

FCC-TEST REPORT

Report Number	:	68.910.17.020.01	Date of Issue:	September 13, 2017
Model	:	V300S, V300HLB, V300ZL V301BLL, V301ZLG, V301 V302ZLG, V302YLW, V302 HX-V3000LG, HX-V3000LV HX-V3010LL,HX-V3010LG	YLW, V301RLR, V3 PRLR, HX-V3000LB W, HX-V3000LR, HX	02HLB, V302BLL, , HX-V3000LL, (-V3010LB,
Product Type	<u>:</u>	Robotic Vacuum Cleaner		
Applicant	<u>:</u>	Shenzhen Hua Xin Informa	tion Technology Co.	, Ltd.
Address	<u>:</u>	Area B, 2nd Floor, Building	B, Youxinda Industr	ial Park,
		Gongming St, Guangming N	New District, 518132	? Shenzhen,
		PEOPLE'S REPUBLIC OF	CHINA	
Production Facility	<u>:</u>	Shenzhen Hua Xin Informa	tion Technology Co.	, Ltd.
Address	:	Area B, 2nd Floor, Building	B, Youxinda Industr	ial Park,
		Gongming St, Guangming,	518132 Shenzhen,	
		PEOPLE'S REPUBLIC OF	CHINA	
Test Result	:	■ Positive □ Negar	tive	
Total pages including Appendices	: _	58		

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	T	able of Contents	2
2		Details about the Test Laboratory	
3		Description of the Equipment under Test	
4	S	Summary of Test Standards	5
5	S	Summary of Test Results	6
6	G	General Remarks	7
7	Т	est Setups	8
8	S	Systems test configuration	9
9	T	echnical Requirement	10
ę	9.1	Conducted peak output power	10
Ś	9.2	6dB and 99% bandwidth	12
Ś	9.3	Power spectral density	19
Ś	9.4	Spurious RF conducted emissions	27
(9.5	Band edge	40
(9.6	Spurious radiated emissions for transmitter	
10		Test Equipment List	54
11		System Measurement Uncertainty	55
12		General product information	56

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

514049

Number:

Telephone: 86 755 8828 6998

Fax: 86 755 8828 5299

3 Description of the Equipment under Test

Description of the Equipment Under Test

Product: Robotic Vacuum Cleaner

Model no.: V300S, HX-V3000LB

FCC ID: 2AMYQ-20170822500

Options and accessories: NIL

Rated Input: 100-240VAC, 50/60Hz (for Adapter); 19VDC (for Cleaner)

RF Transmission

Frequency:

2412-2462MHz

No. of Operated Channel: 11

Modulation: CCK, DQPSK, DBPSK for 802.11b

QPSK,BPSK for 802.11g/n

Duty Cycle: 100%

Antenna Type: Integral Antenna

Antenna Gain: 2dBi

Description of the EUT: Tested with external approved adaptor GSCU0600S019V12E:

Input: 100-240V AC, 50/60Hz, 0.5A Max,

Output: 19V DC, 0.6A;

Or adaptor YLS0241A-T190100:

Input: 100-240V AC, 50/60Hz, 0.8A Max,

Output: 19V DC, 1.0A

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart C PART 15 - RADIO FREQUENCY DEVICES			
10-1-2016 Edition	Subpart C - Intentional Radiators		

All the test methods were according to KDB558074 D01 v04 DTS Measurement Guidance and ANSI C63.10 (2013).

5 Summary of Test Results

	Technical Require	ments		
FCC Part 15 Sub	part C			
Test Condition		Pages	Test Result	Test Site
§15.207	Conducted emission AC power port		N/A	
§15.247(b)(1)	Conducted peak output power	13	Pass	Site 1
§15.247(e)	Power spectral density*	20	Pass	Site 1
§15.247(a)(2)	6dB bandwidth	14	Pass	Site 1
§15.247(a)(1)	20dB bandwidth and 99% Occupied Bandwidth	14	Pass	Site 1
§15.247(a)(1)	Carrier frequency separation		N/A	
§15.247(a)(1)(iii)	Number of hopping frequencies		N/A	
§15.247(a)(1)(iii)	Dwell Time		N/A	
§15.247(d)	Spurious RF conducted emissions	26	Pass	Site 1
§15.247(d)	Band edge	32	Pass	Site 1
§15.247(d) & §15.209 &	Spurious radiated emissions for transmitter and receiver	36	Pass	Site 1
§15.203	Antenna requirement	See note 1	Pass	

Remark 1: N/A - Not Applicable.

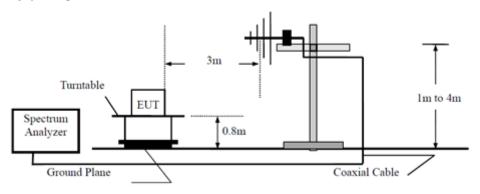
Note 1: The EUT uses a permanently integral antenna, which gain is 2dBi. According to §15.203, it is considered sufficiently to comply with the provisions of this section.

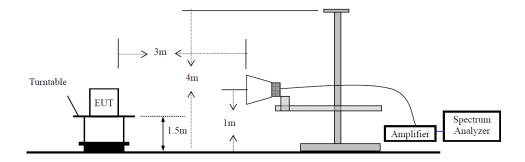
6 General Remarks

Remarks

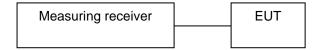
This submittal(s) (test report) is intended for FCC ID: 2AMYQ--20170822500, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

All modes have same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction except color of appearance and the V300S, V300HLB, V300ZLG, V300YLW, V300RLR, V301HLB, V301BLL, V301ZLG, V301YLW, V301RLR, V302HLB, V302BLL, V302ZLG, V302YLW, V302RLR have Hand Vacuum Cleaner but the other models without Hand Vacuum Cleaner. So the EMC full tests were applied on V300S and HX-V3000LB, other models were deemed to fulfil the EMC requirement without the further test.


•		
SUMMARY:		
All tests according to the regula	tions cited on page 5 wer	re
■ - Performed		
□ - Not Performed		
The Equipment under Test		
■ - Fulfills the general approva	I requirements.	
☐ - Does not fulfill the general	approval requirements.	
Sample Received Date:	July 27, 2017	
Testing Start Date:	July 28, 2017	
Testing End Date:	August 28, 2017	
- TÜV SÜD Certification and Te	sting (China) Co., Ltd. Sh	nenzhen Branch -
Reviewed by:	Prepar	red by:
Lauxety		Dani. She
Laurent Yuan EMC Project Mana	ager	Dawi Xu EMC Project Engineer


7 Test Setups

7.1 Radiated test setups


Below 1GHz

Above 1GHz

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)

Test software: RF test tool

The system was configured to channel 1, 6 and 11 for the test.

9 Technical Requirement

9.1

9.1 Conducted peak output power

Test Method

- 1. Connect the power meter to the EUT
 - a) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
 - b) At all times the EUT is transmitting at its maximum power control level.
 - c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

Limits

According to §15.247 (b) (1), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Test result as below table

802.11b

	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Top channel 2412MHz	14.53	Pass
Middle channel 2437MHz	14.88	Pass
Bottom channel 2462MHz	14.36	Pass

802.11g

	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Top channel 2412MHz	14.06	Pass
Middle channel 2437MHz	13.79	Pass
Bottom channel 2462MHz	13.07	Pass

802.11nHT20

Frequency	Conducted Peak Output Power	Result
MHz	dBm	
Top channel 2412MHz	13.98	Pass
Middle channel 2437MHz	13.75	Pass
Bottom channel 2462MHz	13.79	Pass

802.11nHT40

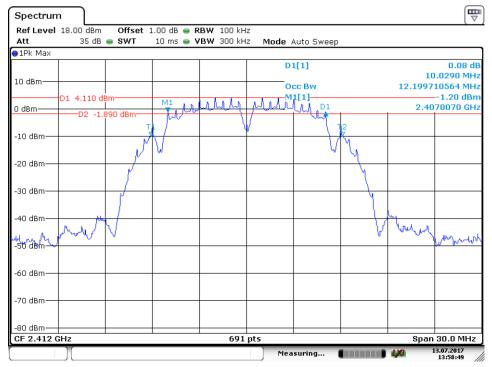
	Conducted Peak	
Frequency	Output Power	Result
MHz	dBm	
Top channel 2412MHz	12.91	Pass
Middle channel 2437MHz	13.09	Pass
Bottom channel 2462MHz	13.00	Pass

9.2 6dB and 99% bandwidth

Test Method

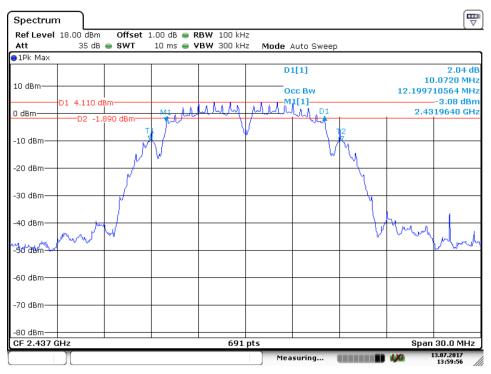
- Use the following spectrum analyzer settings:
 RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.

Limit [kHz]

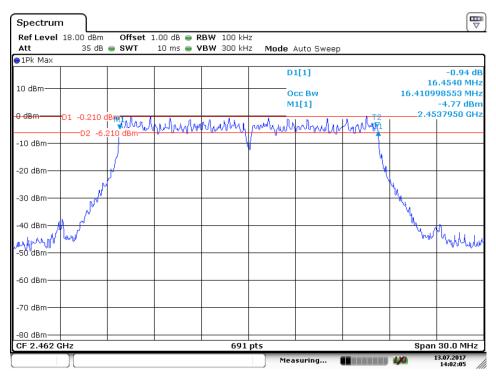

3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit

_			
	≥500		
Test result			
802.11b			
Frequency MHz	6dB bandwidth KHz	99 bandwidth KHz	Result
Bottom channel 2412MHz Middle channel 2437MHz	10029 10072	12200 12200	Pass Pass
Top channel 2462MHz	10072	121563	Pass
802.11g			
Frequency MHz	6dB bandwidth KHz	99 bandwidth KHz	Result
Bottom channel 2412MHz	16454	16411	Pass
Middle channel 2437MHz	16411	16454	Pass
Top channel 2462MHz	16454	16411	Pass
802.11nHT20			
Frequency	6dB bandwidth	99 bandwidth	Result
MHz	KHz	KHz	Result
Bottom channel 2412MHz	17670	17583	Pass
Middle channel 2437MHz	17627	17583	Pass
Top channel 2462MHz	17670	17583	Pass
802.11nHT40			
Frequency	6dB bandwidth	99 bandwidth	Decult
MHz	KHz	KHz	Result
Bottom channel 2412MHz	36382	36121	Pass
Middle channel 2437MHz	36382	36121	Pass
Top channel 2462MHz	36360	36121	Pass

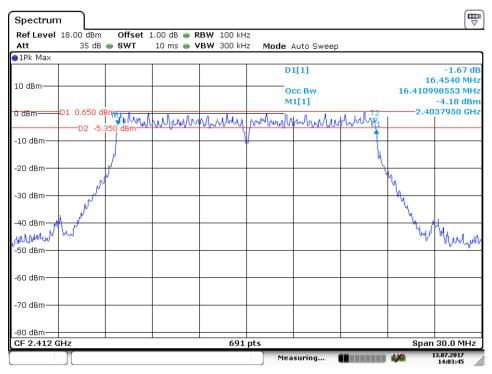


802.11b

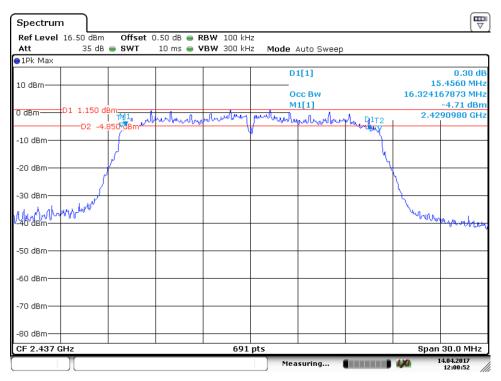

Date: 13.JUL.2017 13:58:50

2412MHz

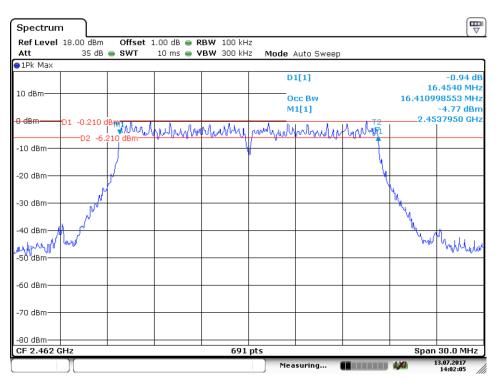
Date: 13.JUL.2017 13:59:56



Date: 13.JUL.2017 14:02:05


2462MHz

802.11g

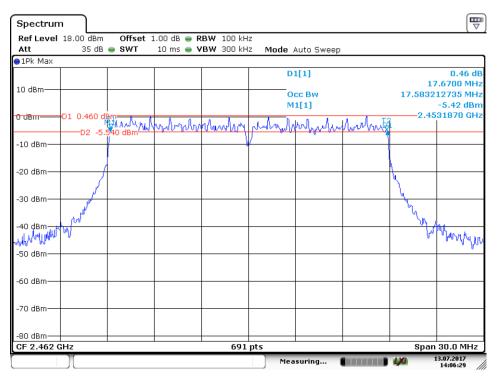

Date: 13.JUL.2017 14:03:45

Date: 14.APR.2017 12:00:53


2437MHz

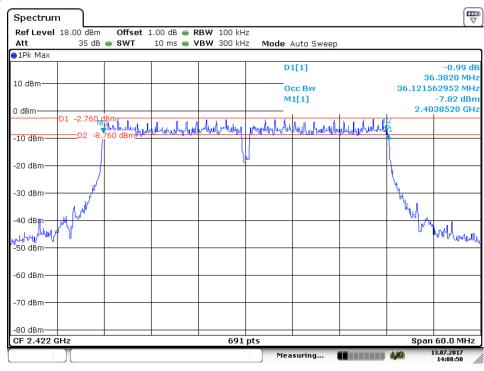
Date: 13.JUL.2017 14:02:05

802.11nHT20


Date: 13.JUL.2017 14:04:34

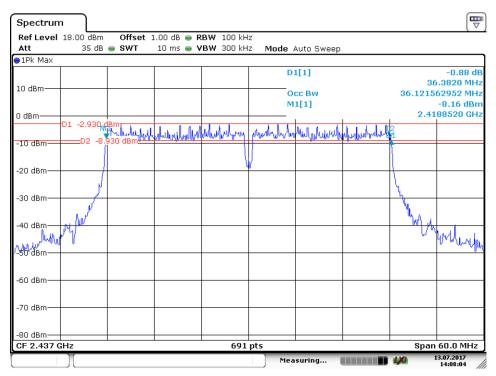
2412MHz

Date: 13.JUL.2017 14:05:23

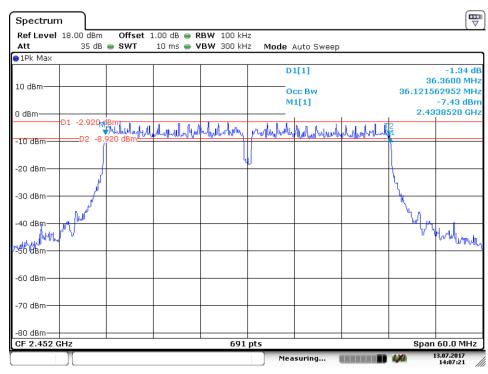


Date: 13.JUL.2017 14:06:28

2462MHz


802.11nHT40

Date: 13.JUL.2017 14:08:50


2412MHz

Date: 13.JUL.2017 14:08:04

2437MHz

Date: 13.JUL.2017 14:07:21

9.3 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Limit [dBm]	
≤8	_

Test result

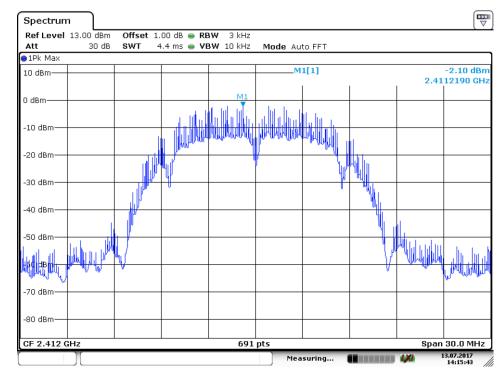
802.11b

Power spectral			
Frequency	density	Result	
MHz	dBm		
Top channel 2412MHz	-2.10	Pass	
Middle channel 2437MHz	-1.80	Pass	
Bottom channel 2462MHz	-1.79	Pass	

802.11g

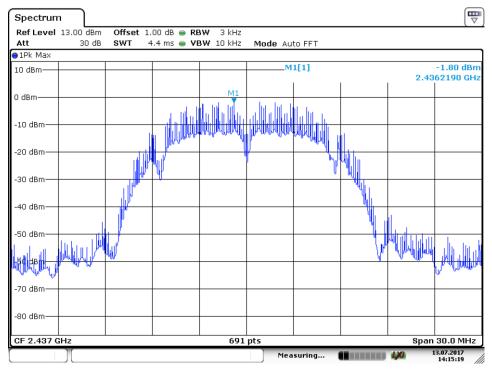
Power spectral		
Frequency	density	Result
MHz	dBm	
Top channel 2412MHz	-14.78	Pass
Middle channel 2437MHz	-15.69	Pass
Bottom channel 2462MHz	-14.54	Pass

802.11nHT20

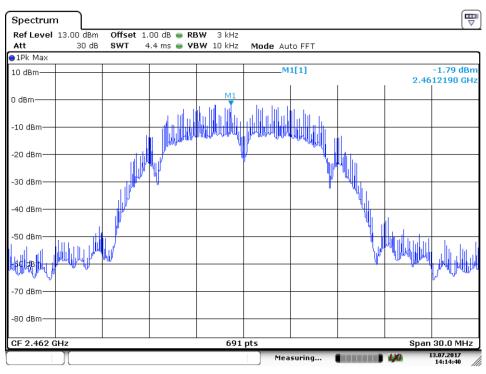

Power spectral			
Frequency	density	Result	
MHz	dBm		
Top channel 2412MHz	-14.95	Pass	
Middle channel 2437MHz	-14.86	Pass	
Bottom channel 2462MHz	-15.39	Pass	

802.11nHT40

Power spectral		
Frequency	density	Result
MHz	dBm	
Top channel 2412MHz	-18.85	Pass
Middle channel 2437MHz	-19.44	Pass
Bottom channel 2462MHz	-19.63	Pass

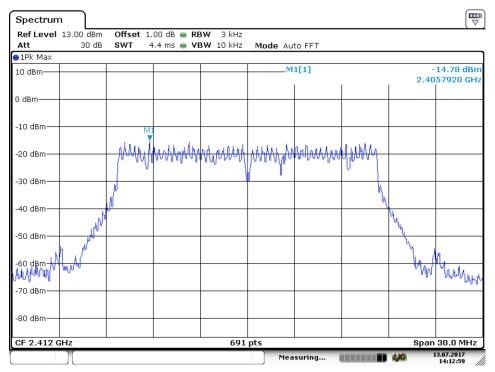

802.11b

Date: 13.JUL.2017 14:15:43


2412MHz

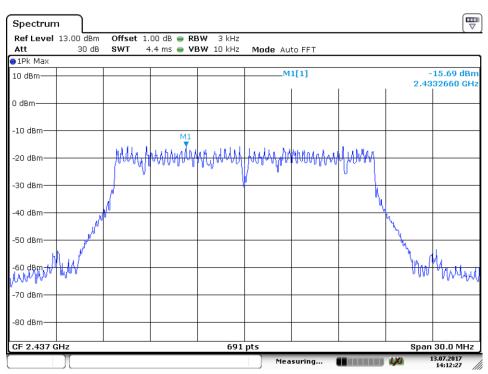
Date: 13.JUL.2017 14:15:19

2437MHz



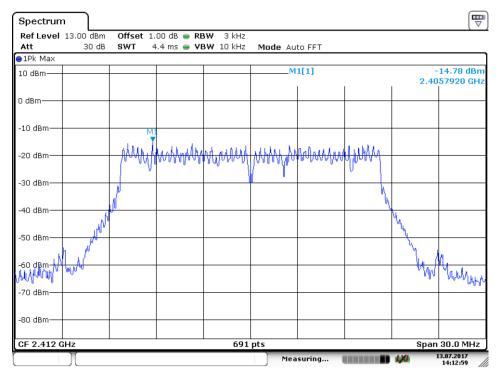
Date: 13.JUL.2017 14:14:40

2462MHz



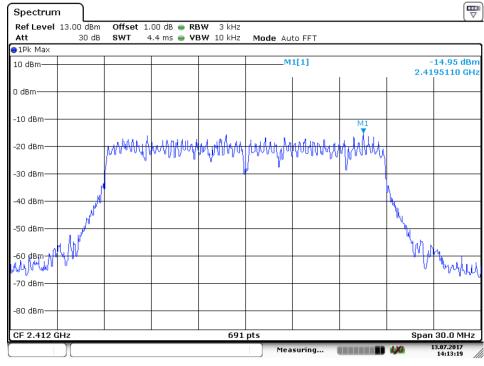
802.11g

Date: 13.JUL.2017 14:12:59


2412MHz

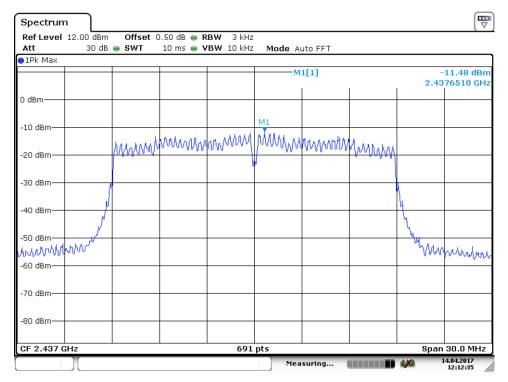
Date: 13.JUL.2017 14:12:27

2437MHz

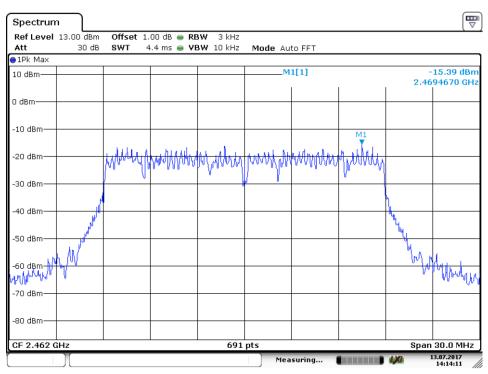


Date: 13.JUL.2017 14:12:59

2462MHz

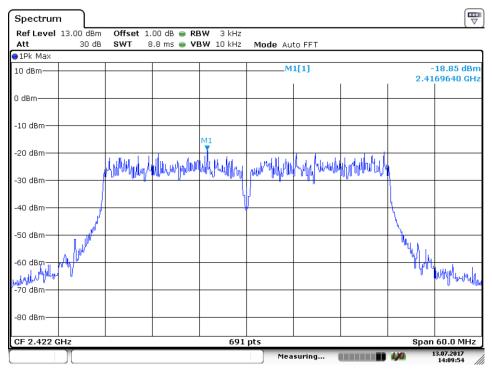

802.11nHT20

Date: 13.JUL.2017 14:13:20


2412MHz

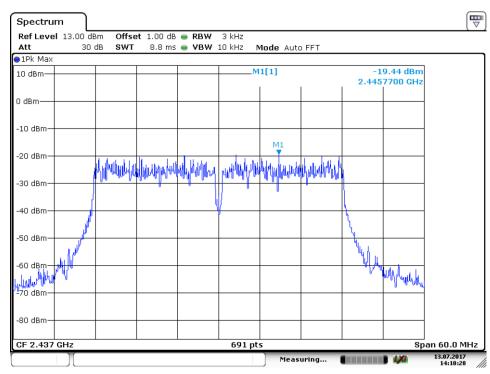
Date: 14.APR.2017 12:12:35

2437MHz

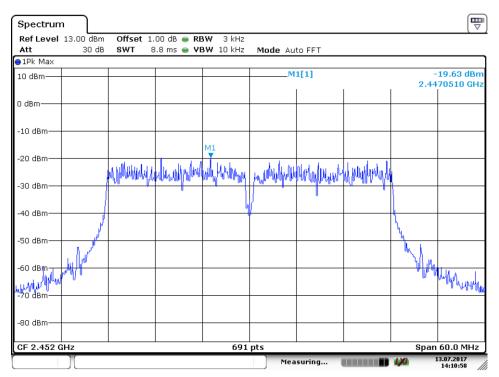


Date: 13.JUL.2017 14:14:12

2462MHz



802.11nHT40


Date: 13.JUL.2017 14:09:55

2412MHz

Date: 13.JUL.2017 14:10:28

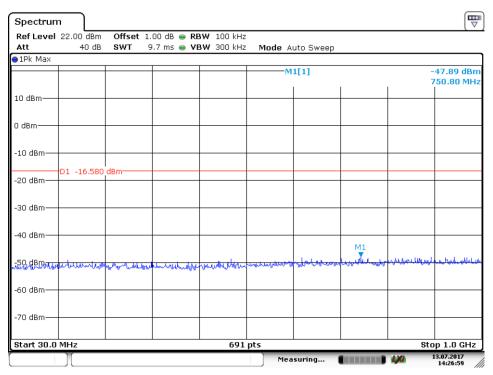
Date: 13.JUL.2017 14:10:59

2462MHz

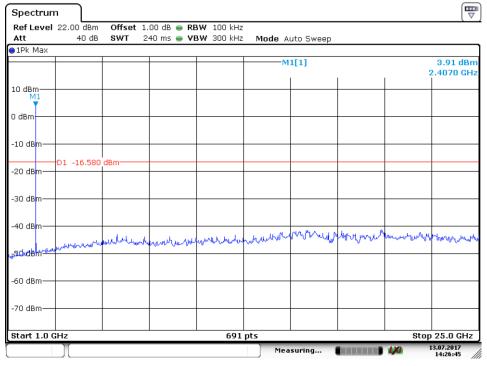
9.4 Spurious RF conducted emissions

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

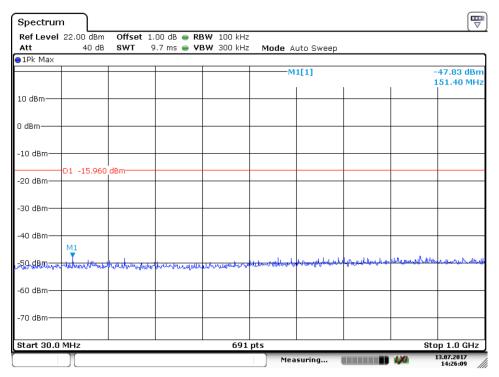

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

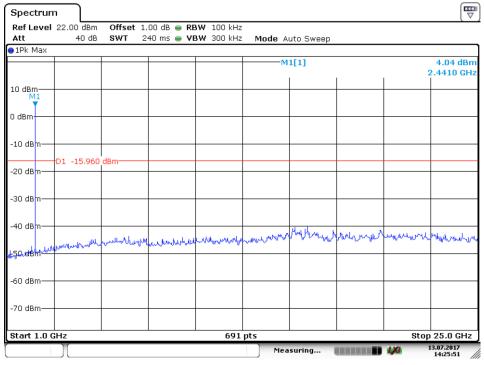


Spurious RF conducted emissions

802.11b

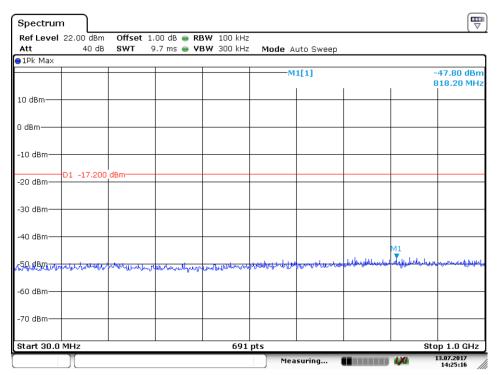


Date: 13.JUL.2017 14:26:59

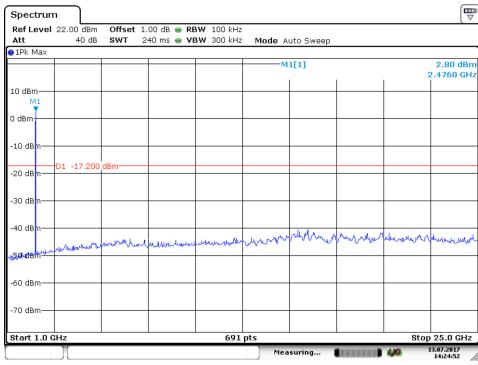


Date: 13.JUL.2017 14:26:45

Date: 13.JUL.2017 14:26:09

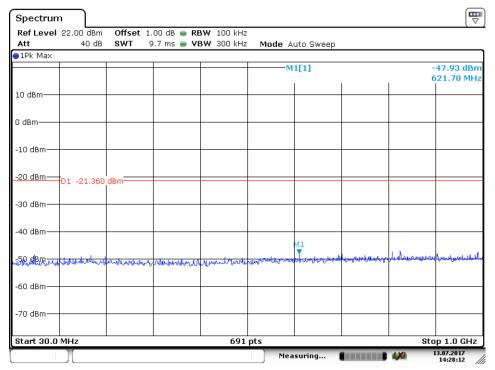


Date: 13.JUL.2017 14:25:51

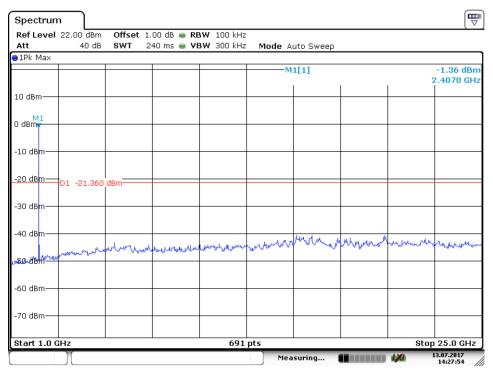

2437MHz

Spurious RF conducted emissions

Date: 13.JUL.2017 14:25:16

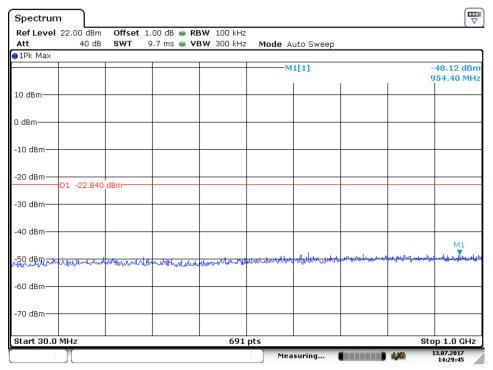


Date: 13.JUL.2017 14:24:52

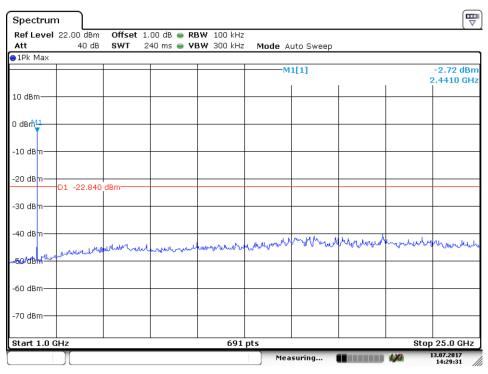

2462MHz

802.11g

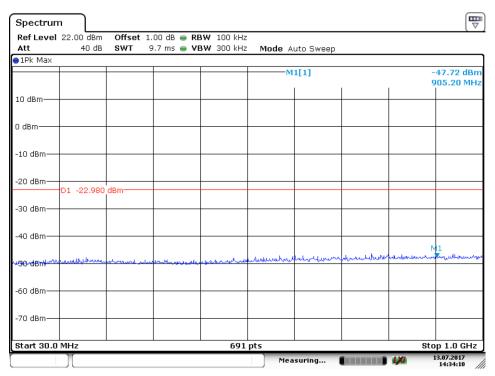
Date: 13.JUL.2017 14:28:11

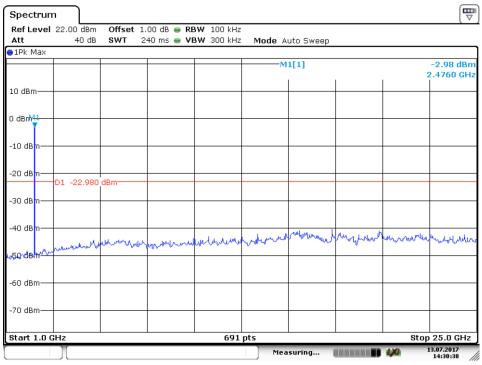


Date: 13.JUL.2017 14:27:55


2412MHz

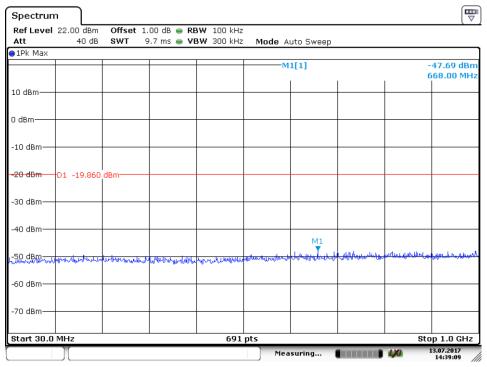
Spurious RF conducted emissions


Date: 13.JUL.2017 14:29:44

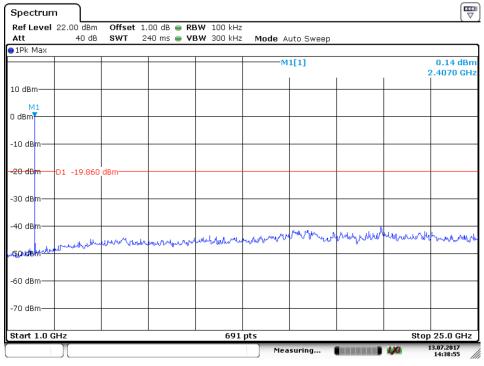

Date: 13.JUL.2017 14:29:31

2437MHz

Date: 13.JUL.2017 14:34:10

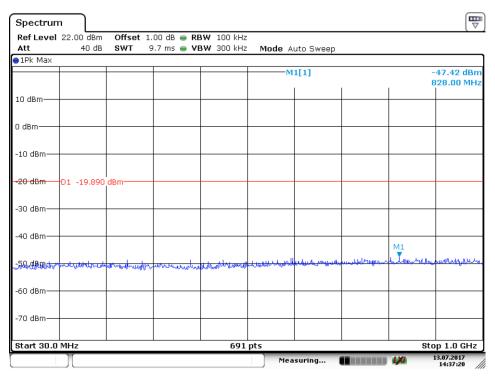

Date: 13.JUL.2017 14:30:37

2462MHz

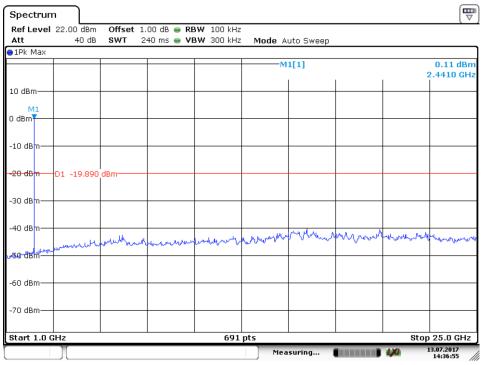


Spurious RF conducted emissions

802.11nHT20

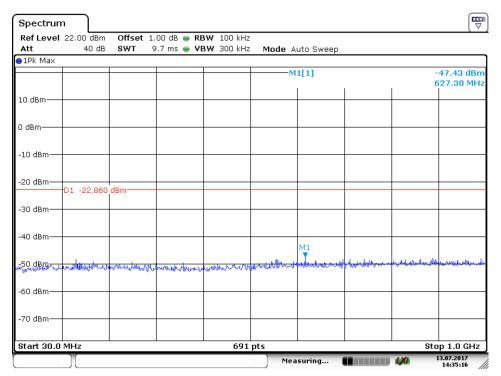


Date: 13.JUL.2017 14:39:09

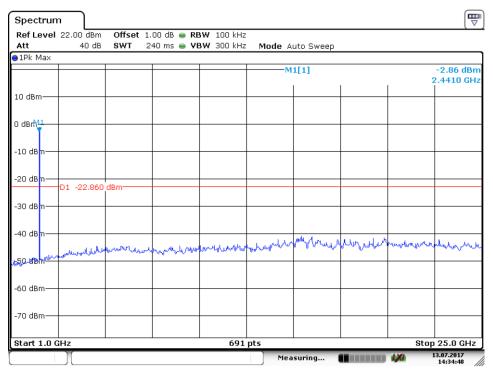


Date: 13.JUL.2017 14:38:56

Date: 13.JUL.2017 14:37:20

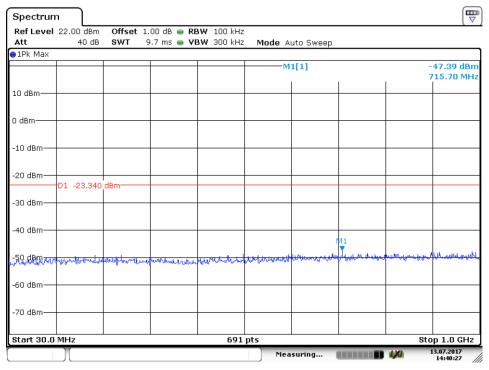


Date: 13.JUL.2017 14:36:55

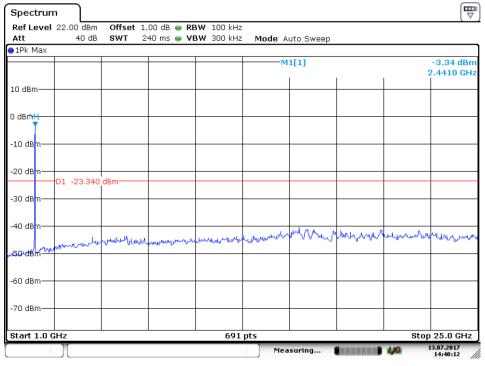

2437MHz

Spurious RF conducted emissions

Date: 13.JUL.2017 14:35:16

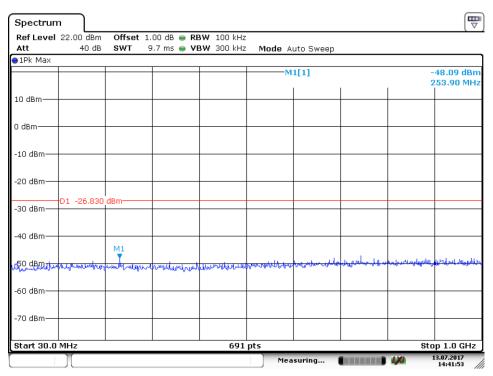

Date: 13.JUL.2017 14:34:49

2462MHz

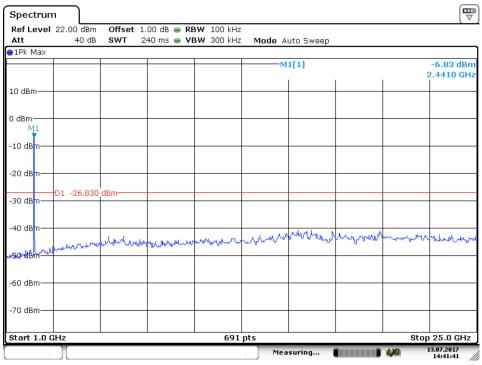


Spurious RF conducted emissions

802.11nHT40



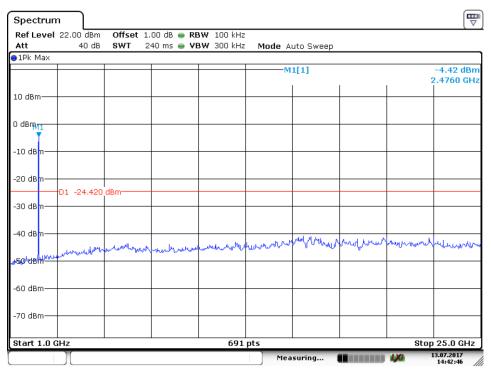
Date: 13.JUL.2017 14:40:27



Date: 13.JUL.2017 14:40:12

Date: 13.JUL.2017 14:41:53

Date: 13.JUL.2017 14:41:41


2437MHz

Spurious RF conducted emissions

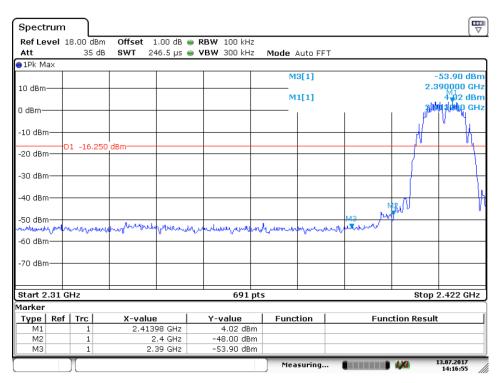
Date: 13.JUL.2017 14:43:02

Date: 13.JUL.2017 14:42:45

2462MHz

9.5 Band edge

Test Method

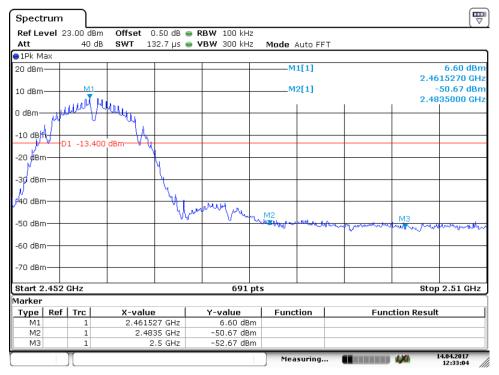

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

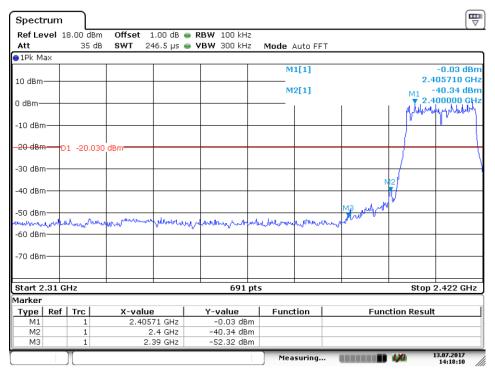
Test result

802.11b



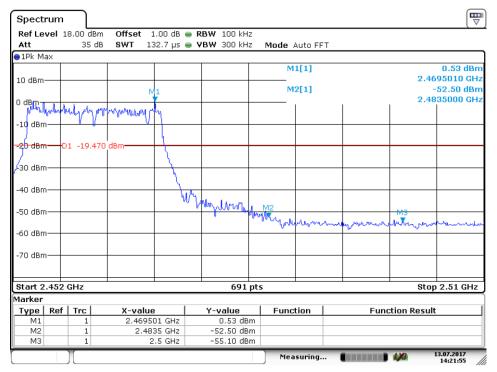
Date: 13.JUL.2017 14:16:56

2412MHz

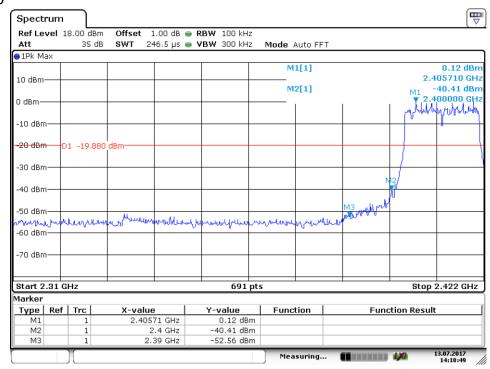

Band edge

Date: 14.APR.2017 12:33:04

2462MHz

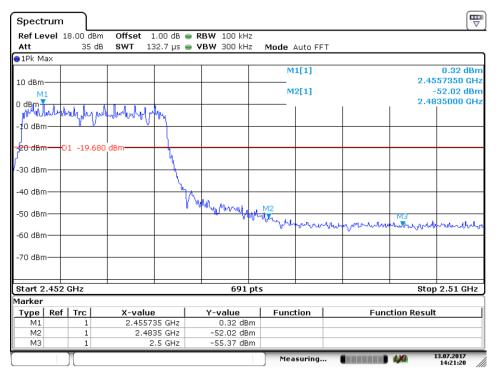

802.11g

Date: 13.JUL.2017 14:18:11

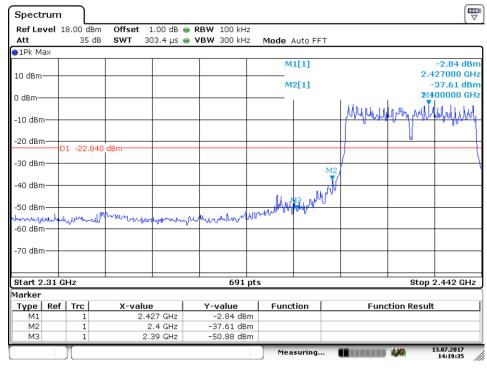

Band edge

Date: 13.JUL.2017 14:21:56

2462MHz

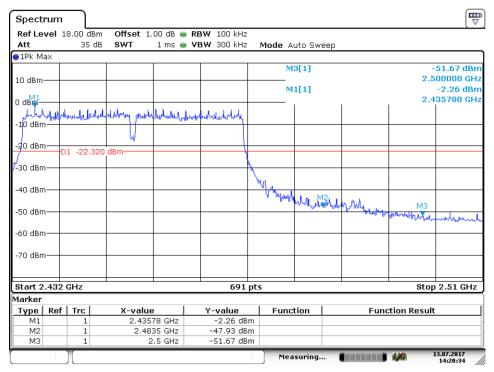

802.11nHT20

Date: 13.JUL.2017 14:18:49


Band edge

Date: 13.JUL.2017 14:21:20

2462MHz


802.11nHT40

Date: 13.JUL.2017 14:19:36

Band edge

Date: 13.JUL.2017 14:20:34

2462MHz

9.6 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Above 1GHz

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW ≥ RBW for peak measurement and VBW = 10Hz for average measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz, VBW ≥ RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Note:

- 1: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 KHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for peak detection (PK) at frequency above 1GHz.
- 3: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average ((duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (20log(1/duty cycle)).
- 4: The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBµV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

802.11b 2412MHz (30MHz – 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)		
MHz	dBuV/m		dBµV/m					
144.02	36.86	Horizontal	43.50	QP	Pass	-32.5		
31.15	34.85	Vertical	40.00	QP	Pass	-26.5		

2412MHz (Above 1GHz)

	-,					
Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dΒμV/m			
3215.62 *	44.46	Horizontal	74.00	PK	Pass	-4.1
11788.12 *	42.83	Vertical	74.00	PK	Pass	11.3

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2437MHz (30MHz - 1GHz)

Frequency	Emission Level	Polarization	Detector	Result	
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2437MHz (Above 1GHz)

•	Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
	MHz	dBuV/m		dBμV/m			
	3249.37 *	42.24	Horizontal	74.00	PK	Pass	-4.1
	8162.81 *	40.48	Vertical	74.00	PK	Pass	11.3

Remark:

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2462MHz (30MHz - 1GHz)

F	requency	Emission Level	Polarization	Limit	Detector	Result
	MHz	dBuV/m		dBμV/m		
			Horizontal		QP	Pass
			Vertical		QP	Pass

2462MHz (Above 1GHz)

Frequency	Émission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dΒμV/m			
3282,65 *	39.94	Horizontal	74.00	PK	Pass	-3.7
8006.25*	39.74	Vertical	74.00	PK	Pass	7.3

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

802.11g

2412MHz (30MHz - 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2412MHz (Above 1GHz)

•	Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
	MHz	dBuV/m		dBμV/m			
	11797.03 *	42.19	Horizontal	74.00	PK	Pass	11.4
	15046.40*	47.62	Vertical	74.00	PK	Pass	18.3

Remark:

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2437MHz (30MHz - 1GHz)

Frequency	y Emission Polariza		Limit	Detector	Result
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2437MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dBμV/m			
3249.37 *	34.10	Horizontal	74.00	PK	Pass	-3.7
7494.37*	38.99	Vertical	74.00	PK	Pass	6.8

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2462MHz (30MHz – 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2462MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dΒμV/m			
3283.65*	40.59	Horizontal	74.00	PK	Pass	-3.2
15066.56*	47.63	Vertical	74.00	PK	Pass	18.2

Remark:

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

802.11nHT20

2412MHz (30MHz - 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2412MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dBμV/m			
14985.93 *	46.30	Horizontal	74.00	PK	Pass	-4.1
3215.62*	38.00	Vertical	74.00	PK	Pass	18.3

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2437MHz (30MHz – 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dΒμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2437MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dBμV/m			
16255.78*	48.16	Horizontal	74.00	PK	Pass	19.2
15106.40*	47.08	Vertical	74.00	PK	Pass	18.0

Remark:

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2462MHz (30MHz - 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2462MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dBμV/m			
14989.68*	45.42	Horizontal	74.00	PK	Pass	18.3
15049.21*	46.86	Vertical	74.00	PK	Pass	18.3

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

802.11nHT40 2412MHz (30MHz – 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2412MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dBμV/m			
14976.09 *	46.83	Horizontal	74.00	PK	Pass	18.3
15001.87*	47.33	Vertical	74.00	PK	Pass	18.3

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2437MHz (30MHz – 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result
MHz	dBuV/m		dΒμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2437MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dBμV/m			
15014.53*	46.23	Horizontal	74.00	PK	Pass	18.3
14994.37*	45.09	Vertical	74.00	PK	Pass	18.3

Remark:

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

2462MHz (30MHz - 1GHz)

Frequency	Emission Level	Polarization Limit		Detector	Result
MHz	dBuV/m		dBμV/m		
		Horizontal		QP	Pass
		Vertical		QP	Pass

2462MHz (Above 1GHz)

Frequency	Emission Level	Polarization	Limit	Detector	Result	Corr. (dB)
MHz	dBuV/m		dBμV/m			
14598.28*	46.54	Horizontal	74.00	PK	Pass	18.3
11349.84*	41.11	Vertical	74.00	PK	Pass	10.5

- (1) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (2) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15 205
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
- (4) Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

10 Test Equipment List

List of Test Instruments

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2018-7-7
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-7
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-7
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-7
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2018-7-7
3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2018-7-7
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2018-7-7
Horn Antenna	Rohde & Schwarz	HF907	102294	2018-7-14
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2018-7-14
LISN	Rohde & Schwarz	ENV4200	100249	2018-7-14
LISN	Rohde & Schwarz	ENV216	100326	2018-7-14
ISN	Rohde & Schwarz	ENY81	100177	2018-7-14
ISN	Rohde & Schwarz	ENY81-CA6	101664	2018-7-14
High Voltage Probe	Rohde & Schwarz	TK9420(VT94 20)	9420-58	2018-7-14
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2018-7-14

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- Power spectral density*
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty

Cystem weasarement oncertainty				
System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Radiated Spurious Emission 25MHz-3000MHz	Horizontal: 4.98dB; Vertical: 5.06dB;			
Uncertainty for Radiated Spurious Emission 3000MHz-18000MHz	Horizontal: 4.95dB; Vertical: 4.94dB;			
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 5.14dB; Vertical: 5.12dB;			
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 2.06dB Frequency test involved: 1.16×10 ⁻⁷			

12 General product information

This product for indoor use only. Model list

Model No.	Power Supply	Hand Vacuum Cleaner
V300S, V300HLB, V300ZLG, V300YLW, V300RLR, V301HLB, V301BLL, V301ZLG, V301YLW, V301RLR, V302HLB, V302BLL, V302ZLG, V302YLW, V302RLR	YLS0241A-T190100	With
HX-V3000LB, HX-V3000LL, HX-V3000LG, HX- V3000LW, HX-V3000LR, HX-V3010LB, HX- V3010LL,HX-V3010LG,HX-V3010LW,HX-V3010LR	GSCU0600S019V12E	Without

All modes have same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction except color of appearance and the V300S, V300HLB, V300ZLG, V300YLW, V300RLR, V301HLB, V301BLL, V301ZLG, V301YLW, V301RLR, V302HLB, V302BLL, V302ZLG, V302YLW, V302RLR have Hand Vacumm Cleaner but the other models without Hand Vacumm Cleaner.