

CHANNEL 1

121

EUT	Atheros 11a/g Mini-PCI Adapter	MODEL	NL-5354MP Plus Aries2
MODE	Turbo	INPUT POWER (SYSTEM)	120Vac, 60 Hz
ENVIRONMENTAL CONDITIONS	25deg. C, 60%RH, 991hPa	TESTED BY	Gary Chang

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER EXCURSION (dB)	PEAK to AVERAGE EXCURSION LIMIT (dB)	PASS/FAIL
1	5210	7.81	13	PASS
2	5250	7.81	13	PASS
3	5290	7.51	13	PASS

5.5 PEAK POWER SPECTRAL DENSITY MEASUREMENT

5.5.1 LIMITS OF PEAK POWER SPECTRAL DENSITY MEASUREMENT

Frequency Band	Limit
5.15 – 5.25GHz	4dBm
5.25 – 5.35GHz	11dBm
5.725 – 5.825GHz	17dBm

5.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
SPECTRUM ANALYZER	FSEK30	100049	Aug. 12, 2004

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.5.3 TEST PROCEDURES

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set RBW=1MHz, VBW=3MHz. The PPSD is the highest level found across the emission in any 1MHz band.
- 5.5.4 DEVIATION FROM TEST STANDARD

No deviation

5.5.5 TEST SETUP

5.5.6 EUT OPERATING CONDITIONS

Same as 5.3.6

5.5.7 TEST RESULTS

EUT	Atheros 11a/g Mini-PCI Adapter	MODEL	NL-5354MP Plus Aries2
MODE	Normal	INPUT POWER (SYSTEM)	120Vac, 60 Hz
ENVIRONMENTAL CONDITIONS	25deg. C, 60%RH, 991hPa	TESTED BY	Gary Chang

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 1MHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	5180	-4.58	4	PASS
4	5240	-5.08	4	PASS
5	5260	-4.96	11	PASS
8	5320	-5.19	11	PASS

EUT	Atheros 11a/g Mini-PCI Adapter	MODEL	NL-5354MP Plus Aries2
MODE	Turbo	INPUT POWER (SYSTEM)	120Vac, 60 Hz
ENVIRONMENTAL CONDITIONS	25deg. C, 60%RH, 991hPa	TESTED BY	Gary Chang

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 1 MHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	5210	-7.69	4	PASS
2	5250	-7.73	4	PASS
3	5290	-8.49	11	PASS

5.6 FREQUENCY STABILITY

5.6.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency tolerance of the carrier signal shall be maintained within +/- 0.02% of the operating frequency over a temperature variation of –30 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

5.6.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
ANRITSU SPECTRUM ANALYZER	MS2667C	M10281	Aug. 12, 2004
WIT STANDARD TEMPERATURE AND HUMIDITY CHAMBER	TH-4S-C	W901030	Aug. 12, 2004

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.6.3 TEST PROCEDURE

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

5.6.4 DEVIATION FROM TEST STANDARD

No deviation

5.6.5 TEST SETUP

5.6.6 EUT OPERATING CONDITION

Same as Item 4.1.6

5.6.7 TEST RESULTS

	Operating frequency: 5320MHz			Limit : ± 0.02%			
Temp.	Power	2 mi	nute	5 mi	nute	10 m	inute
(°C)	(VDC)	(MHz)	(%)	(MHz)	(%)	(MHz)	(%)
	102	5320.0316	0.0005940	5320.0323	0.0006071	5320.0340	0.0006391
50	120V	5320.0314	0.0005902	5320.0323	0.0006071	5320.0340	0.0006391
	138	5320.0316	0.0005940	5320.0323	0.0006071	5320.0346	0.0006504
	102	5320.0206	0.0003872	5320.0193	0.0003628	5320.0153	0.0002876
40	120V	5320.0206	0.0003872	5320.0191	0.0003590	5320.0153	0.0002876
	138	5320.0206	0.0003872	5320.0193	0.0003628	5320.0153	0.0002876
	102	5320.0263	0.0004944	5320.0323	0.0006071	5320.0354	0.0006654
30	120V	5320.0263	0.0004944	5320.0323	0.0006071	5320.0354	0.0006654
	138	5320.0263	0.0004944	5320.0323	0.0006071	5320.0354	0.0006654
	102	5320.0193	0.0003628	5320.0204	0.0003835	5320.0214	0.0004023
20	120V	5320.0193	0.0003628	5320.0206	0.0003872	5320.0214	0.0004023
	138	5320.0197	0.0003703	5320.0206	0.0003872	5320.0214	0.0004023
	102	5319.9960	-0.0000752	5319.9886	-0.0002143	5319.9841	-0.0002989
10	120V	5319.9960	-0.0000752	5319.9883	-0.0002199	5319.9843	-0.0002951
	138	5319.9960	-0.0000752	5319.9886	-0.0002143	5319.9843	-0.0002951
	102	5319.9983	-0.0000320	5319.9896	-0.0001955	5319.9834	-0.0003120
0	120V	5319.9980	-0.0000376	5319.9894	-0.0001992	5319.9834	-0.0003120
	138	5319.9983	-0.0000320	5319.9896	-0.0001955	5319.9836	-0.0003083
	102	5319.9897	-0.0001936	5319.9914	-0.0001617	5319.9938	-0.0001165
-10	120V	5319.9897	-0.0001936	5319.9913	-0.0001635	5319.9940	-0.0001128
	138	5319.9897	-0.0001936	5319.9914	-0.0001617	5319.9936	-0.0001203
	102	5319.9963	-0.0000695	5319.9980	-0.0000376	5319.9986	-0.0000263
-20	120V	5319.9963	-0.0000695	5319.9980	-0.0000376	5319.9986	-0.0000263
	138	5319.9965	-0.0000658	5319.9980	-0.0000376	5319.9990	-0.0000188
	102	5319.9960	-0.0000752	5319.9947	-0.0000996	5319.9940	-0.0001128
-30	120V	5319.9957	-0.0000808	5319.9949	-0.0000959	5319.9940	-0.0001128
	138	5319.9960	-0.0000752	5319.9949	-0.0000959	5319.9942	-0.0001090

5.7 BAND EDGES MEASUREMENT

5.7.1 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
SPECTRUM ANALYZER	FSEK30	100049	Aug. 12, 2004

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

5.7.2 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 1MHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

5.7.3 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

5.7.4 TEST RESULTS

For signals in the restricted bands above and below the 5.15 to 5.35GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was applied to the average and peak filed strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

The spectrum plots (Peak RBW=VBW=1MHz, Average RBW=1MHz, VBW=300Hz) are attached on the following pages.

Normal Mode: Channel 1 (5180 MHz)

The band edge emission plot on the following 1~2 pages show 47.66dBc (Peak) / 52.58dBc (Average) between carrier maximum power and local maximum emission in restrict band. The emission of carrier strength list in the test result of channel 1 (normal mode) is 97.43dBuV/m, so the maximum field strength in restrict band is 97.43-52.58=44.85dBuV/m which is under 54dBuV/m limit.

Normal Mode: Channel 8 (5320 MHz)

The band edge emission plot on the following 3~4 pages show 47.22dBc (Peak) / 48.68dBc (Average) between carrier maximum power and local maximum emission in restrict band. The emission of carrier strength list in the test result of channel 8 (normal mode) is 97.51dBuV/m, so the maximum field strength in restrict band is 97.51-48.68=48.83dBuV/m which is under 54dBuV/m limit.

Turbo Mode: Channel 1 (5210 MHz)

The band edge emission plot on the following 5~6 pages show 48.13dBc (Peak) / 49.84dBc (Average) between carrier maximum power and local maximum emission in restrict band. The emission of carrier strength list in the test result of channel 1 (turbo mode) is 95.38dBuV/m, so the maximum field strength in restrict band is 95.38-49.84=45.54dBuV/m which is under 54dBuV/m limit.

Turbo Mode: Channel 3 (5290 MHz)

The band edge emission plot on the following 7~8 pages show 44.36dBc (Peak) / 46.79dBc (Average) between carrier maximum power and local maximum emission in restrict band. The emission of carrier strength list in the test result of channel 3 (turbo mode) is 94.60dBuV/m, so the maximum field strength in restrict band is 94.60-46.79=47.81dBuV/m which is under 54dBuV/m limit.

Normal Mode

