OF TEST SETUP

Page 61 of61

APPENDIX B: PHOTOGRAPHS OF EUT

Reference to the test report No. BLA-EMC-202108-A6901

----END OF REPORT----

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of BlueAsia, this report can't be reproduced except in full.