FCC SAR Test Report **APPLICANT** : VERTU Corporation Limited **EQUIPMENT** : GSM Quad-band / UMTS Quad-band / CDMA Single-band/WIFI/BT mobile phone **BRAND NAME** : VERTU **MODEL NAME** : SIGNATURE S **TYPE** : VM-06 **FCC ID** : P7QVM-06 STANDARD : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** **IEEE 1528-2013** We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full. Prepared by: Mark Qu / Manager Mark Qu Approved by: Jones Tsai / Manager **Report No. : FA660304** SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 1 of 57 ## SPORTON LAB. FCC SAR Test Report ## **Table of Contents** Report No.: FA660304 Issued Date : Dec. 01, 2016 Form version. : 160427 | 1. Statement of Compliance | 4 | |---|------------------| | 2. Administration Data | | | 3. Guidance Applied | 5 | | 4. Equipment Under Test (EUT) Information | | | 4.1 General Information | 6 | | 5. RF Exposure Limits | 7 | | 5.1 Uncontrolled Environment | | | 5.2 Controlled Environment | 7 | | 6. Specific Absorption Rate (SAR) | | | 6.1 Introduction | | | 6.2 SAR Definition | | | 7. System Description and Setup | | | 7.1 E-Field Probe | 10 | | 7.2 Data Acquisition Electronics (DAE) | | | 7.3 Phantom | | | 7.4 Device Holder | | | 8. Measurement Procedures | | | 8.1 Spatial Peak SAR Evaluation | | | 8.2 Power Reference Measurement | | | 8.3 Area Scan | | | 8.4 Zoom Scan | | | 8.5 Volume Scan Procedures | | | 8.6 Power Drift Monitoring | | | 10. System Verification | | | 10.1 Tissue Simulating Liquids | | | 10.2 Tissue Verification | / | | 10.3 System Performance Check Results | | | 11. RF Exposure Positions | وا
۵ ۰ | | 11.1 Ear and handset reference point | | | 11.2 Definition of the cheek position | | | 11.3 Definition of the tilt position | | | 11.4 Body Worn Accessory | | | 11.5 Wireless Router | | | 12. Conducted RF Output Power (Unit: dBm) | 24 | | 13. Antenna Location | | | 14. SAR Test Results | | | 14.1 Head SAR | | | 14.2 Hotspot SAR | | | 14.3 Body Worn Accessory SAR | 44 | | 14.4 Repeated SAR Measurement | | | 15. Simultaneous Transmission Analysis | 48 | | 15.1 Head Exposure Conditions | | | 15.2 Hotspot Exposure Conditions | 50 | | 15.3 Body-Worn Accessory Exposure Conditions | | | 15.4 SPLSR Evaluation and Analysis | | | 16. Uncertainty Assessment | | | 17. References | 57 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Annendix D. Test Setup Photos | | ## **Revision History** Report No.: FA660304 | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA660304 | Rev. 01 | Initial issue of report | Dec. 01, 2016 | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 3 of 57 ### 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **VERTU Corporation** Limited, GSM Quad-band / UMTS Quad-band / CDMA Single-band/WIFI/BT mobile phone, SIGNATURE S are as follows. Report No.: FA660304 | | | | Highest 1g SAR Summary | | I limbook | | |--------------------|----------------|--------------|-----------------------------|-----------------------------------|--------------------------------|--| | Equipment
Class | | | Head
(Separation
0mm) | Body-worn
(Separation
10mm) | Hotspot
(Separation
5mm) | Highest
Simultaneous
Transmission
1g SAR (W/kg) | | | | | 1g SAR (W/kg) | | ig SAIT (VV/Kg) | | | | GSM | GSM850 | 0.41 | 0.82 | 1.11 | | | | GSIVI | GSM1900 | 1.00 | 1.19 | 1.15 | | | Licensed | Licensed WCDMA | Band V | 0.50 | 0.80 | 1.13 | 1.46 | | | | Band II | 1.09 | 1.19 | 0.98 | | | | CDMA | CDMA2000 BC0 | 0.66 | 0.92 | 0.95 | | | DTS | WLAN | 2.4GHz WLAN | 0.22 | 0.30 | 0.90 | 1.46 | | DSS | 2.4GHz Band | Bluetooth | | <0.10 | | 1.20 | | Date of Testing: | | | 2016/09/11 - | 2016/09/29 | | | **Note:** The SAR value list above are all rounded to two decimal digits. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications. ### 2. Administration Data | Testing Laboratory | | | |--------------------|---|--| | Test Site | SPORTON INTERNATIONAL (KUNSHAN) INC. | | | Test Site Location | No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P. R. China
TEL: +86-0512-5790-0158
FAX: +86-0512-5790-0958 | | Report No.: FA660304 | Applicant Applicant | | | |---------------------|--|--| | Company Name | VERTU Corporation Limited | | | Address | Beacon Hill Road, Church Crookham, Hampshire GU52 8DY, United Kingdom. | | | Manufacturer | | | |--------------|--|--| | Company Name | VERTU Corporation Limited | | | Address | Beacon Hill Road, Church Crookham, Hampshire GU52 8DY, United Kingdom. | | ### 3. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 941225 D01 3G SAR Procedures v03r01 - FCC KDB 941225 D06 Hotspot Mode SAR v02r01 ### 4. Equipment Under Test (EUT) Information ### 4.1 General Information | | Product Feature & Specification | |--|--| | Equipment Name | GSM Quad-band / UMTS Quad-band /CDMA Single-band/WIFI/BT mobile phone | | Brand Name | VERTU | | Model Name | SIGNATURE S | | Туре | VM-06 | | FCC ID | P7QVM-06 | | IMEI Code | 004402550074524 | | Wireless Technology and
Frequency Range | WCDMA Band V: 826.4 MHz ~ 846.6 MHz
CDMA2000 BC0: 824.7 MHz ~ 848.31 MHz
WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz
Bluetooth: 2402 MHz ~ 2480 MHz | | Mode | GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA HSPA+ (16QAM uplink is not supported) CDMA2000 : 1xRTT/1xEv-Do(Rev.0)/1xEv-Do(Rev.A) 802.11b/g/n HT20 Bluetooth v3.0+EDR, Bluetooth v4.1 LE | | HW Version | LOT0 | | SW Version | 5.1.1_0.500.0.100 | | GSM / (E)GPRS Transfer mode | Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network. | | EUT Stage | Identical Prototype | | Remark: | | Report No.: FA660304 - 1. 802.11n-HT40 is not supported in 2.4GHz WLAN. - 2. This device supports VoIP in GPRS, EGPRS, CDMA and WCDMA (e.g. for 3rd-party VoIP). - 3. This device 2.4GHz WLAN supports Hotspot operation. - 4. This device supports GRPS/EGPRS mode up to multi-slot class33. - 5. The EUT do not support DTM function. - 6. Power reduction which is triggered by hotspot mode is implemented in GSM1900, WCDMA Band II, CDMA2000 BC0. - 7. There are two types of EUT sample 1 and sample 2, the differences between two samples are only for Gain and shape of 2.4GHz Antenna and the material of shell parts, sample 1 with cortical shell and sample 2 with ceramic shell. Based on the differences between them, we chose sample 1 full test and sample 2 only verified the worst case of Sample 1 for WWAN bands. Sample 2 full SAR test for WLAN and Bluetooth. TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 6 of 57 ### 5. RF Exposure Limits ### 5.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA660304 ### 5.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are
aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. ### 6. Specific Absorption Rate (SAR) ### 6.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA660304 ### 6.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. ### 7. System Description and Setup The DASY system used for performing compliance tests consists of the following items: Report No.: FA660304 - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP or Win7 and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ### 7.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core | | |---------------|--|-----| | | Built-in shielding against static charges | | | | PEEK enclosure material (resistant to organic | | | | solvents, e.g., DGBE) | | | Frequency | 10 MHz – >6 GHz | | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | | Directivity | ± 0.3 dB in TSL (rotation around probe axis) | | | | ±0.5 dB in TSL (rotation normal to probe axis) | | | Dynamic Range | 10 μW/g – >100 mW/g | | | | Linearity: ±0.2 dB (noise: typically <1 μW/g) | | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | | Tip diameter: 2.5 mm (body: 12 mm) | - 4 | | | Typical distance from probe tip to dipole centers: 1 | | | | mm | | **Report No. : FA660304** ### 7.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.1 Photo of DAE TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 10 of 57 ### 7.3 Phantom #### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm; | | |-------------------|---|----------| | | Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: | | | | adjustable feet | S | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | | | | 1 1 " | | | | | | | | | | | | | Report No.: FA660304 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | 1==::::::a::::::::::::::::::::::::::::: | | | |---|--|--| | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. ### 7.4 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA660304 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones ### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops Page 12 of 57 FCC ID: P7QVM-06 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 ### 8. Measurement Procedures The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA660304 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR
results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ### 8.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g FCC ID : P7QVM-06 Page 13 of 57 Form version. : 160427 ### 8.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA660304 ### 8.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|---| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test | on, is smaller than the above,
must be ≤ the corresponding
device with at least one | #### 8.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA660304 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | \leq 3 GHz | > 3 GHz | | |--|---|---|--|---|--| | Maximum zoom scan s | spatial reso | olution: Δx_{Zoom} , Δy_{Zoom} | \leq 2 GHz: \leq 8 mm
2 - 3 GHz: \leq 5 mm* | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$
$4 - 5 \text{ GHz}$: $\leq 3 \text{ mm}$
$5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$ | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | graded | Δz _{Zoom} (1): between
1 st two points closest
to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | grid $\Delta z_{Zoom}(n>1)$: between subsequent points | | $\leq 1.5 \cdot \Delta z$ | Z _{Zoom} (n-1) | | | Minimum zoom scan
volume x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. ### 8.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 8.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 FCC ID : P7QVM-06 Page 15 of 57 Form version. : 160427 ^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ### 9. Test Equipment List | Manufacturer | Name of Environment | Tyree/Madel | Serial | Calib | ration | |--------------|---------------------------------|---------------|------------|------------|------------| | Manufacturer | Name of Equipment | Type/Model | Number | Last Cal. | Due Date | | SPEAG | 835MHz System Validation Kit | D835V2 | 4d091 | 2015/11/24 | 2016/11/23 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d118 | 2015/11/23 | 2016/11/22 | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 840 | 2015/11/25 | 2016/11/24 | | SPEAG | Data Acquisition Electronics | DAE4 | 1210 | 2016/5/18 | 2017/5/17 | | SPEAG | Data Acquisition Electronics | DAE4 | 1279 | 2016/4/4 | 2017/4/3 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3857 | 2016/5/25 | 2017/5/24 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3954 | 2015/11/27 | 2016/11/26 | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1477 | NCR | NCR | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1479 | NCR | NCR | | SPEAG | SAM Twin Phantom | QD 000 P40 CB | TP-1644 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Anritsu | Radio communication analyzer | MT8820C | 6201563814 | 2016/3/21 | 2017/3/20 | | Agilent | Wireless Communication Test Set | E5515C | MY52102706 | 2016/4/22 | 2017/4/21 | | Agilent | ENA Series Network Analyzer | E5071C | MY46111157 | 2016/4/22 | 2017/4/21 | | SPEAG | DAK Kit | DAK3.5 | 1144 | 2015/11/24 | 2016/11/23 | | R&S | Signal Generator | SMBV100A | 258305 | 2016/1/20 | 2017/1/19 | | Anritsu | Power Senor | MA2411B | 0917070 | 2016/1/20 | 2017/1/19 | | Anritsu | Power Meter | ML2495A | 1005002 | 2016/1/20 | 2017/1/19 | | Anritsu | Power Senor | MA2411B | 1339163 | 2016/1/20 | 2017/1/19 | | Anritsu | Power Meter | ML2495A | 1435004 | 2016/1/20 | 2017/1/19 | | R&S | CBT BLUETOOTH TESTER | CBT | 101137 | 2016/8/9 | 2017/8/8 | | R&S | Spectrum Analyzer | FSV7 | 101631 | 2016/8/8 |
2017/8/7 | | ARRA | Power Divider | A3200-2 | N/A | No | te1 | | AR | Amplifier | 5S1G4 | 333096 | No | te1 | | MCL | Attenuation1 | BW-S10W5+ | N/A | No | te1 | | MCL | Attenuation2 | BW-S10W5+ | N/A | Note1 | | | MCL | Attenuation3 | BW-S10W5+ | N/A | Note1 | | | Agilent | Dual Directional Coupler | 778D | 50422 | Note1 | | | PASTERNACK | Dual Directional Coupler | PE2214-10 | N/A | No | te1 | Report No.: FA660304 ### **General Note:** TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 16 of 57 Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. ### 10. System Verification ### 10.1 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.2. **Report No. : FA660304** Fig 10.2 Photo of Liquid Height for Body SAR TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 FCC ID: P7QVM-06 Form version.: 160427 Page 17 of 57 ### 10.2 Tissue Verification The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation. | Frequency
(MHz) | Water
(%) | Sugar
(%) | Cellulose
(%) | Salt
(%) | Preventol
(%) | DGBE
(%) | Conductivity
(σ) | Permittivity
(εr) | | | |--------------------|--------------|--------------|------------------|-------------|------------------|-------------|---------------------|----------------------|--|--| | | For Head | | | | | | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | | | 1800, 1900, 2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | | | | | | For Body | | | | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | | | 1800, 1900, 2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | #### <Tissue Dielectric Parameter Check Results> | <u> </u> | Dicicoti | | annotor once | nt ricourtos | | | | | | | |--------------------|----------------|------------------------|---------------------|-----------------------------------|----------------------------|--|---------------------|-----------------------------------|--------------|-----------| | Frequency
(MHz) | Tissue
Type | Liquid
Temp.
(℃) | Conductivity
(σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta
(σ)
(%) | Delta
(ε _r)
(%) | Limit
(%) | Date | | 835 | Head | 22.6 | 0.902 | 42.135 | 0.90 | 41.50 | 0.22 | 1.53 | ±5 | 2016.9.11 | | 1900 | Head | 22.7 | 1.423 | 39.219 | 1.40 | 40.00 | 1.64 | -1.95 | ±5 | 2016.9.24 | | 2450 | Head | 22.7 | 1.856 | 37.685 | 1.80 | 39.20 | 3.11 | -3.86 | ±5 | 2016.9.24 | | 835 | Body | 22.6 | 0.969 | 55.694 | 0.97 | 55.20 | -0.10 | 0.89 | ±5 | 2016.9.11 | | 1900 | Body | 22.7 | 1.551 | 53.396 | 1.52 | 53.30 | 2.04 | 0.18 | ±5 | 2016.9.29 | | 2450 | Body | 22.8 | 2.026 | 53.965 | 1.95 | 52.70 | 3.90 | 2.40 | ±5 | 2016.9.21 | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 FCC ID: P7QVM-06 Page 18 of 57 F Issued Date : Dec. 01, 2016 Form version. : 160427 Report No.: FA660304 ### 10.3 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz)2 | Tissue
Type2 | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|---------------------|-----------------|------------------------|---------------|--------------|------------|------------------------------|------------------------------|--------------------------------|------------------| | 2016.9.11 | 835 | Head | 250 | 4d091 | 3954 | 1279 | 2.44 | 9.14 | 9.76 | 6.78 | | 2016.9.24 | 1900 | Head | 250 | 5d118 | 3857 | 1210 | 10.20 | 39.40 | 40.8 | 3.55 | | 2016.9.24 | 2450 | Head | 250 | 840 | 3857 | 1210 | 12.90 | 50.40 | 51.6 | 2.38 | | 2016.9.11 | 835 | Body | 250 | 4d091 | 3954 | 1279 | 2.44 | 9.55 | 9.76 | 2.20 | | 2016.9.29 | 1900 | Body | 250 | 5d118 | 3857 | 1210 | 10.50 | 40.60 | 42 | 3.45 | | 2016.9.21 | 2450 | Body | 250 | 840 | 3954 | 1279 | 13.10 | 51.10 | 52.4 | 2.54 | Report No.: FA660304 Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 19 of 57 11. RF Exposure Positions ### 11.1 Ear and handset reference point Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek. Fig 9.1.1 Front, back, and side views of SAM twin phantom Fig 9.1.2 Close-up side view of phantom showing the ear region. Report No.: FA660304 Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations ### 11.2 Definition of the cheek position - 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. - 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets. - 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom. - 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP. - 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane. - 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line. - 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report. Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case Report No.: FA660304 Fig 9.2.2 Handset vertical and horizontal reference lines—"clam-shell case" Fig 9.2.3 cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 FCC
ID : P7QVM-06 Page 21 of 57 Form version. : 160427 ### 11.3 Definition of the tilt position 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested. Report No.: FA660304 - 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°. - 3. Rotate the handset around the horizontal line by 15°. - 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated. ### 11.4 Body Worn Accessory Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is < 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset. Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested. Report No.: FA660304 Fig 9.4 Body Worn Position ### 11.5 Wireless Router Some battery-operated handsets have the capability to transmit and receive user through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10mm from the front, back and edges of the device containing transmitting antennas within 2.5cm of their edges, determined form general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time. ### 12. Conducted RF Output Power (Unit: dBm) #### <GSM Conducted Power> Per KDB 447498 D01v06, the maximum output power channel is used for SAR testing and for further SAR test reduction. Report No.: FA660304 - 2. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 is considered as the primary mode. - Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode - 4. Power reduction which is triggered by hotspot mode is implemented in GSM1900 band, for hotspot mode SAR testing EUT was set in reduced power mode and GPRS 2Tx slot due to its highest frame-average power. #### **Full Power Mode:** | Band GSM850 | Burst Av | verage Powe | er (dBm) | Tune-up | Tune-up Frame-Average Power (dBm) | | | Tune-up | |-----------------|----------|-------------|----------|---------|-----------------------------------|-------|-------|---------| | TX Channel | 128 | 189 | 251 | Limit | 128 | 189 | 251 | Limit | | Frequency (MHz) | 824.2 | 836.4 | 848.8 | (dBm) | 824.2 | 836.4 | 848.8 | (dBm) | | GSM 1 Tx slot | 32.18 | 32.33 | 32.40 | 33.00 | 23.18 | 23.33 | 23.40 | 24.00 | | GPRS 1 Tx slot | 32.17 | 32.32 | 32.38 | 33.00 | 23.17 | 23.32 | 23.38 | 24.00 | | GPRS 2 Tx slots | 30.17 | 30.24 | 30.00 | 31.00 | 24.17 | 24.24 | 24.00 | 25.00 | | GPRS 3 Tx slots | 29.00 | 28.71 | 28.71 | 29.50 | 24.74 | 24.45 | 24.45 | 25.24 | | GPRS 4 Tx slots | 27.81 | 27.52 | 27.57 | 28.50 | 24.81 | 24.52 | 24.57 | 25.50 | | EDGE 1 Tx slot | 26.26 | 26.20 | 26.14 | 27.00 | 17.26 | 17.20 | 17.14 | 18.00 | | EDGE 2 Tx slots | 26.14 | 26.10 | 26.10 | 27.00 | 20.14 | 20.10 | 20.10 | 21.00 | | EDGE 3 Tx slots | 26.00 | 25.96 | 25.89 | 27.00 | 21.74 | 21.70 | 21.63 | 22.74 | | EDGE 4 Tx slots | 25.86 | 25.82 | 25.72 | 27.00 | 22.86 | 22.82 | 22.72 | 24.00 | **Remark:** The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB | Band GSM1900 | Burst Av | erage Pow | er (dBm) | Tune-up | Frame-A | erage Pov | ver (dBm) | Tune-up | |-----------------|----------|-----------|--------------------|---------|---------|-----------|--------------------|---------| | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit | | Frequency (MHz) | 1850.2 | 1880 | 1909.8 | (dBm) | 1850.2 | 1880 | 1909.8 | (dBm) | | GSM 1 Tx slot | 29.28 | 29.30 | <mark>29.54</mark> | 30.00 | 20.28 | 20.30 | 20.54 | 21.00 | | GPRS 1 Tx slot | 29.26 | 29.28 | 29.52 | 30.00 | 20.26 | 20.28 | 20.52 | 21.00 | | GPRS 2 Tx slots | 27.28 | 27.48 | 27.66 | 28.00 | 21.28 | 21.48 | 21.66 | 22.00 | | GPRS 3 Tx slots | 25.93 | 26.34 | 26.45 | 26.50 | 21.67 | 22.08 | 22.19 | 22.24 | | GPRS 4 Tx slots | 25.26 | 25.27 | 25.34 | 25.50 | 22.26 | 22.27 | <mark>22.34</mark> | 22.50 | | EDGE 1 Tx slot | 25.48 | 25.41 | 25.59 | 26.00 | 16.48 | 16.41 | 16.59 | 17.00 | | EDGE 2 Tx slots | 25.40 | 25.42 | 25.61 | 26.00 | 19.40 | 19.42 | 19.61 | 20.00 | | EDGE 3 Tx slots | 25.32 | 25.31 | 25.46 | 26.00 | 21.06 | 21.05 | 21.20 | 21.74 | | EDGE 4 Tx slots | 25.11 | 25.12 | 25.23 | 25.50 | 22.11 | 22.12 | 22.23 | 22.50 | Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB SPORTON INTERNATIONAL (KUNSHAN) INC. FCC ID : P7QVM-06 Page 24 of 57 Form version. : 160427 ### **Hotspot Reduced Power Mode:** | Band GSM1900 | Burst Av | erage Pow | er (dBm) | Tune-up | Frame-A | verage Pov | ver (dBm) | Tune-up | |-----------------|----------|-----------|--------------------|---------|---------|------------|--------------------|---------| | TX Channel | 512 | 661 | 810 | Limit | 512 | 661 | 810 | Limit | | Frequency (MHz) | 1850.2 | 1880 | 1909.8 | (dBm) | 1850.2 | 1880 | 1909.8 | (dBm) | | GSM 1 Tx slot | 25.89 | 26.05 | <mark>26.15</mark> | 26.50 | 16.89 | 17.05 | 17.15 | 17.50 | | GPRS 1 Tx slot | 25.87 | 26.02 | 26.11 | 26.50 | 16.87 | 17.02 | 17.11 | 17.50 | | GPRS 2 Tx slots | 24.80 | 25.03 | 25.15 | 25.50 | 18.80 | 19.03 | <mark>19.15</mark> | 19.50 | | GPRS 3 Tx slots | 21.66 |
21.75 | 21.77 | 22.00 | 17.40 | 17.49 | 17.51 | 17.74 | | GPRS 4 Tx slots | 21.55 | 21.63 | 21.72 | 22.00 | 18.55 | 18.63 | 18.72 | 19.00 | | EDGE 1 Tx slot | 22.07 | 22.12 | 22.17 | 22.50 | 13.07 | 13.12 | 13.17 | 13.50 | | EDGE 2 Tx slots | 20.99 | 22.01 | 21.11 | 22.50 | 14.99 | 16.01 | 15.11 | 16.50 | | EDGE 3 Tx slots | 19.91 | 19.87 | 20.04 | 20.50 | 15.65 | 15.61 | 15.78 | 16.24 | | EDGE 4 Tx slots | 18.77 | 18.74 | 18.92 | 19.50 | 15.77 | 15.74 | 15.92 | 16.50 | Report No.: FA660304 Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Page 25 of 57 FCC ID: P7QVM-06 Form version.: 160427 #### <WCDMA Conducted Power> - 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. - 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion. Report No.: FA660304 3. For DC-HSDPA, the device was configured according to the H-Set 12, Fixed Reference Channel (FRC) configuration in Table C.8.1.12 of 3GPP TS 34.121-1, with the primary and the secondary serving HS-DSCH Cell enabled during the power measurement. A summary of these settings are illustrated below: #### **HSDPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - The RF path losses were compensated into the measurements. b. - A call was established between EUT and Base Station with following setting: - Set Gain Factors (β_c and β_d) and parameters were set according to each - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 - Set RMC 12.2Kbps + HSDPA mode. - Set Cell Power = -86 dBm - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - vi. Select HSDPA Uplink Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - Set CQI Repetition Factor to 2 х. - Power Ctrl Mode = All Up bits - d. The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βε | βa | (SF) | β₀/βа | (Note 1,
Note 2) | (Note 3) | (Note 3) | |--------------------|-----------------------|------------------------|---|--|--------------------------|---------------------------------|--------------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15
(Note 4) | 15/15
(Note 4) | 64 | 12/15
(Note 4) | 24/15 | 1.0 | 0.0 | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | | Note 1:
Note 2: | For the HS-D | PCCH power | r mask requ | $_{c}$ = 30/15 * $oldsymbol{eta}_{c}$. Irement test in cl | | | | | | ~ | | | st in clause 5.13. | 7.1 | | | | | | | 3.1AA, ΔΑCK | and $\Delta_{NACK} = 30/$ | 15 with β_{hs} = : | 30/15 * $oldsymbol{eta}_c$, an | $d \Delta_{COI} = 24/15$ | | | with $\beta_{ts} = 2$ | $4/15 \cdot \beta_c$. | | | | | | | 11-1- M | m | m tour i | - A - A - A - A - A - A - A - A - A - A | F | | SPROUL PROOF | | CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. For subtest 2 the β_e/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is Note 4: achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to βc = 11/15 and βd = 15/15 **Setup Configuration** Page 26 of 57 #### **HSUPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting *: - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121 Report No.: FA660304 - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - Set UE Target Power V. - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βε | βď | β _d
(SF) | βε/βα | β _{HS}
(Note1) | βec | βed
(Note 5)
(Note 6) | β _{ed}
(SF) | β _{ed}
(Codes) | (dB)
(Note
2) | MPR
(dB)
(Note
2) | AG
Index
(Note
6) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------------------|-------------|--|-------------------------|----------------------------|---------------------|----------------------------|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15
(Note 4) | 15/15
(Note
4) | 64 | 15/15
(Note
4) | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | - Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQJ} = 30/15 with β_{hs} = 30/15 * β_c . - CM = 1 for β_c/β_d =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference. - For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by Note 3: setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. - For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to Note 4 - Note 5: TS25.306 Table 5.1g. - Note 6: βed can not be set directly, it is set by Absolute Grant Value. **Setup Configuration** Form version.: 160427 FCC ID: P7QVM-06 Page 27 of 57 ### FCC SAR Test Report #### DC-HSDPA 3GPP release 8 Setup Configuration: - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration below - The RF path losses were compensated into the measurements. b. - A call was established between EUT and Base Station with following setting: C. - Set RMC 12.2Kbps + HSDPA mode. - Set Cell Power = -25 dBm ii. - Set HS-DSCH Configuration Type to FRC (H-set 12, QPSK) iii. - Select HSDPA Uplink Parameters - Set Gain Factors (β_c and β_d) and parameters were set according to each Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 Report No.: FA660304 - a). Subtest 1: $\beta_c/\beta_d=2/15$ - b). Subtest 2: $\beta_c/\beta_d=12/15$ c). Subtest 3: $\beta_c/\beta_d=15/8$ - d). Subtest 4: $\beta_c/\beta_d=15/4$ Set Delta ACK, Delta NACK and Delta CQI = 8 - Set Ack-Nack Repetition Factor to 3 vii. - Set CQI Feedback Cycle (k) to 4 ms viii. - ix. Set CQI Repetition Factor to 2 - Power Ctrl Mode = All Up bits - The transmitted maximum output power was recorded. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings are illustrated below: #### C.8.1.12 Fixed Reference Channel Definition H-Set 12 Table C.8.1.12: Fixed Reference Channel H-Set 12 Value Parameter Unit Nominal Avg. Inf. Bit Rate Inter-TTI Distance Number of HARQ Processes Proce 6 Information Bit Payload (N_{INF}) 120 Number Code Blocks Binary Channel Bits Per TTI Total Available SML's in UE Blocks Bits SML's Number of SML's per HARQ Proc. Coding Rate Number of Physical Channel Codes SML's Codes Modulation Note 1: The RMC is intended to be used for DC-HSDPA mode and both cells shall transmit with identical parameters as listed in the table. Maximum number of transmission is limited to 1, i.e. retransmission is not allowed. The redundancy and constellation version 0 shall be used. Inf. Bit Payload 120 **CRC** Addition 24 CRC Code Block 144 Turbo-Encoding (R=1/3) 432 12 Tail Bits 1st Rate Matching 432 **RV** Selection 960 Physical Channel Segmentation Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK) **Setup Configuration** FCC ID: P7QVM-06 Page 28 of 57 ### < WCDMA Conducted Power> #### **General Note:** Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all 1. **Report No. : FA660304** Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤
1/4 dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA. ### **Full Power Mode:** | | Band | W | CDMA Band | V b | | W | CDMA Ban | ıd II | | |-------------|--------------------|--------------------|-----------|-------|----------------|--------|----------|--------------------|----------------| | | TX Channel | 4132 | 4182 | 4233 | Tune-up | 9262 | 9400 | 9538 | Tune-up | | | Rx Channel | 4357 | 4407 | 4458 | Limit
(dBm) | 9662 | 9800 | 9938 | Limit
(dBm) | | Fr | requency (MHz) | 826.4 | 836.4 | 846.6 | (- / | 1852.4 | 1880 | 1907.6 | (- / | | 3GPP Rel 99 | AMR 12.2Kbps | 23.28 | 23.16 | 23.15 | 23.50 | 22.18 | 22.26 | 22.30 | 22.40 | | 3GPP Rel 99 | RMC 12.2Kbps | <mark>23.30</mark> | 23.17 | 23.18 | 23.50 | 22.20 | 22.26 | <mark>22.35</mark> | 22.40 | | 3GPP Rel 6 | HSDPA Subtest-1 | 22.61 | 22.49 | 22.51 | 23.00 | 21.43 | 21.75 | 21.84 | 22.00 | | 3GPP Rel 6 | HSDPA Subtest-2 | 22.56 | 22.49 | 22.49 | 23.00 | 21.52 | 21.80 | 21.87 | 22.00 | | 3GPP Rel 6 | HSDPA Subtest-3 | 22.07 | 22.09 | 22.00 | 22.50 | 20.99 | 21.29 | 21.37 | 21.50 | | 3GPP Rel 6 | HSDPA Subtest-4 | 21.79 | 22.08 | 22.00 | 22.50 | 21.07 | 21.27 | 21.36 | 21.50 | | 3GPP Rel 8 | DC-HSDPA Subtest-1 | 22.22 | 22.10 | 22.08 | 22.50 | 21.07 | 21.12 | 21.21 | 21.50 | | 3GPP Rel 8 | DC-HSDPA Subtest-2 | 22.23 | 22.08 | 22.07 | 22.50 | 20.98 | 21.10 | 21.19 | 21.50 | | 3GPP Rel 8 | DC-HSDPA Subtest-3 | 21.76 | 21.74 | 21.61 | 22.00 | 20.61 | 20.68 | 20.72 | 21.00 | | 3GPP Rel 8 | DC-HSDPA Subtest-4 | 21.69 | 21.68 | 21.60 | 22.00 | 20.60 | 20.67 | 20.71 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-1 | 22.19 | 22.48 | 22.23 | 23.00 | 20.88 | 21.57 | 21.21 | 22.00 | | 3GPP Rel 6 | HSUPA Subtest-2 | 21.59 | 21.11 | 20.98 | 22.00 | 20.36 | 20.77 | 20.82 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-3 | 21.21 | 21.20 | 20.60 | 22.00 | 20.13 | 20.44 | 20.51 | 21.00 | | 3GPP Rel 6 | HSUPA Subtest-4 | 21.50 | 21.48 | 22.04 | 22.50 | 20.51 | 21.02 | 20.79 | 21.50 | | 3GPP Rel 6 | HSUPA Subtest-5 | 22.60 | 22.60 | 22.50 | 23.00 | 21.50 | 21.70 | 21.80 | 22.00 | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 FCC ID: P7QVM-06 Form version.: 160427 Page 29 of 57 ### **Hotspot Reduced Power Mode:** | | Band | | WCDMA Band II | | | | | |-------------|--------------------|--------|---------------|--------|----------------|--|--| | TX Channel | | 9262 | 9400 | 9538 | Tune-up | | | | | Rx Channel | | 9800 | 9938 | Limit
(dBm) | | | | | Frequency (MHz) | 1852.4 | 1880 | 1907.6 | (=, | | | | 3GPP Rel 99 | AMR 12.2Kbps | 17.32 | 17.41 | 17.41 | 18.50 | | | | 3GPP Rel 99 | RMC 12.2Kbps | 17.35 | 17.43 | 17.42 | 18.50 | | | | 3GPP Rel 6 | HSDPA Subtest-1 | 16.05 | 16.28 | 16.37 | 16.50 | | | | 3GPP Rel 6 | HSDPA Subtest-2 | 15.98 | 16.22 | 16.30 | 16.50 | | | | 3GPP Rel 6 | HSDPA Subtest-3 | 15.04 | 15.72 | 15.79 | 16.00 | | | | 3GPP Rel 6 | HSDPA Subtest-4 | 15.48 | 15.70 | 15.78 | 16.00 | | | | 3GPP Rel 8 | DC-HSDPA Subtest-1 | 16.47 | 16.52 | 16.61 | 17.00 | | | | 3GPP Rel 8 | DC-HSDPA Subtest-2 | 16.37 | 16.50 | 16.56 | 17.00 | | | | 3GPP Rel 8 | DC-HSDPA Subtest-3 | 16.01 | 16.08 | 16.12 | 16.50 | | | | 3GPP Rel 8 | DC-HSDPA Subtest-4 | 16.01 | 16.07 | 16.11 | 16.50 | | | | 3GPP Rel 6 | HSUPA Subtest-1 | 14.94 | 15.69 | 15.36 | 16.00 | | | | 3GPP Rel 6 | HSUPA Subtest-2 | 14.87 | 15.29 | 15.17 | 15.50 | | | | 3GPP Rel 6 | HSUPA Subtest-3 | 14.89 | 14.88 | 15.16 | 15.50 | | | | 3GPP Rel 6 | HSUPA Subtest-4 | 15.44 | 15.17 | 15.87 | 16.00 | | | | 3GPP Rel 6 | HSUPA Subtest-5 | 15.90 | 16.20 | 16.40 | 16.50 | | | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 30 of 57 #### <CDMA2000 Conducted Power> #### **General Note:** Per KDB 941225 D01v03r01, SAR for head exposure is measured in RC3 with the handset configured to transmit at full rate in SO55. Report No.: FA660304 - 2. Per KDB 941225 D01v03r01, in Hotspot mode EUT is treated as data device and SAR is tested with Ev-Do Rev 0 (RTAP 153.6kbps) as the primary mode. - 3. Per KDB 941225 D01v03r01, for Body-worn accessory SAR is measured in RC3 with the handset configured in TDSO/SO32 to transmit at full rate on FCH only with all other code channels disabled. The body-worn accessory procedures in KDB Publication 447498 are applied. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCH), with FCH only as the primary mode. ### **Full Power Mode:** | Band | Band CDMA2000 BC0 | | | | | | |-----------------|-------------------|--------|--------|------------------|--|--| | TX Channel | 1013 | 384 | 777 | Tune-up
Limit | | | | Frequency (MHz) | 824.7 | 836.52 | 848.31 | (dBm) | | | | RC1 SO55 | 23.95 | 24.01 | 24.08 | 24.50 | | | | RC3 SO55 | 23.94 | 24.02 | 24.09 | 24.50 | | | | RC3 SO32(F+SCH) | 23.90 | 23.91 | 23.99 | 24.50 | | | | RC3 SO32(+SCH) | 23.90 | 23.94 | 23.96 | 24.50 | | | | RTAP 153.6Kbps | 23.92 | 23.93 | 24.05 | 24.50 | | | | RETAP 4096Bits | 23.91 | 23.92 | 24.06 | 24.50 | | | ### **Hotspot Reduced Power Mode:** | Band | Band CDMA2000 BC0 | | | | | | |-----------------|-------------------|--------|--------|------------------|--|--| | TX Channel | 1013 | 384 | 777 | Tune-up
Limit | | | | Frequency (MHz) | 824.7 | 836.52 | 848.31 | (dBm) | | | | RC1 SO55 | 21.54 | 21.69 | 21.76 | 23.50 | | | | RC3 SO55 | 21.64 | 21.79 | 21.82 | 23.50 | | | | RC3 SO32(F+SCH) | 21.66 | 21.80 | 21.84 | 23.50 | | | | RC3 SO32(+SCH) | 21.71 | 21.84 | 21.85 | 23.50 | | | | RTAP 153.6Kbps | 21.70 | 21.82 | 21.84 | 23.50 | | | | RETAP 4096Bits | 21.73 | 21.86 | 21.91 | 23.50 | | | ### <WLAN Conducted Power> #### **General Note:** 1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions. Report No.: FA660304 - 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s). - 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band. - 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following: - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. **SPORTON INTERNATIONAL (KUNSHAN) INC.**TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 ### <2.4GHz WLAN> | | Mode | Channel | Frequency
(MHz) | Data Rate | Average
power (dBm) | Tune-Up
Limit | Duty Cycle % | |--------|--------------|---------|--------------------|-----------|------------------------|------------------|--------------| | | |
CH 1 | 2412 | | <mark>18.42</mark> | 18.50 | 97.87 | | | 802.11b | CH 6 | 2437 | 1Mbps | 18.35 | 18.50 | | | 2.4GHz | | CH 11 | 2462 | | 17.75 | 18.50 | | | WLAN | 802.11g | CH 1 | 2412 | 6Mbps | 13.12 | 13.50 | 86.90 | | | | CH 6 | 2437 | | 13.11 | 13.50 | | | | | CH 11 | 2462 | | 12.55 | 13.50 | | | | 802.11n-HT20 | CH 1 | 2412 | MCS0 | 12.62 | 13.00 | 85.91 | | | | CH 6 | 2437 | | 12.52 | 13.00 | | | | | CH 11 | 2462 | | 12.01 | 13.00 | | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 33 of 57 ### <2.4GHz Bluetooth> #### **General Note:** - For 2.4GHz Bluetooth SAR testing was selected 1Mbps, due to its highest average power. 1. - The Bluetooth duty cycle is 76.6 % as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR 2. scaling need further consideration and the theoretical duty cycle is 83.3%, therefore the actual duty cycle will be scaled up to the theoretical value of Bluetooth reported SAR calculation. Report No.: FA660304 | Mode | Channel | Frequency | Average power (dBm) | | | | |---------------|----------|-----------|---------------------|--|--|--| | | Grianner | (MHz) | DH5 | | | | | v3.0 with EDR | CH 00 | 2402 | <mark>10.74</mark> | | | | | | CH 39 | 2441 | 10.71 | | | | | | CH 78 | 2480 | 10.57 | | | | | Tune-up Limit | | | 11.00 | | | | | Mode Channel | Frequency | Average power (dBm) | | | | |---------------|-----------|---------------------|-------------|--|--| | | Channel | (MHz) | GFSK | | | | CH | CH 00 | 2402 | 2.01 | | | | v4.1 with LE | CH 19 | 2440 | <u>2.55</u> | | | | | CH 39 | 2480 | 2.52 | | | | Tune-up Limit | | | 3.00 | | | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 34 of 57 ### 13. Antenna Location **Right Side** **Back View** Report No.: FA660304 | Distance of the Antenna to the EUT surface/edge | | | | | | | | | |---|--------|--------|--------|--------|--------|--------|--|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | | WWAN Main | ≤ 25mm | ≤ 25mm | >25mm | ≤ 25mm | ≤ 25mm | ≤ 25mm | | | | BT&WLAN | ≤ 25mm | ≤ 25mm | ≤ 25mm | >25mm | ≤ 25mm | ≤ 25mm | | | | Positions for SAR tests; Hotspot mode | | | | | | | | |---|-----|-----|-----|-----|-----|-----|--| | Antennas Back Front Top Side Bottom Side Right Side Left Side | | | | | | | | | WWAN Main | Yes | Yes | No | Yes | Yes | Yes | | | BT&WLAN | Yes | Yes | Yes | No | Yes | Yes | | #### **General Note:** Referring to KDB 941225 D06 v02r01, when the overall device length and width are < 9cm*5cm, the test distance is 5 mm. SAR must be measured for all sides and surfaces. TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 35 of 57 ### 14. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA660304 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c. For WWAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - d. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - \cdot ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 4. When hotspot mode is enabled, power reduction will be activated to limit the maximum power of GSM1900 band, UMTS band 2 and CDMA2000 BC0. - Per KDB 648474 D04v01r03, when the reported SAR for a body-worn accessory measured without a headset connected to the handset is ≤ 1.2 W/kg, SAR testing with a headset connected to the handset is not required. #### **GSM Note:** - 1. Per KDB 941225 D01v03r01, for SAR test reduction for GSM / GPRS / EDGE modes is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 is considered as the primary mode. - Other configurations of GSM / GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode. - 3. Power reduction which is triggered by hotspot mode is implemented in GSM1900 band, for hotspot mode SAR testing EUT was set in reduced power mode and GPRS 2 Tx slot due to its highest frame-average power. #### **UMTS Note:** - 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". - 2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA / DC-HSDPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA / DC-HSDPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA / DC-HSDPA. #### **CMDA Note:** - 1. Per KDB 941225 D01v03r01, SAR for next to the ear head exposure is measured in RC3 with the handset configured to transmit at full rate in SO55. - Per KDB 941225 D01v03r01, in Hotspot mode EUT is treated as data device and SAR is tested with Ev-Do Rev 0 (RTAP 153.6kbps) as the primary mode. - 3. Per KDB 941225 D01v03r01, for Body-worn accessory SAR is measured in RC3 with the handset configured in TDSO/SO32 to transmit at full rate on FCH only with all other code channels disabled. The body-worn accessory procedures in KDB Publication 447498 are applied. The 3G SAR test reduction procedure is applied to the multiple code channel configuration (FCH+SCH), with FCH only as the primary mode. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 FCC ID : P7QVM-06 Page 36 of 57 Form version. : 160427 #### FCC SAR Test Report #### **WLAN Note:** Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. Report No.: FA660304 - When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested. - 3. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. - During SAR testing the WLAN transmission was verified using a spectrum analyzer. TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 FCC ID: P7QVM-06 Form version.: 160427 Page 37 of 57 # 14.1 Head SAR # <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|--------------------|------------------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | GSM850 | GPRS 4
Tx slots | Right Cheek | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | 0.02 | #1 | 0.264 | 0.309 | | | GSM850 | GPRS 4
Tx slots | Right Tilted | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | 0.01 | #1 | 0.211 | 0.247 | | | GSM850 | GPRS 4
Tx slots | Left Cheek | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.12 | #1 | 0.335 | 0.393 | | | GSM850 | GPRS 4
Tx slots | Left Tilted | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.17 | #1 | 0.315 | 0.369 | | 01 | GSM850 | GPRS 4
Tx slots | Left Cheek | Off | 189 | 836.4 | 27.52 | 28.50 | 1.253 | -0.14 | #1 | 0.326 | 0.409 | | | GSM850 | GPRS 4
Tx slots | Left Cheek | Off | 251 | 848.8 | 27.57 | 28.50 | 1.239 | -0.05 | #1 | 0.296 | 0.367 | | | GSM850 | GPRS 4
Tx slots | Left Cheek | Off | 189 | 836.4 | 27.52 | 28.50 | 1.253 | 0.15 | #2 | 0.312 | 0.391 | | | GSM1900 | GPRS 4
Tx slots | Right Cheek | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 |
-0.02 | #1 | 0.621 | 0.644 | | | GSM1900 | GPRS 4
Tx slots | Right Tilted | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 | 0.03 | #1 | 0.177 | 0.184 | | | GSM1900 | GPRS 4
Tx slots | Left Cheek | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 | 0.18 | #1 | 0.746 | 0.774 | | | GSM1900 | GPRS 4
Tx slots | Left Tilted | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 | 0.02 | #1 | 0.162 | 0.168 | | | GSM1900 | GPRS 4
Tx slots | Left Cheek | Off | 512 | 1850.2 | 25.26 | 25.50 | 1.057 | 0.19 | #1 | 0.728 | 0.769 | | | GSM1900 | GPRS 4
Tx slots | Left Cheek | Off | 661 | 1880 | 25.27 | 25.50 | 1.054 | 0.16 | #1 | 0.716 | 0.755 | | 02 | GSM1900 | GPRS 4
Tx slots | Left Cheek | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 | 0.12 | #2 | 0.959 | 0.995 | | | GSM1900 | GPRS 4
Tx slots | Left Cheek | Off | 512 | 1850.2 | 25.26 | 25.50 | 1.057 | 0.1 | #2 | 0.910 | 0.962 | | | GSM1900 | GPRS 4
Tx slots | Left Cheek | Off | 661 | 1880 | 25.27 | 25.50 | 1.054 | 0.02 | #2 | 0.935 | 0.986 | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 38 of 57 # <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------------|-----------------|------------------|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | WCDMA
Band V | RMC
12.2Kbps | Right Cheek | Off | 4132 | 826.4 | 23.30 | 23.50 | 1.047 | -0.12 | #1 | 0.275 | 0.288 | | | WCDMA
Band V | RMC
12.2Kbps | Right Tilted | Off | 4132 | 826.4 | 23.30 | 23.50 | 1.047 | 0.04 | #1 | 0.233 | 0.244 | | | WCDMA
Band V | RMC
12.2Kbps | Left Cheek | Off | 4132 | 826.4 | 23.30 | 23.50 | 1.047 | -0.13 | #1 | 0.318 | 0.333 | | | WCDMA
Band V | RMC
12.2Kbps | Left Tilted | Off | 4132 | 826.4 | 23.30 | 23.50 | 1.047 | -0.13 | #1 | 0.233 | 0.244 | | | WCDMA
Band V | RMC
12.2Kbps | Left Cheek | Off | 4182 | 836.4 | 23.17 | 23.50 | 1.079 | -0.16 | #1 | 0.358 | 0.386 | | 03 | WCDMA
Band V | RMC
12.2Kbps | Left Cheek | Off | 4233 | 846.6 | 23.18 | 23.50 | 1.076 | -0.14 | #1 | 0.461 | <mark>0.496</mark> | | | WCDMA
Band V | RMC
12.2Kbps | Left Cheek | Off | 4233 | 846.6 | 23.18 | 23.50 | 1.076 | -0.13 | #2 | 0.396 | 0.426 | | | WCDMA
Band II | RMC
12.2Kbps | Right Cheek | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | 0.12 | #1 | 0.861 | 0.871 | | | WCDMA
Band II | RMC
12.2Kbps | Right Cheek | Off | 9262 | 1852.4 | 22.20 | 22.40 | 1.047 | 0.11 | #1 | 0.729 | 0.763 | | | WCDMA
Band II | RMC
12.2Kbps | Right Cheek | Off | 9400 | 1880 | 22.26 | 22.40 | 1.033 | -0.15 | #1 | 0.790 | 0.816 | | | WCDMA
Band II | RMC
12.2Kbps | Right Tilted | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | 0.09 | #1 | 0.239 | 0.242 | | | WCDMA
Band II | RMC
12.2Kbps | Left Cheek | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | 0.18 | #1 | 0.937 | 0.948 | | | WCDMA
Band II | RMC
12.2Kbps | Left Tilted | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | -0.03 | #1 | 0.214 | 0.216 | | | WCDMA
Band II | RMC
12.2Kbps | Left Cheek | Off | 9262 | 1852.4 | 22.20 | 22.40 | 1.047 | 0.11 | #1 | 0.922 | 0.965 | | | WCDMA
Band II | RMC
12.2Kbps | Left Cheek | Off | 9400 | 1880 | 22.26 | 22.40 | 1.033 | 0.03 | #1 | 0.902 | 0.932 | | | WCDMA
Band II | RMC
12.2Kbps | Left Cheek | Off | 9262 | 1852.4 | 22.20 | 22.40 | 1.047 | 0.06 | #2 | 0.947 | 0.992 | | | WCDMA
Band II | RMC
12.2Kbps | Left Cheek | Off | 9400 | 1880 | 22.26 | 22.40 | 1.033 | 0.01 | #2 | 1.040 | 1.074 | | 04 | WCDMA
Band II | RMC
12.2Kbps | Left Cheek | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | 0.07 | #2 | 1.080 | 1.093 | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 39 of 57 # SPORTON LAB. FCC SAR Test Report ## <CDMA SAR> | Plot
No. | Band | Mode | Test
Position | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------------|-------------|------------------|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | CDMA2000
BC0 | RC3
SO55 | Right Cheek | Off | 777 | 848.31 | 24.09 | 24.50 | 1.099 | 0.08 | #1 | 0.408 | 0.448 | | | CDMA2000
BC0 | RC3
SO55 | Right Tilted | Off | 777 | 848.31 | 24.09 | 24.50 | 1.099 | 0.19 | #1 | 0.322 | 0.354 | | | CDMA2000
BC0 | RC3
SO55 | Left Cheek | Off | 777 | 848.31 | 24.09 | 24.50 | 1.099 | 0.03 | #1 | 0.511 | 0.562 | | | CDMA2000
BC0 | RC3
SO55 | Left Tilted | Off | 777 | 848.31 | 24.09 | 24.50 | 1.099 | -0.17 | #1 | 0.362 | 0.398 | | | CDMA2000
BC0 | RC3
SO55 | Left Cheek | Off | 384 | 836.52 | 24.02 | 24.50 | 1.099 | -0.03 | #1 | 0.492 | 0.541 | | | CDMA2000
BC0 | RC3
SO55 | Left Cheek | Off | 1013 | 824.7 | 23.94 | 24.50 | 1.099 | -0.08 | #1 | 0.435 | 0.478 | | 05 | CDMA2000
BC0 | RC3
SO55 | Left Cheek | Off | 777 | 848.31 | 24.09 | 24.50 | 1.099 | -0.11 | #2 | 0.600 | <mark>0.659</mark> | | | CDMA2000
BC0 | RC3
SO55 | Left Cheek | Off | 384 | 836.52 | 24.02 | 24.50 | 1.099 | -0.03 | #2 | 0.588 | 0.646 | | | CDMA2000
BC0 | RC3
SO55 | Left Cheek | Off | 1013 | 824.7 | 23.94 | 24.50 | 1.099 | -0.13 | #2 | 0.515 | 0.566 | Report No.: FA660304 ## <WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Peak
SAR | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------------|------------------|------------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|-------------|--------|------------------------------|------------------------------| | | WLAN
2.4GHz | 802.11b
1Mbps | Right Cheek | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.206 | #1 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Right Tilted | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.278 | #1 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Cheek | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.312 | #1 | | | | 06 | WLAN
2.4GHz | 802.11b
1Mbps | Left Tilted | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | 0.17 | 0.326 | #1 | 0.215 | 0.224 | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Tilted | 6 | 2437 | 18.35 | 18.50 | 1.035 | 97.87 | 1.022 | 0.06 | | #1 | 0.194 | 0.205 | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Tilted | 11 | 2462 | 17.75 | 18.50 | 1.189 | 97.87 | 1.022 | 0.01 | | #1 | 0.132 | 0.160 | | | WLAN
2.4GHz | 802.11b
1Mbps | Right Cheek | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.198 | #2 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Right Tilted | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.201 | #2 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Cheek | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.213 | #2 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Tilted | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | 0.11 | 0.226 | #2 | 0.140 | 0.146 | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Tilted | 6 | 2437 | 18.35 | 18.50 | 1.035 | 97.87 | 1.022 | 0.03 | | #2 | 0.126 | 0.134 | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Tilted | 11 | 2462 | 17.75 | 18.50 | 1.189 | 97.87 | 1.022 | 0.05 | | #2 | 0.116 | 0.141 | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 40 of 57 # 14.2 Hotspot SAR ## <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|--------------------|------------------|-------------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | GSM850 | GPRS 4
Tx slots | Front | 5 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.12 | #1 | 0.519 | 0.608 | | | GSM850 | GPRS 4
Tx slots | Back | 5 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.09 | #1 | 0.645 | 0.756 | | | GSM850 | GPRS 4
Tx slots | Left Side | 5 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.11 | #1 | 0.608 | 0.713 | | | GSM850 | GPRS 4
Tx slots | Left Side | 5 | Off | 189 | 836.4 | 27.52 | 28.50 | 1.253 | 0.08 | #1 | 0.628 | 0.787 | | | GSM850 | GPRS 4
Tx slots | Left Side | 5 | Off | 251 | 848.8 | 27.57 | 28.50 | 1.239 | -0.14 | #1 | 0.690 | 0.855 | | | GSM850 | GPRS 4
Tx slots | Right Side | 5 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.07 | #1 | 0.547 | 0.641 | | | GSM850 | GPRS 4
Tx slots | Bottom Side | 5 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.17 | #1 | 0.091 | 0.107 | | 07 | GSM850 | GPRS 4
Tx slots | Left Side | 5 | Off | 251 | 848.8 | 27.57 | 28.50 | 1.239 | -0.03 | #2 | 0.892 | <mark>1.105</mark> | | | GSM850 |
GPRS 4
Tx slots | Left Side | 5 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.12 | #2 | 0.860 | 1.008 | | | GSM850 | GPRS 4
Tx slots | Left Side | 5 | Off | 189 | 836.4 | 27.52 | 28.50 | 1.253 | -0.19 | #2 | 0.833 | 1.044 | | | GSM1900 | GPRS 2
Tx slots | Front | 5 | On | 810 | 1909.8 | 25.15 | 25.50 | 1.084 | 0.09 | #1 | 1.020 | 1.106 | | 08 | GSM1900 | GPRS 2
Tx slots | Front | 5 | On | 512 | 1850.2 | 24.80 | 25.50 | 1.175 | 0.16 | #1 | 0.980 | <mark>1.151</mark> | | | GSM1900 | GPRS 2
Tx slots | Front | 5 | On | 661 | 1880 | 25.03 | 25.50 | 1.114 | 0.15 | #1 | 0.971 | 1.082 | | | GSM1900 | GPRS 2
Tx slots | Back | 5 | On | 810 | 1909.8 | 25.15 | 25.50 | 1.084 | 0.17 | #1 | 0.922 | 0.999 | | | GSM1900 | GPRS 2
Tx slots | Back | 5 | On | 512 | 1850.2 | 24.80 | 25.50 | 1.175 | 0.04 | #1 | 0.861 | 1.012 | | | GSM1900 | GPRS 2
Tx slots | Back | 5 | On | 661 | 1880 | 25.03 | 25.50 | 1.114 | -0.01 | #1 | 0.870 | 0.969 | | | GSM1900 | GPRS 2
Tx slots | Left Side | 5 | On | 810 | 1909.8 | 25.15 | 25.50 | 1.084 | 0.12 | #1 | 0.338 | 0.366 | | | GSM1900 | GPRS 2
Tx slots | Right Side | 5 | On | 810 | 1909.8 | 25.15 | 25.50 | 1.084 | 0.04 | #1 | 0.376 | 0.408 | | | GSM1900 | GPRS 2
Tx slots | Bottom Side | 5 | On | 810 | 1909.8 | 25.15 | 25.50 | 1.084 | 0.01 | #1 | 0.416 | 0.451 | | | GSM1900 | GPRS 2
Tx slots | Front | 5 | On | 810 | 1909.8 | 25.15 | 25.50 | 1.084 | -0.07 | #2 | 0.980 | 1.062 | | | GSM1900 | GPRS 2
Tx slots | Front | 5 | On | 512 | 1850.2 | 24.80 | 25.50 | 1.175 | -0.04 | #2 | 0.885 | 1.040 | | | GSM1900 | GPRS 2
Tx slots | Front | 5 | On | 661 | 1880 | 25.03 | 25.50 | 1.114 | -0.04 | #2 | 0.929 | 1.035 | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 41 of 57 ## FCC SAR Test Report <WCDMA SAR> Average Tune-Up Tune-up Power Measured Reported Plot Power Test Gap Freq. Ch. Sample 1g SAR 1g SAR Band Mode Power Limit Scaling Drift Position (mm) Reduction (MHz) (W/kg) (dBm) (dBm) Factor (dB) (W/kg) RMC WCDMA Front 5 Off 4132 826.4 23.30 23.50 1.047 -0.03 0.574 0.601 Band V 12.2Kbps **WCDMA RMC** Back 5 Off 4132 826.4 23.30 23.50 1.047 0.01 #1 0.693 0.726 Band V 12.2Kbps WCDMA RMC Left Side 5 Off 4132 826.4 23.30 23.50 1.047 -0.14 #1 0.841 0.881 Band V 12.2Kbps WCDMA RMC Left Side 5 Off 4182 836.4 23.17 23.50 1.079 0.11 #1 0.937 1.011 Band V 12.2Kbps **WCDMA** RMC 09 5 1.130 Left Side Off 4233 846.6 23.18 23.50 1.076 -0.12 #1 1.050 Band V 12.2Kbps WCDMA RMC 5 4132 23.30 1.047 0.05 0.375 0.393 Right Side Off 826.4 23.50 #1 Band V 12.2Kbps WCDMA RMC Bottom Side 5 Off 4132 826.4 23.30 23.50 1.047 0.11 #1 0.036 0.037 Band V 12.2Kbps **WCDMA** RMC 4233 1.076 Left Side 5 Off 846.6 23.18 23.50 -0.14 #2 0.994 1.070 Band V 12.2Kbps WCDMA RMC Left Side 5 Off 4132 826.4 23.30 1 047 -0.08 0.881 0.923 23.50 #2 Band V 12.2Kbps WCDMA RMC Left Side 5 Off 4182 836.4 23.17 23.50 1.079 -0.11 #2 1.000 1.079 12.2Kbps Band V WCDMA RMC 5 9400 1880 17.43 1.279 0.686 0.878 Front On 18.50 -0.15#1 Band II 12.2Kbps **WCDMA** RMC 5 9400 Back On 1880 17.43 18.50 1.279 0.03 #1 0.615 0.787 12.2Kbps Band II RMC **WCDMA** Left Side 5 On 9400 1880 17.43 18.50 1.279 -0.11 #1 0.166 0.212 Band II 12.2Kbps WCDMA RMC Right Side 5 9400 1880 17.43 0.02 0.270 0.345 On 18.50 1.279 #1 Band II 12.2Kbps **WCDMA** RMC **Bottom Side** 5 On 9400 1880 17.43 18.50 1.279 0.12 #1 0.263 0.336 12.2Kbps Band II **WCDMA** RMC 5 Front On 9262 1852.4 17.35 18.50 1.303 0.03 #1 0.691 0.900 Band II 12.2Kbps WCDMA RMC 10 5 On 9538 1907.6 17.42 1.282 0.01 0.762 0.977 Front 18.50 #1 Band II 12.2Kbps **WCDMA** RMC Front 5 On 9538 1907.6 17.42 18.50 1.282 0.03 #2 0.717 0.919 12.2Kbps Band II **WCDMA** RMC Front 5 On 9262 1852.4 17.35 18.50 1.303 0.03 #2 0.688 0.897 12.2Kbps Band II WCDMA RMC Front 5 On 9400 1880 17.43 18.50 1.279 0.03 #2 0.710 0.908 12.2Kbps Band II **Report No. : FA660304** TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 42 of 57 # <CDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------------|-------------------|------------------|-------------|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | CDMA2000
BC0 | RTAP
153.6Kbps | Front | 5 | On | 777 | 848.31 | 21.84 | 23.50 | 1.466 | -0.17 | #1 | 0.480 | 0.703 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Back | 5 | On | 777 | 848.31 | 21.84 | 23.50 | 1.466 | 0.05 | #1 | 0.565 | 0.828 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Left Side | 5 | On | 777 | 848.31 | 21.84 | 23.50 | 1.466 | 0.12 | #1 | 0.522 | 0.765 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Right Side | 5 | On | 777 | 848.31 | 21.84 | 23.50 | 1.466 | 0.16 | #1 | 0.350 | 0.513 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Bottom Side | 5 | On | 777 | 848.31 | 21.84 | 23.50 | 1.466 | -0.02 | #1 | 0.091 | 0.133 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Back | 5 | On | 1013 | 824.7 | 21.70 | 23.50 | 1.514 | 0.09 | #1 | 0.483 | 0.731 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Back | 5 | On | 384 | 836.52 | 21.82 | 23.50 | 1.472 | -0.06 | #1 | 0.533 | 0.785 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Back | 5 | On | 777 | 848.31 | 21.84 | 23.50 | 1.466 | -0.16 | #2 | 0.590 | 0.865 | | | CDMA2000
BC0 | RTAP
153.6Kbps | Back | 5 | On | 1013 | 824.7 | 21.70 | 23.50 | 1.514 | -0.12 | #2 | 0.579 | 0.876 | | 11 | CDMA2000
BC0 | RTAP
153.6Kbps | Back | 5 | On | 384 | 836.52 | 21.82 | 23.50 | 1.472 | -0.1 | #2 | 0.642 | <mark>0.945</mark> | Report No.: FA660304 # < WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Peak
SAR | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------------|------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|-------------|--------|------------------------------|------------------------------| | | WLAN
2.4GHz | 802.11b
1Mbps | Front | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | -0.15 | | #1 | 0.103 | 0.107 | | 12 | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | -0.02 | | #1 | 0.864 | 0.899 | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Side | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | -0.12 | | #1 | 0.103 | 0.107 | | | WLAN
2.4GHz | 802.11b
1Mbps | Right Side | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | -0.03 | | #1 | 0.109 | 0.113 | | | WLAN
2.4GHz | 802.11b
1Mbps | Top Side | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | 0.07 | | #1 | 0.732 | 0.762 | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | 6 | 2437 | 18.35 | 18.50 | 1.035 | 97.87 | 1.022 | 0.15 | | #1 | 0.849 | 0.898 | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | 11 | 2462 | 17.75 | 18.50 | 1.189 | 97.87 | 1.022 | 0.11 | | #1 | 0.536 | 0.651 | | | WLAN
2.4GHz | 802.11b
1Mbps | Front | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.090 | #2 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | 0.02 | 0.693 | #2 | 0.452 | 0.471 | | | WLAN
2.4GHz | 802.11b
1Mbps | Left Side | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.073 | #2 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Right Side | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.069 | #2 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Top Side | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | 0.03 | 0.482 | #2 | 0.312 | 0.325 | | | WLAN
2.4GHz | 802.11b
1Mbps | Bottom Side | 5 | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | | 0.011 | #2 | | | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | 6 | 2437 | 18.35 | 18.50 | 1.035 | 97.87 | 1.022 | 0.02 | | #2 | 0.456 | 0.482 | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | 11 | 2462 | 17.75 | 18.50 | 1.189 | 97.87 | 1.022 | 0.02 | | #2 | 0.496 | 0.602 | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 43 of 57 # 14.3 Body Worn Accessory SAR ## <GSM SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|---------|--------------------|------------------|-------------|--------------------|-----|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | GSM850 | GPRS 4
Tx slots | Front | 10 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.16 | #1 | 0.463 | 0.543 | | | GSM850 | GPRS 4
Tx slots | Back | 10 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.18 | #1 | 0.531 | 0.622 | | | GSM850 | GPRS 4
Tx slots | Back | 10 | Off | 189 | 836.4 | 27.52 | 28.50 | 1.253 | -0.05 | #1 | 0.562 | 0.704 | | | GSM850 | GPRS 4
Tx slots | Back | 10 | Off | 251 | 848.8 | 27.57 | 28.50 | 1.239 | 0.03 | #1 | 0.588 | 0.728 | | | GSM850 | GPRS 4
Tx slots | Back | 10 |
Off | 251 | 848.8 | 27.57 | 28.50 | 1.239 | -0.16 | #2 | 0.660 | 0.818 | | | GSM850 | GPRS 4
Tx slots | Back | 10 | Off | 128 | 824.2 | 27.81 | 28.50 | 1.172 | -0.08 | #2 | 0.607 | 0.712 | | 13 | GSM850 | GPRS 4
Tx slots | Back | 10 | Off | 189 | 836.4 | 27.52 | 28.50 | 1.253 | -0.04 | #2 | 0.654 | <mark>0.820</mark> | | | GSM1900 | GPRS 4
Tx slots | Front | 10 | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 | -0.15 | #1 | 1.000 | 1.038 | | | GSM1900 | GPRS 4
Tx slots | Front | 10 | Off | 512 | 1850.2 | 25.26 | 25.50 | 1.057 | -0.12 | #1 | 0.995 | 1.052 | | | GSM1900 | GPRS 4
Tx slots | Front | 10 | Off | 661 | 1880 | 25.27 | 25.50 | 1.054 | 0.11 | #1 | 0.973 | 1.026 | | | GSM1900 | GPRS 4
Tx slots | Back | 10 | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 | -0.18 | #1 | 0.929 | 0.964 | | | GSM1900 | GPRS 4
Tx slots | Back | 10 | Off | 512 | 1850.2 | 25.26 | 25.50 | 1.057 | -0.04 | #1 | 0.789 | 0.834 | | | GSM1900 | GPRS 4
Tx slots | Back | 10 | Off | 661 | 1880 | 25.27 | 25.50 | 1.054 | 0.15 | #1 | 0.811 | 0.855 | | 14 | GSM1900 | GPRS 4
Tx slots | Front | 10 | Off | 512 | 1850.2 | 25.26 | 25.50 | 1.057 | 0.01 | #2 | 1.130 | <mark>1.194</mark> | | | GSM1900 | GPRS 4
Tx slots | Front | 10 | Off | 661 | 1880 | 25.27 | 25.50 | 1.054 | -0.07 | #2 | 1.090 | 1.149 | | | GSM1900 | GPRS 4
Tx slots | Front | 10 | Off | 810 | 1909.8 | 25.34 | 25.50 | 1.038 | -0.03 | #2 | 1.060 | 1.100 | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 44 of 57 #### <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|------------------|-----------------|------------------|-------------|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | WCDMA
Band V | RMC
12.2Kbps | Front | 10 | Off | 4132 | 826.4 | 23.30 | 23.50 | 1.047 | -0.15 | #1 | 0.549 | 0.575 | | | WCDMA
Band V | RMC
12.2Kbps | Back | 10 | Off | 4132 | 826.4 | 23.30 | 23.50 | 1.047 | -0.19 | #1 | 0.637 | 0.667 | | | WCDMA
Band V | RMC
12.2Kbps | Back | 10 | Off | 4182 | 836.4 | 23.17 | 23.50 | 1.079 | -0.11 | #1 | 0.668 | 0.721 | | | WCDMA
Band V | RMC
12.2Kbps | Back | 10 | Off | 4233 | 846.6 | 23.18 | 23.50 | 1.076 | -0.12 | #1 | 0.737 | 0.793 | | 15 | WCDMA
Band V | RMC
12.2Kbps | Back | 10 | Off | 4233 | 846.6 | 23.18 | 23.50 | 1.076 | -0.17 | #2 | 0.741 | 0.798 | | | WCDMA
Band V | RMC
12.2Kbps | Back | 10 | Off | 4132 | 826.4 | 23.30 | 23.50 | 1.047 | -0.18 | #2 | 0.644 | 0.674 | | | WCDMA
Band V | RMC
12.2Kbps | Back | 10 | Off | 4182 | 836.4 | 23.17 | 23.50 | 1.079 | -0.12 | #2 | 0.719 | 0.776 | | | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | -0.04 | #1 | 1.160 | 1.173 | | | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9262 | 1852.4 | 22.20 | 22.40 | 1.047 | -0.05 | #1 | 1.110 | 1.162 | | 16 | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9400 | 1880 | 22.26 | 22.40 | 1.033 | -0.11 | #1 | 1.150 | <mark>1.188</mark> | | | WCDMA
Band II | RMC
12.2Kbps | Back | 10 | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | 0.05 | #1 | 1.150 | 1.163 | | | WCDMA
Band II | RMC
12.2Kbps | Back | 10 | Off | 9262 | 1852.4 | 22.20 | 22.40 | 1.047 | 0.01 | #1 | 1.040 | 1.089 | | | WCDMA
Band II | RMC
12.2Kbps | Back | 10 | Off | 9400 | 1880 | 22.26 | 22.40 | 1.033 | -0.03 | #1 | 1.100 | 1.136 | | | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9400 | 1880 | 22.26 | 22.40 | 1.033 | -0.09 | #2 | 1.150 | 1.188 | | | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | -0.03 | #2 | 1.140 | 1.153 | | | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9262 | 1852.4 | 22.20 | 22.40 | 1.047 | -0.02 | #2 | 1.050 | 1.099 | Report No.: FA660304 # <CDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------------|-------------|------------------|-------------|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|------------------------|--------|------------------------------|------------------------------| | | CDMA2000
BC0 | RC3
SO32 | Front | 10 | Off | 777 | 848.31 | 23.99 | 24.50 | 1.109 | -0.14 | #1 | 0.730 | 0.810 | | | CDMA2000
BC0 | RC3
SO32 | Front | 10 | Off | 1013 | 824.7 | 23.90 | 24.50 | 1.109 | -0.16 | #1 | 0.654 | 0.725 | | | CDMA2000
BC0 | RC3
SO32 | Front | 10 | Off | 384 | 836.52 | 23.91 | 24.50 | 1.109 | -0.12 | #1 | 0.728 | 0.807 | | 17 | CDMA2000
BC0 | RC3
SO32 | Back | 10 | Off | 777 | 848.31 | 23.99 | 24.50 | 1.109 | -0.16 | #1 | 0.825 | 0.915 | | | CDMA2000
BC0 | RC3
SO32 | Back | 10 | Off | 1013 | 824.7 | 23.90 | 24.50 | 1.109 | -0.15 | #1 | 0.709 | 0.786 | | | CDMA2000
BC0 | RC3
SO32 | Back | 10 | Off | 384 | 836.52 | 23.91 | 24.50 | 1.109 | 0.1 | #1 | 0.809 | 0.897 | | | CDMA2000
BC0 | RC3
SO32 | Back | 10 | Off | 777 | 848.31 | 23.99 | 24.50 | 1.109 | 0.02 | #2 | 0.776 | 0.861 | | | CDMA2000
BC0 | RC3
SO32 | Back | 10 | Off | 1013 | 824.7 | 23.90 | 24.50 | 1.109 | -0.17 | #2 | 0.658 | 0.730 | | | CDMA2000
BC0 | RC3
SO32 | Back | 10 | Off | 384 | 836.52 | 23.91 | 24.50 | 1.109 | -0.12 | #2 | 0.746 | 0.827 | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 45 of 57 ## <WLAN SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------------|------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|--------|------------------------------|------------------------------| | | WLAN
2.4GHz | 802.11b
1Mbps | Front | 10 | 1 | 2412 | 18.42 | 18.5 | 1.019 | 97.87 | 1.022 | -0.05 | #1 | 0.040 | 0.042 | | 18 | WLAN
2.4GHz | 802.11b
1Mbps | Back | 10 | 1 | 2412 | 18.42 | 18.5 | 1.019 | 97.87 | 1.022 | -0.05 | #1 | 0.289 | <mark>0.301</mark> | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 10 | 6 | 2437 | 18.35 | 18.5 | 1.035 | 97.87 | 1.022 | 0.12 | #1 | 0.236 | 0.250 | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 10 | 11 | 2462 | 17.75 | 18.5 | 1.189 | 97.87 | 1.022 | 0.18 | #1 | 0.170 | 0.206 | | | WLAN
2.4GHz | 802.11b
1Mbps | Front | 10 | 1 | 2412 | 18.42 | 18.5 | 1.019 | 97.87 | 1.022 | 0 | #2 | 0.029 | 0.030 | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 10 | 1 | 2412 | 18.42 | 18.5 | 1.019 | 97.87 | 1.022 | -0.19 | #2 | 0.161 | 0.168 | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 10 | 6 | 2437 | 18.35 | 18.5 | 1.035 | 97.87 | 1.022 | 0.02 | #2 | 0.139 | 0.147 | | | WLAN
2.4GHz | 802.11b
1Mbps | Back | 10 | 11 | 2462 | 17.75 | 18.5 | 1.189 | 97.87 | 1.022 | 0.02 | #2 | 0.114 | 0.138 | ## <Bluetooth SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-----------|-------|------------------|-------------|-----|----------------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|--------|------------------------------|------------------------------| | | Bluetooth | 1Mbps | Front | 10 | 0 | 2402 | 10.74 | 11 | 1.062 | 76.6 | 1.087 | 0 | #1 | <0.001 | <0.001 | | | Bluetooth | 1Mbps | Back | 10 | 0 | 2402 | 10.74 | 11 | 1.062 | 76.6 | 1.087 | 0.15 | #1 | 0.026 | 0.030 | | | Bluetooth | 1Mbps | Back | 10 | 39 | 2441 | 10.71 | 11 | 1.069 | 76.6 | 1.087 | -0.1 | #1 | 0.027 | 0.031 | | 19 | Bluetooth | 1Mbps | Back | 10 | 78 | 2480 | 10.57 | 11 | 1.104 | 76.6 | 1.087 | 0.1 | #1 | 0.028 | 0.034 | | | Bluetooth | 1Mbps | Front | 10 | 0 | 2402 | 10.74 | 11 | 1.062 | 76.6 | 1.087 | 0.1 | #2 | <0.001 | <0.001 | | | Bluetooth | 1Mbps | Back | 10 | 0 | 2402 | 10.74 | 11 | 1.062 | 76.6 | 1.087 | 0 | #2 | 0.004 | 0.005 | | | Bluetooth | 1Mbps | Back | 10 | 39 | 2441 | 10.71 | 11 | 1.069 | 76.6 | 1.087 | 0.15 | #2 | 0.008 | 0.010 | | | Bluetooth | 1Mbps | Back | 10 | 78 | 2480 | 10.57 | 11 | 1.104 | 76.6 | 1.087 | 0.1 | #2 | 0.005 | 0.006 | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 FCC ID: P7QVM-06 Page 46 of 57 Issued Date : Dec. 01, 2016 Form version. : 160427 Report No.: FA660304 ## 14.4 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Cycle | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Sample | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|------------------|------------------
------------------|-------------|--------------------|------|----------------|---------------------------|---------------------------|------------------------------|-------|------------------------------------|------------------------|--------|------------------------------|-------|------------------------------| | 1st | WCDMA
Band V | RMC
12.2Kbps | Left Side | 5 | Off | 4233 | 846.6 | 23.18 | 23.50 | 1.076 | 100 | 1.000 | -0.12 | #1 | 1.050 | 1 | 1.130 | | 2nd | WCDMA
Band V | RMC
12.2Kbps | Left Side | 5 | Off | 4233 | 846.6 | 23.18 | 23.50 | 1.076 | 100 | 1.000 | -0.14 | #1 | 1.010 | 1.040 | 1.087 | | 1st | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | - | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | -0.02 | #1 | 0.864 | 1 | 0.899 | | 2nd | WLAN
2.4GHz | 802.11b
1Mbps | Back | 5 | - | 1 | 2412 | 18.42 | 18.50 | 1.019 | 97.87 | 1.022 | -0.1 | #1 | 0.844 | 1.024 | 0.879 | | 1st | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | 100 | 1.000 | -0.04 | #1 | 1.160 | 1 | 1.173 | | 2nd | WCDMA
Band II | RMC
12.2Kbps | Front | 10 | Off | 9538 | 1907.6 | 22.35 | 22.40 | 1.012 | 100 | 1.000 | -0.04 | #1 | 1.140 | 1.018 | 1.153 | Report No.: FA660304 #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. #### 15. Simultaneous Transmission Analysis | NO. | Simultaneous Transmission | P | ortable Hands | et | Note | |-----|---------------------------|------|---------------|---------|-----------| | NO. | Configurations | Head | Body-worn | Hotspot | Note | | 1. | GSM Voice + WLAN2.4GHz | Yes | Yes | | | | 2. | GPRS/EDGE + WLAN2.4GHz | Yes | Yes | Yes | Hotspot | | 3. | WCDMA + WLAN2.4GHz | Yes | Yes | Yes | Hotspot | | 4. | CDMA+ WLAN2.4GHz | Yes | Yes | Yes | Hotspot | | 5. | GSM Voice + Bluetooth | | Yes | | | | 6. | GPRS/EDGE + Bluetooth | | Yes | | WWAN VoIP | | 7. | WCDMA+ Bluetooth | | Yes | | WWAN VoIP | | 8. | CDMA+ Bluetooth | | Yes | | WWAN VoIP | #### **General Note:** - 1. This device supported VoIP in GPRS, EGPRS, CDMA and WCDMA (e.g. 3rd party VoIP). - 2. EUT will choose each GSM, CDMA and WCDMA according to the network signal condition; therefore, they will not operate simultaneously at any moment. Report No.: FA660304 - 3. This device 2.4GHz WLAN supports Hotspot operation. - 4. WLAN2.4GHz and Bluetooth share the same antenna, and cannot transmit simultaneously. - 5. Chose the worse zoom scan SAR of WLAN2.4GHz SAR for co-located with WWAN analysis. - 6. The reported SAR summation is calculated based on the same configuration and test position. - 7. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. # 15.1 Head Exposure Conditions | | | | 1 | 2 | | | | |----------|----------|----------------------|------------------|------------------|-------------------------|-------|---------| | 1AWW | N Band | Exposure
Position | WWAN | 2.4GHz
WLAN | 1+2
Summed
1g SAR | SPLSR | Case No | | | | | 1g SAR
(W/kg) | 1g SAR
(W/kg) | (W/kg) | | | | | | Right Cheek | 0.309 | 0.224 | 0.53 | | | | | GSM850 | Right Tilted | 0.247 | 0.224 | 0.47 | | | | | GSIVIOSU | Left Cheek | 0.409 | 0.224 | 0.63 | | | | GSM | | Left Tilted | 0.369 | 0.224 | 0.59 | | | | GSIVI | | Right Cheek | 0.644 | 0.224 | 0.87 | | | | | GSM1900 | Right Tilted | 0.184 | 0.224 | 0.41 | | | | | GSWI1900 | Left Cheek | 0.995 | 0.224 | 1.22 | | | | | | Left Tilted | 0.168 | 0.224 | 0.39 | | | | | | Right Cheek | 0.288 | 0.224 | 0.51 | | | | | Band V | Right Tilted | 0.244 | 0.224 | 0.47 | | | | | Danu v | Left Cheek | 0.496 | 0.224 | 0.72 | | | | WCDMA | | Left Tilted | 0.244 | 0.224 | 0.47 | | | | VVODIVIA | | Right Cheek | 0.871 | 0.224 | 1.10 | | | | | Band II | Right Tilted | 0.242 | 0.224 | 0.47 | | | | | Danu II | Left Cheek | 1.093 | 0.224 | 1.32 | | | | | | Left Tilted | 0.216 | 0.224 | 0.44 | | | | | | Right Cheek | 0.448 | 0.224 | 0.67 | | | | CDMA | CDMA2000 | Right Tilted | 0.354 | 0.224 | 0.58 | | | | CDIVIA | BC0 | Left Cheek | 0.659 | 0.224 | 0.88 | | | | | | Left Tilted | 0.398 | 0.224 | 0.62 | | | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 49 of 57 # 15.2 Hotspot Exposure Conditions | | | | 1 | 2 | 1.0 | | | |----------|-----------|----------------------|------------------|------------------|-------------------------|-------|---------| | WWAI | N Band | Exposure
Position | WWAN | 2.4GHz
WLAN | 1+2
Summed
1g SAR | SPLSR | Case No | | | | | 1g SAR
(W/kg) | 1g SAR
(W/kg) | (W/kg) | | | | | | Front | 0.608 | 0.107 | 0.72 | | | | | | Back | 0.756 | 0.899 | 1.66 | 0.03 | #01 | | | GSM850 | Left side | 1.105 | 0.107 | 1.21 | | | | | GOWIOSO | Right side | 0.641 | 0.113 | 0.75 | | | | | | Top side | | 0.762 | 0.76 | | | | GSM | | Bottom side | 0.107 | | 0.11 | | | | GOIVI | | Front | 1.151 | 0.107 | 1.26 | | | | | | Back | 1.012 | 0.899 | 1.91 | 0.03 | #02 | | | GSM1900 | Left side | 0.366 | 0.107 | 0.47 | | | | | GSW1900 | Right side | 0.408 | 0.113 | 0.52 | | | | | | Top side | | 0.762 | 0.76 | | | | | | Bottom side | 0.451 | | 0.45 | | | | | | Front | 0.601 | 0.107 | 0.71 | | | | | | Back | 0.726 | 0.899 | 1.63 | 0.03 | #03 | | | Band V | Left side | 1.130 | 0.107 | 1.24 | | | | | Danu v | Right side | 0.393 | 0.113 | 0.51 | | | | | | Top side | | 0.762 | 0.76 | | | | WCDMA | | Bottom side | 0.037 | | 0.04 | | | | VVCDIVIA | | Front | 0.977 | 0.107 | 1.08 | | | | | | Back | 0.787 | 0.899 | 1.69 | 0.02 | #04 | | | Daniel II | Left side | 0.212 | 0.107 | 0.32 | | | | | Band II | Right side | 0.345 | 0.113 | 0.46 | | | | | | Top side | | 0.762 | 0.76 | | | | | | Bottom side | 0.336 | | 0.34 | | | | | | Front | 0.703 | 0.107 | 0.81 | | | | | | Back | 0.945 | 0.899 | 1.84 | 0.03 | #05 | | CDMA | CDMA2000 | Left side | 0.765 | 0.107 | 0.87 | | | | CDMA | BC0 | Right side | 0.513 | 0.113 | 0.63 | | | | | | Top side | | 0.762 | 0.76 | | | | | | Bottom side | 0.133 | | 0.13 | | | Report No.: FA660304 TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 50 of 57 # 15.3 <u>Body-Worn Accessory Exposure Conditions</u> | | | | 1 | 2 | 3 | | | | | |--------|----------|----------|------------------|------------------|-------------------------------|-------------------|------------------|-------|---------| | WWA | N Band | Exposure | WWAN | 2.4GHz
WLAN | Bluetooth | 1+2
Summed | 1+3
Summed | SPLSR | Case No | | | | Position | 1g SAR
(W/kg) | 1g SAR
(W/kg) | Estimated
1g SAR
(W/kg) | 1g SAR
(W/kg) | 1g SAR
(W/kg) | | | | | GSM850 | Front | 0.543 | 0.042 | <0.001 | 0.59 | 0.54 | | | | GSM | GSIVIOSU | Back | 0.820 | 0.301 | 0.034 | 1.12 | 0.85 | | | | GSIVI | GSM1900 | Front | 1.194 | 0.042 | <0.001 | 1.24 | 1.20 | | | | | GSW1900 | Back | 0.964 | 0.301 | 0.034 | 1.27 | 1.00 | | | | | Band V | Front | 0.575 | 0.042 | <0.001 | 0.62 | 0.58 | | | | MODMA | Danu v | Back | 0.798 | 0.301 | 0.034 | 1.10 | 0.83 | | | | WCDMA | Dond II | Front | 1.188 | 0.042 | <0.001 | 1.23 | 1.19 | | | | | Band II | Back | 1.163 | 0.301 | 0.034 | <mark>1.46</mark> | 1.20 | | | | CDMA | CDMA2000 | Front | 0.810 | 0.042 | <0.001 | 0.85 | 0.81 | | | | CDIVIA | BC0 | Back | 0.915 | 0.301 | 0.034 | 1.22 | 0.95 | | | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 FCC ID: P7QVM-06 Page 51 of 57 Issued Date : Dec. 01, 2016 Form version. : 160427 Report No.: FA660304 # 15.4 SPLSR Evaluation and Analysis #### **General Note:** SPLSR = $(SAR_1 + SAR_2)^{1.5} / (min. separation distance, mm)$. If SPLSR ≤ 0.04 , simultaneously transmission SAR measurement is not necessary. Report No.: FA660304 | | Pond | Position | SAR | Gap | SAR pe | ak locatio | on (m) | 3D
distance | Summed SAR | SPLSR | Simultaneous | |--------|----------------|----------|--------|-------|---------|------------|--------|----------------|------------|---------|--------------| | | Band | Position | (W/kg) | (mm) | Х | Υ | Z | (mm) | (W/kg) | Results | SAR | | Case 1 | GSM850 | | 0.756 | 5 | -0.0215 | -0.013 | -0.205 | | | | | | | WLAN
2.4GHz | Back | 0.899 | 5 | -0.0242 | 0.0576 | -0.205 | 70.7 | 1.66 | 0.03 | Not required | GSN | M850 | | | WL | AN2.4GHz | _ - | - 1 | | | | | | | | - | | | | | | | | | | | | | | Band | Position | SAR | Gap | SAR pe | ak locatio | n (m) | 3D
distance | Summed SAR | OFLOR | Simultaneous | |-------------|----------------|----------|--------|------|---------|------------|--------|----------------|------------|---------|--------------| | | Ballu | Position | (W/kg) | (mm) | X | Υ | Z | (mm) | (W/kg) | Results | SAR | | Case 2 | GSM1900 | | 1.012 | 5 | -0.0335 | -0.039 | -0.205 | 07.0 | 1 01 | 0.00 | | | | WLAN
2.4GHz | Back | 0.899 |
5 | -0.0242 | 0.0576 | -0.205 | 97.0 | 1.91 | 0.03 | Not required | | | 2.1.12 | - | GSM190 | | | | | | | | | | | | | COMITO | | | | | | ANIO 4011 | | | | | | | | | | | | VV | _AN2.4GH | | | | | | | | | | | | | | | | | | | 7 | • | = | <u>ч—</u> у | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version.: 160427 FCC ID: P7QVM-06 Page 52 of 57 # SPORTON LAB. FCC SAR Test Report | Re | po | or | t | N | ο. | : | F | Α | 6 | 6 | 0 | 3 | 0 | 4 | |----|----|----|---|---|----|---|---|---|---|---|---|---|---|---| | | | | | | | | | | | | | | | | | | Band | Position | SAR | Gap | SAR pe | ak locatio | n (m) | 3D | Summed SAR | OFLOR | Simultaneous | |--------|-----------------|----------|--------|------|----------|------------|--------|------------------|------------|---------|--------------| | | | Position | (W/kg) | (mm) | Х | Υ | Z | distance
(mm) | (W/kg) | Results | SAR | | Case 3 | WCDMA
Band V | Back | 0.726 | 5 | -0.014 | -0.017 | -0.205 | 75.3 | 1.63 | 0.03 | Not required | | | WLAN
2.4GHz | Dack | 0.899 | 5 | -0.0242 | 0.0576 | -0.205 | 73.3 | 1.00 | 0.03 | Not required | | | | | | | | | | | | | | | | | | | - 37 | | | | | | - | WC | DMA Band | V | | WI | _AN2.4GH | L | • | * × | Band | Position | SAR | Gap | SAR pe | ak locatio | n (m) | 3D
distance | Summed SAR | SPLSR | Simultaneous | |--------|------------------|----------|--------|---------|---------|------------|--------|----------------|------------|---------|--------------| | | | Position | (W/kg) | (mm) | Х | Υ | Z | (mm) | (W/kg) | Results | SAR | | Case 4 | WCDMA
Band II | Back | 0.787 | 5 | -0.0245 | -0.036 | -0.205 | 93.6 | 1.69 | 0.02 | Not required | | | WLAN
2.4GHz | Dack | 0.899 | 5 | -0.0242 | 0.0576 | -0.205 | 93.0 | 1.03 | 0.02 | Not required | V | CDMA E | Band II | | | | W | LAN2.4GH | z | L | • | - | - v | | | | | | | | | | | | TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 53 of 57 # SPORTON LAB. FCC SAR Test Report | | Dond | Desition | SAR | Gap | SAR pe | eak locatio | on (m) | 3D | Summed | OFLOR | Simultaneous | |--------|-----------------|----------|--------|-------|---------|-------------|--------|------------------|---------------|---------|--------------| | | Band | Position | (W/kg) | (mm) | Х | Υ | Z | distance
(mm) | SAR
(W/kg) | Results | SAR | | Case 5 | CDMA2000
BC0 | Back | 0.945 | 5 | -0.0215 | -0.0225 | -0.205 | 80.1 | 1.84 | 0.03 | Not required | | | WLAN
2.4GHz | Dack | 0.899 | 5 | -0.0242 | 0.0576 | -0.205 | 00.1 | 1.04 | 0.00 | Not required | | | | | | | | | | | | | | | | | | - | | | | | | | - | V | LAN2.4GF | łz | | | | | | | CDMA2 | 000 BC0 | | | | | | | | | | | | - | Report No.: FA660304 Test Engineer: Nick Hu TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 54 of 57 ## 16. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. Report No.: FA660304 A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below. | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### Table 16.1. Standard Uncertainty for Assumed Distribution The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. | Error Description | Uncertainty
Value
(±%) | Probability | Divisor | (Ci)
1g | (Ci)
10g | Standard
Uncertainty
(1g) (±%) | Standard
Uncertainty
(10g) (±%) | |-----------------------------------|------------------------------|-------------|---------|------------|-------------|--------------------------------------|---------------------------------------| | Measurement System | | | | | | | | | Probe Calibration | 6.0 | N | 1 | 1 | 1 | 6.0 | 6.0 | | Axial Isotropy | 4.7 | R | 1.732 | 0.7 | 0.7 | 1.9 | 1.9 | | Hemispherical Isotropy | 9.6 | R | 1.732 | 0.7 | 0.7 | 3.9 | 3.9 | | Boundary Effects | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.7 | R | 1.732 | 1 | 1 | 2.7 | 2.7 | | System Detection Limits | 1.0 | R | 1.732 | 1 | 1 | 0.6 | 0.6 | | Modulation Response | 3.2 | R | 1.732 | 1 | 1 | 1.8 | 1.8 | | Readout Electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response Time | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Integration Time | 2.6 | R | 1.732 | 1 | 1 | 1.5 | 1.5 | | RF Ambient Noise | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | RF Ambient Reflections | 3.0 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Probe Positioner | 0.4 | R | 1.732 | 1 | 1 | 0.2 | 0.2 | | Probe Positioning | 2.9 | R | 1.732 | 1 | 1 | 1.7 | 1.7 | | Max. SAR Eval. | 2.0 | R | 1.732 | 1 | 1 | 1.2 | 1.2 | | Test Sample Related | | | | | | | | | Device Positioning | 3.0 | N | 1 | 1 | 1 | 3.0 | 3.0 | | Device Holder | 3.6 | N | 1 | 1 | 1 | 3.6 | 3.6 | | Power Drift | 5.0 | R | 1.732 | 1 | 1 | 2.9 | 2.9 | | Power Scaling | 0.0 | R | 1.732 | 1 | 1 | 0.0 | 0.0 | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 6.1 | R | 1.732 | 1 | 1 | 3.5 | 3.5 | | SAR correction | 0.0 | R | 1.732 | 1 | 0.84 | 0.0 | 0.0 | | Liquid Conductivity Repeatability | 0.2 | N | 1 | 0.78 | 0.71 | 0.1 | 0.1 | | Liquid Conductivity (target) | 5.0 | R | 1.732 | 0.78 | 0.71 | 2.3 | 2.0 | | Liquid Conductivity (mea.) | 2.5 | R | 1.732 | 0.78 | 0.71 | 1.1 | 1.0 | | Temp. unc Conductivity | 3.4 | R | 1.732 | 0.78 | 0.71 | 1.5 | 1.4 | | Liquid Permittivity Repeatability | 0.15 | N | 1 | 0.23 | 0.26 | 0.0 | 0.0 | | Liquid Permittivity (target) | 5.0 | R | 1.732 | 0.23 | 0.26 | 0.7 | 0.8 | | Liquid Permittivity (mea.) | 2.5 | R | 1.732 | 0.23 | 0.26 | 0.3 | 0.4 | | Temp. unc Permittivity | 0.83 | R | 1.732 | 0.23 | 0.26 | 0.1 | 0.1 | | Combined Std. Uncertainty | | | | | | 11.4% | 11.4% | | Coverage Factor for 95 % | | | | | | K=2 | K=2 | | Expanded STD Uncertainty | | | | | | 22.9% | 22.7% | Report No.: FA660304 Table 16.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz TEL: 86-0512-5790-0158 / FAX: 86-0512-5790-0958 Issued Date: Dec. 01, 2016 Form version. : 160427 FCC ID: P7QVM-06 Page 56 of 57 ## 17. References [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" **Report No.
: FA660304** - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015. - [8] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015 - [9] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015. - [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. # Appendix A. Plots of System Performance Check Report No.: FA660304 The plots are shown as follows. SPORTON INTERNATIONAL (KUNSHAN) INC. ### System Check_Head_835MHz_160911 #### **DUT: D835V2 - SN:4d091** Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL_850_160911 Medium parameters used: f = 835 MHz; $\sigma = 0.902$ S/m; $\varepsilon_r = 42.135$; $\rho =$ Date: 2015.9.11 1000 kg/m^3 Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.1, 10.1, 10.1); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2015.7.21 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.06 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.71 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.09 W/kg 0 dB = 3.09 W/kg = 4.90 dBW/kg #### System Check_Head_1900MHz_160924 #### **DUT: D1900V2 - SN:5d118** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL_1900_160924 Medium parameters used: f = 1900 MHz; $\sigma = 1.423$ S/m; $\epsilon_r = 39.219$; $\rho = 1.423$ S/m; $\epsilon_r = 39.219$; 39.2$ Date: 2016.9.24 1000 kg/m^3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.85, 7.85, 7.85); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM2; Type: SAM; Serial: TP-1477 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.7 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 89.89 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.35 W/kg Maximum value of SAR (measured) = 14.7 W/kg 0 dB = 14.7 W/kg = 11.67 dBW/kg #### System Check_Head_2450MHz_160924 #### **DUT: D2450V2 - SN:840** Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL_2450_160924 Medium parameters used: f = 2450 MHz; $\sigma = 1.856$ S/m; $\varepsilon_r = 37.685$; $\rho =$ Date: 2016.9.24 1000 kg/m^3 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.19, 7.19, 7.19); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM2; Type: SAM; Serial: TP-1477 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (71x71x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 20.8 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.78 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.86 W/kg Maximum value of SAR (measured) = 20.1 W/kg 0 dB = 20.1 W/kg = 13.03 dBW/kg ## System Check Body 835MHz 160911 #### **DUT: D835V2 - SN:4d091** Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1 Medium: MSL_850_160911 Medium parameters used: f = 835 MHz; $\sigma = 0.969$ S/m; $\varepsilon_r = 55.694$; $\rho =$ Date: 2016.9.11 1000 kg/m^3 Ambient Temperature : 23.4 °C; Liquid Temperature : 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.17, 10.17, 10.17); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.05 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 51.88 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 3.51 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.06 W/kg 0 dB = 3.06 W/kg = 4.86 dBW/kg #### System Check_Body_1900MHz_160929 #### **DUT: D1900V2 - SN:5d118** Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL_1900_160929 Medium parameters used: f = 1900 MHz; $\sigma = 1.551$ S/m; $\varepsilon_r = 53.396$; $\rho =$ Date: 2016.9.29 1000 kg/m^3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM1; Type: SAM; Serial: TP-1479 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 15.1 W/kg Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 87.44 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.0 W/kg SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.47 W/kg Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg ## System Check_Body_2450MHz_160921 #### **DUT: D2450V2 - SN:840** Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL_2450_160921 Medium parameters used: f = 2450 MHz; $\sigma = 2.026$ S/m; $\epsilon_r = 53.965$; ρ Date: 2016.9.21 $= 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(7.45, 7.45, 7.45); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Pin=250mW/Area Scan (81x81x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 19.7 W/kg **Pin=250mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 86.13 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 25.7 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.21 W/kg Maximum value of SAR (measured) = 19.6 W/kg # Appendix B. Plots of High SAR Measurement Report No.: FA660304 The plots are shown as follows. SPORTON INTERNATIONAL (KUNSHAN) INC. ### 01_GSM850_GPRS 4 Tx slots_Left Cheek_0mm_Ch189 Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Date: 2016.9.11 Medium: HSL_850_160911 Medium parameters used: f = 836.4 MHz; σ = 0.903 S/m; ϵ_r = 42.121; ρ $= 1000 \text{ kg/m}^3$ Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C # DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.1, 10.1, 10.1); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch189/Area Scan (41x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.367 W/kg Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.00 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.477 W/kg SAR(1 g) = 0.326 W/kg; SAR(10 g) = 0.250 W/kgMaximum value of SAR (measured) = 0.358 W/kg ### 02_GSM 1900_GPRS 4 Tx slots_Left Cheek_0mm_Ch810 Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 1909.8 MHz; Duty Cycle: 1:2.08 Date: 2016.9.24 Medium: HSL_1900_160924 Medium parameters used: f = 1909.8 MHz; σ = 1.436 S/m; ϵ_r = 41.071; ρ =1000 kg/m3 Ambient Temperature: 23.3 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.85, 7.85, 7.85); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM2; Type: SAM; Serial: TP-1477 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch810/Area Scan (51x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.24 W/kg Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.408 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 1.63 W/kg
SAR(1 g) = 0.959 W/kg; SAR(10 g) = 0.537 W/kg Maximum value of SAR (measured) = 1.32 W/kg 0 dB = 1.32 W/kg = 1.21 dBW/kg #### 03 WCDMA Band V RMC12.2Kbps Left Cheek 0mm Ch4233 Communication System: UID 0, UMTS (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: HSL_850_160911 Medium parameters used: f = 847 MHz; $\sigma = 0.913$ S/m; $\epsilon_r = 41.992$; $\rho = 1000$ kg/m³ Date: 2016.9.11 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.1, 10.1, 10.1); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch4233/Area Scan (41x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.547 W/kg Ch4233/Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 12.75 V/m; Power Drift = -0.14 dB Peak SAR (extrapolated) = 0.547 W/kg SAR(1 g) = 0.461 W/kg; SAR(10 g) = 0.350 W/kg Maximum value of SAR (measured) = 0.519 W/kg ### 04_WCDMA Band II_RMC 12.2Kbps_Left Cheek_0mm_Ch9538 Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: HSL 1900 160924 Medium parameters used: f = 1908 MHz; $\sigma = 1.434$ S/m; $\varepsilon_r = 41.075$; $\rho =$ Date: 2016.9.24 1000 kg/m^3 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.85, 7.85, 7.85); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM2; Type: SAM; Serial: TP-1477 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch9538/Area Scan (51x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.35 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.096 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 1.82 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.603 W/kg Maximum value of SAR (measured) = 1.46 W/kg 0 dB = 1.46 W/kg = 1.64 dBW/kg ### 05_CDMA2000 BC0_RRC3 SO55_Left Cheek_0mm_Ch777 Communication System: UID 0, CDMA2000 (0); Frequency: 848.31 MHz; Duty Cycle: 1:1 Medium: HSL_850_160911 Medium parameters used: f = 848.31 MHz; $\sigma = 0.914$ S/m; $\varepsilon_r = 41.973$; $\rho = 1000$ kg/m³ Date: 2016.9.11 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.1, 10.1, 10.1); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch777/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.678 W/kg Ch777/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.03 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.703 W/kg SAR(1 g) = 0.600 W/kg; SAR(10 g) = 0.460 W/kg Maximum value of SAR (measured) = 0.670 W/kg ### 06_WLAN2.4GHz_802.11b 1Mbps_Left Tilted_0mm_Ch1 Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1.022 Medium: HSL_2450_160924 Medium parameters used: f = 2412 MHz; $\sigma = 1.814$ S/m; $\varepsilon_r = 37.834$; $\rho =$ Date: 2016.9.24 1000 kg/m^3 Ambient Temperature : 23.3 °C; Liquid Temperature : 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.19, 7.19, 7.19); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM2; Type: SAM; Serial: TP-1477 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch1/Area Scan (61x131x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.326 W/kg **Ch1/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.380 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.452 W/kg SAR(1 g) = 0.215 W/kg; SAR(10 g) = 0.106 W/kgMaximum value of SAR (measured) = 0.321 W/kg 0 dB = 0.321 W/kg = -4.93 dBW/kg ## 07_GSM850_GPRS 4 Tx slots_Left Side_5mm_Ch251 Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 848.8 MHz; Duty Cycle: 1:2.08 Date: 2016.9.11 Medium: MSL_850_160911 Medium parameters used: f = 848.8 MHz; $\sigma = 0.982$ S/m; $\epsilon_r = 55.568$; $\rho = 1000$ kg/m3 Ambient Temperature: 23.4°C; Liquid Temperature: 22.6°C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.17, 10.17, 10.17); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch251/Area Scan (41x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.20 W/kg **Ch251/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 33.67 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.39 W/kg SAR(1 g) = 0.892 W/kg; SAR(10 g) = 0.609 W/kgMaximum value of SAR (measured) = 1.07 W/kg 0 dB = 1.07 W/kg = 0.29 dBW/kg ### 08_GSM1900_GPRS 2 Tx slots_Front_5mm_Ch512 Communication System: UID 0, GPRS/EDGE (2 Tx slots) (0); Frequency: 1850.2 MHz; Duty Cycle: 1:4.15 Date: 2016.9.29 Medium: MSL 1900 160929 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.49$ S/m; ε_r = 53.512; ρ = 1000 kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM1; Type: SAM; Serial: TP-1479 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch512/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.60 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.860 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 0.980 W/kg; SAR(10 g) = 0.550 W/kg Maximum value of SAR (measured) = 1.34 W/kg 0 dB = 1.60 W/kg = 2.04 dBW/kg ## 09_WCDMA Band V_RMC12.2Kbps_Left Side_5mm_Ch4233 Communication System: UID 0, UMTS (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: MSL_850_160911 Medium parameters used: f = 847 MHz; $\sigma = 0.98$ S/m; $\varepsilon_r = 55.587$; $\rho = 1000$ kg/m³ Date: 2016.9.11 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.17, 10.17, 10.17); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch4233/Area Scan (31x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.05 W/kg Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 32.58 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.732 W/kg Maximum value of SAR (measured) = 1.25 W/kg ## 10_WCDMA Band II_RMC 12.2Kbps_Front_5mm_Ch9538 Communication System: UID 0, UMTS (0); Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: MSL_1900_160929 Medium parameters used: f = 1908 MHz; $\sigma = 1.559$ S/m; $\varepsilon_r = 53.373$; $\rho =$ Date: 2016.9.29 1000 kg/m^3 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM1; Type: SAM; Serial: TP-1479 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch9538/Area Scan (51x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.04 W/kg Ch9538/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 8.779 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.43 W/kg SAR(1 g) = 0.762 W/kg; SAR(10 g) = 0.398 W/kg Maximum value of SAR (measured) = 1.01 W/kg 0 dB = 1.01 W/kg = 0.04 dBW/kg ## 11_CDMA2000 BC0_RTAP 153.6Kbps_Back_5mm_Ch384 Communication System: UID 0, CDMA2000 (0); Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: MSL_850_160911 Medium parameters used: f = 837 MHz; $\sigma = 0.971$ S/m; $\varepsilon_r = 55.674$; $\rho = 1000$ kg/m³ Date: 2016.9.11 Ambient Temperature : 23.4 °C; Liquid Temperature : 22.6 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.17, 10.17, 10.17); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch384/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.765 W/kg Ch384/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.78 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 0.737 W/kg SAR(1 g) = 0.642 W/kg; SAR(10 g) = 0.497 W/kg Maximum value of SAR (measured) = 0.702 W/kg ## 12_WLAN2.4GHz_802.11b 1Mbps_Back_5mm_Ch1 Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1.022 Medium: MSL_2450_160921 Medium parameters used: f = 2412 MHz; $\sigma = 1.973$ S/m; $\epsilon_r = 54.108$; $\rho = 1000$ kg/m³ Date: 2016.9.21 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C ## DASY5 Configuration: - Probe: EX3DV4
SN3954; ConvF(7.45, 7.45, 7.45); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch1/Area Scan (61x141x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.36 W/kg Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.240 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.63 W/kg SAR(1 g) = 0.864 W/kg; SAR(10 g) = 0.384 W/kg Maximum value of SAR (measured) = 1.26 W/kg ## 13_GSM850_GPRS 4 Tx slots_Back_10mm_Ch189 Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 836.4 MHz; Duty Cycle: 1:2.08 Date: 2016.9.11 Medium: MSL_850_160911 Medium parameters used: f = 836.4 MHz; $\sigma = 0.971$ S/m; $\varepsilon_r = 55.682$; $\rho = 1000$ kg/m³ Ambient Temperature : 23.4 °C; Liquid Temperature : 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.17, 10.17, 10.17); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch189/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.755 W/kg Ch189/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm,dz=5mm Reference Value = 27.20 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.756 W/kg SAR(1 g) = 0.654 W/kg; SAR(10 g) = 0.507 W/kg Maximum value of SAR (measured) = 0.723 W/kg ## 14_GSM1900_GPRS 4 Tx slots_10mm_Ch512 Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 1850.2 MHz; Duty Cycle: 1:2.08 Medium: MSL_1900_160929 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 53.512$; $\rho = 1000$ kg/m³ Date: 2016.9.29 Ambient Temperature : 23.4 °C; Liquid Temperature : 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM1; Type: SAM; Serial: TP-1479 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch512/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.58 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 13.76 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.89 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.654 W/kg Maximum value of SAR (measured) = 1.48 W/kg 0 dB = 1.48 W/kg = 1.70 dBW/kg ## 15_WCDMA Band V_RMC12.2Kbps_Back_10mm_Ch4233 Communication System: UID 0, UMTS (0); Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: MSL_850_160911 Medium parameters used: f = 847 MHz; $\sigma = 0.98$ S/m; $\epsilon_r = 55.587$; $\rho = 1000$ kg/m³ Date: 2016.9.11 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.17, 10.17, 10.17); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch4233/Area Scan (51x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.864 W/kg Ch4233/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 29.38 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.857 W/kg SAR(1 g) = 0.741 W/kg; SAR(10 g) = 0.573 W/kg Maximum value of SAR (measured) = 0.811 W/kg 0 dB = 0.811 W/kg = -0.91 dBW/kg ## 16_WCDMA Band II_RMC 12.2Kbps_Front_10mm_Ch9400 Communication System: UID 0, UMTS (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: MSL_1900_160929 Medium parameters used: f = 1880 MHz; $\sigma = 1.526$ S/m; $\varepsilon_r = 53.444$; $\rho =$ Date: 2016.9.29 1000 kg/m^3 Ambient Temperature : 23.4 °C; Liquid Temperature : 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(7.55, 7.55, 7.55); Calibrated: 2016.5.25; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2016.5.18 - Phantom: SAM1; Type: SAM; Serial: TP-1479 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch9400/Area Scan (51x111x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.60 W/kg Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.91 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 1.91 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.700 W/kg Maximum value of SAR (measured) = 1.53 W/kg 0 dB = 1.53 W/kg = 1.85 dBW/kg ## 17_CDMA2000 BC0_RC3 SO32_Back_10mm_Ch777 Communication System: UID 0, CDMA2000 (0); Frequency: 848.31 MHz; Duty Cycle: 1:1 Medium: MSL_850_160911 Medium parameters used: f = 848.31 MHz; $\sigma = 0.981$ S/m; $\epsilon_r = 55.575$; $\rho = 1000$ kg/m³ Date: 2016.9.11 Ambient Temperature: 23.4 °C; Liquid Temperature: 22.6 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(10.17, 10.17, 10.17); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch777/Area Scan (51x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.951 W/kg Ch777/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 30.25 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.950 W/kg SAR(1 g) = 0.825 W/kg; SAR(10 g) = 0.638 W/kg Maximum value of SAR (measured) = 0.910 W/kg ## 18_WLAN2.4GHz_802.11b 1Mbps_Back_10mm_Ch1 Communication System: UID 0, WIFI (0); Frequency: 2412 MHz; Duty Cycle: 1:1.022 Medium: MSL_2450_160921 Medium parameters used: f = 2412 MHz; $\sigma = 1.973$ S/m; $\epsilon_r = 54.108$; $\rho = 1000$ kg/m³ Date: 2016.9.21 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(7.45, 7.45, 7.45); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch1/Area Scan (61x141x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.420 W/kg Ch1/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.441 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.503 W/kg SAR(1 g) = 0.289 W/kg; SAR(10 g) = 0.139 W/kg Maximum value of SAR (measured) = 0.418 W/kg ## 19 Bluetooth 1Mbps Back 10mm Ch78 Communication System: UID 0, Bluetooth (0); Frequency: 2480 MHz; Duty Cycle: 1:1.29 Medium: MSL_2450_160921 Medium parameters used: f = 2480 MHz; $\sigma = 2.028$ S/m; Date: 2016.9.21 $\varepsilon_r = 53.86$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.5 °C; Liquid Temperature : 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3954; ConvF(7.45, 7.45, 7.45); Calibrated: 2015.11.27; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1279; Calibrated: 2016.4.4 - Phantom: SAM1; Type: SAM; Serial: TP-1644 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch78/Area Scan (61x141x1):** Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0653 W/kg Ch78/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.195 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 0.0440 W/kg SAR(1 g) = 0.028 W/kg; SAR(10 g) = 0.011 W/kg Maximum value of SAR (measured) = 0.0395 W/kg # Appendix C. DASY Calibration Certificate Report No.: FA660304 The DASY calibration certificates are shown as follows. SPORTON INTERNATIONAL (KUNSHAN) INC. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-KS (Auden) Certificate No: D835V2-4d091 Nov15 Accreditation No.: SCS 0108 # **CALIBRATION CERTIFICATE** Object D835V2 - SN: 4d091 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 24, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No.
DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Claudio Leubler Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 24, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d091_Nov15 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.6 ± 6 % | 0.92 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.14 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.94 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.6 ± 6 % | 0.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | •••• | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.55 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.29 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d091_Nov15 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.3 Ω - 4.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.0 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.3 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.0 dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.395 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|--------------------|--| | Manufactured on | September 15, 2009 | | Certificate No: D835V2-4d091 Nov15 ### **DASY5 Validation Report for Head TSL** Date: 24.11.2015 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 42.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.77, 9.77, 9.77); Calibrated: 30.12.2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.87 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.43 W/kg SAR(1 g) = 2.31 W/kg; SAR(10 g) = 1.5 W/kg Maximum value of SAR (measured) = 3.05 W/kg 0 dB = 3.05 W/kg = 4.84 dBW/kg ## Impedance Measurement Plot for Head TSL ## DASY5 Validation Report for Body TSL Date: 24.11.2015 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.99 \text{ S/m}$; $\varepsilon_r = 55.6$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.72, 9.72, 9.72); Calibrated: 30.12.2014; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 17.08.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.69 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.58 W/kg #### SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.19 W/kg 0 dB = 3.19 W/kg = 5.04 dBW/kg # Impedance Measurement Plot for Body TSL ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the
signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-KS (Auden) Certificate No: D1900V2-5d118 Nov15 # CALIBRATION CERTIFICATE Object D1900V2 - SN: 5d118 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: November 23, 2015 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-14 (No. EX3-7349_Dec14) | Dec-15 | | DAE4 | SN: 601 | 17-Aug-15 (No. DAE4-601_Aug15) | Aug-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Michael Weber Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: November 26, 2015 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d118_Nov15 Page 1 of 8 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 iEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 1.116 | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.85 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.4 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.6 W/kg ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | - | 277 | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 40.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.36 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.4 W/kg ± 16.5 % (k=2) | ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.8 Ω + 7.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.8 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | $47.8 \Omega + 7.7 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 21.8 dB | | ### General Antenna Parameters and Design | Page 1 mass wide to me to make a service. | 4.000 | |---|----------| | Electrical Delay (one direction) | 1.200 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-----------------|--| | Manufactured on | August 21, 2009 | | Certificate No: D1900V2-5d118_Nov15