

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc. (Shanghai).

Shomy-Awang

Prepared by : Sherry Huang

piley wei

Approved by : Riley Wei

Add: No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China.Tel: +86-021-61765666Web: www.newbtl.comService mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

The report must not be used by the client to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . APPLICABLE STANDARDS	6
2 . SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
2.3 TEST ENVIRONMENT CONDITIONS	7
3 . GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 TEST MODES	11
3.3 PARAMETERS OF TEST SOFTWARE	14
3.4 DUTY CYCLE	16
3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	18
3.6 SUPPORT UNITS	18
3.7 CUSTOMER INFORMATION DESCRIPTION	18
4 . RADIATED EMISSIONS	19
4.1 LIMIT	19
4.2 TEST PROCEDURE	20
4.3 DEVIATION FROM TEST STANDARD	21
4.4 TEST SETUP	21
4.5 EUT OPERATION CONDITIONS	22
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	22
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	22
4.8 TEST RESULTS - ABOVE 1000 MHZ	22
5.BANDWIDTH	23
5.1 LIMIT	23
5.2 TEST PROCEDURE	23
5.3 DEVIATION FROM STANDARD	23
5.4 TEST SETUP	24
5.5 EUT OPERATION CONDITIONS	24
	24
	25
	25
6.2 IEST PROCEDURE	25

Table of Contents	Page
6.3 DEVIATION FROM STANDARD	25
6.4 TEST SETUP	25
6.5 EUT OPERATION CONDITIONS	25
6.6 TEST RESULTS	25
7 . POWER SPECTRAL DENSITY	26
7.1 LIMIT	26
7.2 TEST PROCEDURE	26
7.3 DEVIATION FROM STANDARD	26
7.4 TEST SETUP	27
7.5 EUT OPERATION CONDITIONS	27
7.6 TEST RESULTS	27
8 . MEASUREMENT INSTRUMENTS LIST	28
9.EUT TEST PHOTOS	32
APPENDIX A - RADIATED EMISSION - 9 KHZ TO 30 MHZ	39
APPENDIX B - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	44
APPENDIX C - RADIATED EMISSION - ABOVE 1000 MHZ	49
APPENDIX D - BANDWIDTH	192
APPENDIX E - MAXIMUM OUTPUT POWER	209
APPENDIX F - POWER SPECTRAL DENSITY	215

REPORT ISSUED HISTORY

	REF	ORT ISSUED HISTORY		
Report No.	Version	Description	Issued Date	Note
BTL-FCCP-4-2502H027	R00	Original Report.	Apr. 21, 2025	Valid

1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

The following reference test guidance is not within the scope of accreditation of A2LA: KDB 789033 D02 General UNII Test Procedures New Rules v02r01 KDB 662911 D01 Multiple Transmitter Output v02r01

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart E							
Standard(s) Section) Test Item		Judgment	Remark			
15.207 15.407(b)	AC Power Line Conducted Emissions	APPENDIX A	N/A				
15.407(b) 15.205(a) 15.209(a)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	PASS				
15.407(a) 15.407(e)	Bandwidth	APPENDIX E	PASS				
15.407(a)	Maximum Output Power	APPENDIX F	PASS				
15.407(a)	Power Spectral Density	APPENDIX G	PASS				
15.407(g)	Frequency Stability	APPENDIX H	N/A				
15.203	Antenna Requirements		PASS	NOTE (2)			
15.407(c)	Automatically Discontinue Transmission		PASS	NOTE (3)			

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.
- (3) During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. the EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.
- (4) For UNII-1 this device was functioned as a
 - Outdoor access point device
 - \boxtimes Indoor access point device
 - ☐ Fixed point-to-point access points device
 - Client device

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 29, Jintang Road, Tangzhen Industry Park, Pudong New Area, Shanghai 201210, China

The co - emitted radiation data in this report were collected from No.3, Jinshagang 1st Road, Dalang, Dongguan, Guangdong, China

BTL's Registration Number for FCC: 964234

BTL's Designation Number for FCC: CN1374

2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

A. Radiated emissions test:

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)	
		9 KHz~30 MHz	-	2.72	
		30 MHz~200 MHz	V	4.4	
	CISPR		30 MHz~200 MHz	Н	3.16
		200 MHz~1,000 MHz	V	4.6	
SH-CB02		200 MHz~1,000 MHz	Н	4.2	
		1GHz ~ 6GHz	-	4.56	
		6GHz ~ 18GHz	-	5.14	
		18 ~ 26.5 GHz	-	3.36	
		26.5~40 GHz	-	3.42	

Test Site	Method	Measurement Frequency Range	Ant. H / V	U, (dB)
		30 MHz~200 MHz	V	4.4
		30 MHz~200 MHz	Н	3.62
	CISPR	200 MHz~1,000 MHz	V	4.58
		200 MHz~1,000 MHz	Н	3.98
DG-CB03		1GHz ~ 6GHz	-	4.08
		6GHz ~ 18GHz	-	4.62
		18 ~ 26.5 GHz	-	3.36
		26.5~40 GHz	-	3.58

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

2.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
Radiated Emissions-9kHz to 30MHz	18°C	42%	AC 120V/60Hz	Nicole Yan
Radiated Emissions-30MHz to	18°C-25°C	10% 61%		Nicole Yan
1000MHz	10 0~23 0	4078~0178		Chen Mo
Radiated Emissions-Above 1000 MHz	18°C~25°C	34%~61%	AC 120V/60Hz	Nicole Yan
				Chen Mo
Bandwidth	18°C	39%~40%	DC 3.8V	Thacker Tang
Maximum Output Power	18°C	39%~40%	DC 3.8V	Thacker Tang
Power Spectral Density	18°C	39%~40%	DC 3.8V	Thacker Tang

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	LTE Module with Wi-Fi & Bluetooth
Brand Name	QUECTEL
Test Model	SC682A-NA
Series Model	N/A
Model Difference(s)	N/A
Software Version	SC682ANAPAR01A01
Hardware Version	SC682A-NA
Power Source	DC Voltage supplied from host system.
Power Rating	3.55 to 4.4V; Typical: 3.8V
Operation Frequency Band(s)	UNII-1: 5150 MHz ~ 5250 MHz UNII-2A: 5250 MHz ~ 5350 MHz UNII-2C: 5470 MHz ~ 5725 MHz UNII-3: 5725 MHz ~ 5850 MHz
Modulation Type	IEEE 802.11a/n/ac: OFDM
Bit Rate of Transmitter	IEEE 802.11a: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 150 Mbps IEEE 802.11ac: up to 433.3 Mbps
Maximum Output Power _UNII-1	IEEE 802.11ac20: 15.34 dBm (0.0342 W)
Maximum Output Power _UNII-2A	IEEE 802.11ac20: 15.37 dBm (0.0344 W)
Maximum Output Power _UNII-2C	IEEE 802.11ac40: 15.44 dBm (0.0350 W)
Maximum Output Power _UNII-3	IEEE 802.11a: 15.34 dBm (0.0342 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

IEEE 80 IEEE 802.1 IEEE 802.11	02.11a I1n(HT20) ac(VHT20)	IEEE 802. IEEE 802.1	11n(HT40) 1ac(VHT40)	IEEE 802.11ac(VHT80)	
UNI	I-1	UNII-1		UNII-1	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

IEEE 80 IEEE 802.1 IEEE 802.11	02.11a 1n(HT20) ac(VHT20)	IEEE 802. IEEE 802.1	11n(HT40) 1ac(VHT40)	IEEE 802.11ac(VHT80)	
UNII	-2A	UNII-2A		UNI	I-2A
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	58	5290
56	5280	62	5310		
60	5300				
64	5320				

IEEE 80 IEEE 802.1 IEEE 802.11	02.11a 1n(HT20) ac(VHT20)	IEEE 802.11n(HT40) IEEE 802.11ac(VHT40)		IEEE 802.11ac(VHT80)	
UNII	-2C	UNI	I-2C	UNI	I-2C
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	5610
108	5540	118	5590		
112	5560	126	5630		
116	5580	134	5670		
120	5600				
124	5620				
128	5640				
132	5660				
136	5680				
140	5700				

IEEE 80 IEEE 802.1 IEEE 802.11	IEEE 802.11a IEEE 802.11n(HT20) IEEE 802.11ac(VHT20)		IEEE 802.11a IEEE 802.11n(HT40) IEEE 802.11n(HT20) IEEE 802.11ac(VHT40) IEEE 802.11ac(VHT20) IEEE 802.11ac(VHT40)		IEEE 802.11ac(VHT80)	
UNII-3		UN	III-3	UN	II-3	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
149	5745	151	5755	155	5775	
153	5765	159	5795			
157	5785					
161	5805					
165	5825					

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	
1	▲ 圣丹纳	Q	Folded Dipole		1 29	
1	SAINTENNA	3AA31378A	Antenna	SIMA-3	1.20	

Note:

The antenna gain is provided by the manufacturer.

3.2 TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX A Mode Channel 36/40/48 (UNII-1)
Mode 2	TX N(HT20) Mode Channel 36/40/48 (UNII-1)
Mode 3	TX N(HT40) Mode Channel 38/46 (UNII-1)
Mode 4	TX AC(VHT20) Mode Channel 36/40/48 (UNII-1)
Mode 5	TX AC(VHT40) Mode Channel 38/46 (UNII-1)
Mode 6	TX AC(VHT80) Mode Channel 42 (UNII-1)
Mode 10	TX A Mode Channel 52/60/64 (UNII-2A)
Mode 11	TX N(HT20) Mode Channel 52/60/64 (UNII-2A)
Mode 12	TX N(HT40) Mode Channel 54/62 (UNII-2A)
Mode 13	TX AC(VHT20) Mode Channel 52/60/64 (UNII-2A)
Mode 14	TX AC(VHT40) Mode Channel 54/62 (UNII-2A)
Mode 15	TX AC(VHT80) Mode Channel 58 (UNII-2A)
Mode 21	TX A Mode Channel 100/116/140 (UNII-2C)
Mode 22	TX N(HT20) Mode Channel 100/116/140 (UNII-2C)
Mode 23	TX N(HT40) Mode Channel 102/110/134 (UNII-2C)
Mode 24	TX AC(VHT20) Mode Channel 100/116/140 (UNII-2C)
Mode 25	TX AC(VHT40) Mode Channel 102/110/134 (UNII-2C)
Mode 26	TX AC(VHT80) Mode Channel 106/122 (UNII-2C)
Mode 32	TX A Mode Channel 149/157/165 (UNII-3)
Mode 33	TX N(HT20) Mode Channel 149/157/165 (UNII-3)
Mode 34	TX N(HT40) Mode Channel 151/159 (UNII-3)
Mode 35	TX AC(VHT20) Mode Channel 149/157/165 (UNII-3)
Mode 36	TX AC(VHT40) Mode Channel 151/159 (UNII-3)
Mode 37	TX AC(VHT80) Mode Channel 155 (UNII-3)

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

Radiated Emissions Test - Below 1GHz					
Final Test Mode	Description				
Mode 25	TX AC(VHT40) Mode Channel 102				
	Radiated Emissions Test - Above 1GHz				
Final Test Mode	Description				
Mode 1	TX A Mode Channel 36/40/48 (UNII-1)				
Mode 4	TX AC(VHT20) Mode Channel 36/40/48 (UNII-1)				
Mode 5	TX AC(VHT40) Mode Channel 38/46 (UNII-1)				
Mode 6	TX AC(VHT80) Mode Channel 42 (UNII-1)				
Mode 10	TX A Mode Channel 52/60/64 (UNII-2A)				
Mode 13	TX AC(VHT20) Mode Channel 52/60/64 (UNII-2A)				
Mode 14	TX AC(VHT40) Mode Channel 54/62 (UNII-2A)				
Mode 15	TX AC(VHT80) Mode Channel 58 (UNII-2A)				
Mode 21	TX A Mode Channel 100/116/140 (UNII-2C)				
Mode 24	TX AC(VHT20) Mode Channel 100/116/140 (UNII-2C)				
Mode 25	TX AC(VHT40) Mode Channel 102/110/134 (UNII-2C)				
Mode 26	TX AC(VHT80) Mode Channel 106/122 (UNII-2C)				
Mode 32	TX A Mode Channel 149/157/165 (UNII-3)				
Mode 35	TX AC(VHT20) Mode Channel 149/157/165 (UNII-3)				
Mode 36	TX AC(VHT40) Mode Channel 151/159 (UNII-3)				
Mode 37	TX AC(VHT80) Mode Channel 155 (UNII-3)				

Conducted Test				
Final Test Mode	Description			
Mode 1	TX A Mode Channel 36/40/48 (UNII-1)			
Mode 4	TX AC(VHT20) Mode Channel 36/40/48 (UNII-1)			
Mode 5	TX AC(VHT40) Mode Channel 38/46 (UNII-1)			
Mode 6	TX AC(VHT80) Mode Channel 42 (UNII-1)			
Mode 10	TX A Mode Channel 52/60/64 (UNII-2A)			
Mode 13	TX AC(VHT20) Mode Channel 52/60/64 (UNII-2A)			
Mode 14	TX AC(VHT40) Mode Channel 54/62 (UNII-2A)			
Mode 15	TX AC(VHT80) Mode Channel 58 (UNII-2A)			
Mode 21	TX A Mode Channel 100/116/140 (UNII-2C)			
Mode 24	TX AC(VHT20) Mode Channel 100/116/140 (UNII-2C)			
Mode 25	TX AC(VHT40) Mode Channel 102/110/134 (UNII-2C)			
Mode 26	TX AC(VHT80) Mode Channel 106/122 (UNII-2C)			
Mode 32	TX A Mode Channel 149/157/165 (UNII-3)			
Mode 35	TX AC(VHT20) Mode Channel 149/157/165 (UNII-3)			
Mode 36	TX AC(VHT40) Mode Channel 151/159 (UNII-3)			
Mode 37	TX AC(VHT80) Mode Channel 155 (UNII-3)			

Note:

- (1) For radiated emission below 1 GHz test, the TX AC(VHT40) Mode Channel 102 (UNII-2C) is found to be the worst case and recorded.
- (2) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz and 26.5GHz~40GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (3) For radiated emission Harmonic 18-40GHz test, only tested the worst case and recorded.
- (4) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (5) The measurements for Output Power are tested, the worst case are IEEE 802.11a mode, IEEE 802.11ac(VHT20) mode, IEEE 802.11ac(VHT40) mode, IEEE 802.11ac(VHT80) mode, only the worst cases are documented for other test items.

3.3 PARAMETERS OF TEST SOFTWARE

UNII-1							
Test Software Version		QRCT4					
Frequency (MHz)	5180	5200	5240				
IEEE 802.11a	15	15	15				
IEEE 802.11n(HT20)	15	15	15				
IEEE 802.11ac(VHT20)	15	15	15				
Frequency (MHz)	5190	5230					
IEEE 802.11n(HT40)	15	14.5					
IEEE 802.11ac(VHT40)	15	14.5					
Frequency (MHz)	5210						
IEEE 802.11ac(VHT80)	14						

UNII-2A							
Test Software Version		QRCT4					
Frequency (MHz)	5260	5300	5320				
IEEE 802.11a	15	15.5	15.5				
IEEE 802.11n(HT20)	15	15.5	15.5				
IEEE 802.11ac(VHT20)	15	15.5	15.5				
Frequency (MHz)	5270	5310					
IEEE 802.11n(HT40)	15	15					
IEEE 802.11ac(VHT40)	15	15					
Frequency (MHz)	5290						
IEEE 802.11ac(VHT80)	14.5						

UNII-2C						
Test Software Version		QRCT4				
Frequency (MHz)	5500	5580	5700			
IEEE 802.11a	16	15	15.5			
IEEE 802.11n(HT20)	16	15	15.5			
IEEE 802.11ac(VHT20)	16	15	15.5			
Frequency (MHz)	5510	5550	5670			
IEEE 802.11n(HT40)	15	15	14.5			
IEEE 802.11ac(VHT40)	15	15	14.5			
Frequency (MHz)	5530	5610				
IEEE 802.11ac(VHT80)	14.5	14				

UNII-3							
Test Software Version		QRCT4					
Frequency (MHz)	5745	5785	5825				
IEEE 802.11a	16	15.5	16				
IEEE 802.11n(HT20)	16	15.5	16				
IEEE 802.11ac(VHT20)	16	15.5	16				
Frequency (MHz)	5755	5795					
IEEE 802.11n(HT40)	15.5	15					
IEEE 802.11ac(VHT40)	15.5	15					
Frequency (MHz)	5775						
IEEE 802.11ac(VHT80)	15						

3.4 DUTY CYCLE

If the working period is \geq 98%, there is no need to consider the working factor. If the working period is < 98%, the working factor needs to be considered.

Remark	Delta 1			Delta 2	On Time/Period	10 log(1/Duty Cycle)	1/On Time (B)
		Numbore	On Time	Period		Duty Eactor	1/B Minimum
Mode			(B)	(ON+OFF)			VBW
	(IIIS)	(ON)	(ms)	(ms)	(%)	(UD)	(kHz)
IEEE 802.11a	2.065	1	2.065	2.105	98.10%	0.00	0.010
IEEE 802.11n (HT20)	1.925	1	1.925	1.960	98.21%	0.00	0.010
IEEE 802.11n (HT40)	1.915	1	1.915	1.960	97.70%	0.10	0.522
IEEE 802.11ac (VHT20)	1.935	1	1.935	1.970	98.22%	0.00	0.010
IEEE 802.11ac (VHT40)	1.930	1	1.930	1.970	97.97%	0.09	0.518
IEEE 802.11ac (VHT80)	0.464	1	0.464	0.500	92.80%	0.32	2.155
IEEE 802.11a IEEE 802.11n (HT20)							
Kynight Spectrum Analyzer - Swept SA							35 AM Mar07, 2025
Ref Offset 1 dB		ΔMkr3 2	2.105 ms	10 dB/div	Ref Offset 1 dB	ΔMkr3	1.960 ms -0.135 dB
	14	desident and and the	Selec		Aller Added on the state of the strength of the	3∆4 มากค่าไม่ได้เสียงเสียงที่สายเสียงกลุ่มอกังการ์ตอาทิตา	Select Marker
4.00				4.00			
-6.00				Normal -6.00			Normal
-26.0				-26.0			
-36.0				Delta -36.0			Delta
-56.0				-56.0			
-66.0				Fixed 5.0			Fixed
Center 5.180000000 GHz Res BW 8 MHz #VBW 8.0 MHz		Sweep 5.000 ms	Span 0 Hz (1001 pts)	Center 5.1 Res BW 8	80000000 GHz MHz #VBW 3	8.0 MHz Sweep 5.000 m	Span 0 Hz s (1001 pts)
MKR MODE[TRC] SCL X Y 1 Δ2 1 t (Δ) 2.065 ms (Δ) 0.064 d 2 E 1 t (Δ) 2.85 ms (Δ) 13.261 dE	FUNCTION F	UNCTION WDTH FUNC	TION VALUE		C SCL X t (Δ) 1.925 ms (Δ) 150.0 μm	Y FUNCTION FUNCTION WDTH FUN -2.537 dB 13 819 dBm	ICTION VALUE
3 Δ4 1 t (Δ) 2.105 ms (Δ) 0.120 c 4 F 1 t 265.0 μs 13.261 dE	iB Im		Pr	0 perties ► 1	t (Δ) 1.960 ms (Δ) t 150.0 μs	-0.135 dB 13.819 dBm	Properties►
6 7				6 7			
9 10				More 10			More
12 = = =						m	,
MSC		STATUS		MSG		STATUS	
IEEE 80)2.11n (HT40)			IEEE	802.11ac (VHT20)	
Keysight Spectrum Analyzer - Swept SA R L RF 50 Ω AC SEN	SE:INT	10:22:02	AM Mar07, 2025	arker	ctrum Analyzer - Swept SA RF 50 Ω AC	SENSE:INT 10:20:	41 AM Mar07, 2025 Marker
Ref Offset 1 dB 10 dB/div Ref 24.00 dBm		-	0.038 dB Selec	t Marker	Ref Offset 1 dB Ref 24.00 dBm		-0.117 dB Select Marker
14.0 man, addressing for Alexandra Alexandra (1994) and a development of the second statement of the	addeda a buseline	And Managaria and Aller Managaria	A. Martin & Marco	3 14.0 Mpl-ma	ana ng ang ang ang ang ang ang ang ang a	าสมผาแห่งเลือสูตรูแขนที่ที่ สนอน เหมาะ เป็นสายแนะ ในสายนูโป เหนาะ กั	Stafferfuturen of
4.00 6.00				4.00			Normal
-16.0				-16.0			
36.0	V			-26.0 Delta -36.0			Delta
46.0				-46.0			
66.0				Fixed			Fixed⊳
Center 5.190000000 GHz			Span 0 Hz	Center 5.1	180000000 GHz		Span 0 Hz
RES BW 8 MHZ #VBW 8.0 MHZ MKR MODE TRC SCL X Y	FUNCTION F	Sweep 5.000 ms	(1001 pts)	Off Res BW 8	C SCL X	Y FUNCTION FUNCTION WOTH FUN	IS (1001 pts) ACTION VALUE OFF
1 Δ2 1 t (Δ) 1.915 ms (Δ) 0.001 c 2 F 1 t 900.0 µs 6.892 dB 3 Δ4 1 t (Δ) 1.960 ms (Δ) -0.038 c	IB IB			1 Δ2 1 2 F 1 3 Δ4 1	t (Δ) 1.935 ms (Δ) t 945.0 μs t (Δ) 1.970 ms (Δ)	0.194 dB 13.449 dBm -0.117 dB	
4 F 1 t 900.0 μs 6.892 dB	Im		Pr	operties▶ 6	t 945.0 µs	13.449 dBm	Properties►
7 8				7 8 9			
10 11 12				1 of 2 11 12			1 of 2
<[× [m	

IEEE	802.11ac (VHT40)					IEE	E 802.	11ac	(VHT8	30)	
Keysight Spectrum Analyzer - Swept SA R L RF 50 Ω AC Ref Offset1 dB Doc 514 00 dB too Doc 504 00 dB too	SENSE:INT 10:23:09 AM Mar07, 2025	Marker	Keysig Q RL	ht Spectrum	n Analyzer - Swept S & 50 Ω A of Offset 1 dB	SA AC	SENSE:	INT		10:25:18 AM Mar07, 2025	Marker
14.0 manufacture and a second a	aneradaser and a second and a second and a second and a second a second a second a second a second a second a s	Select Marker	14.0	alv R	er 24.00 aB	يەلسىيەر مەسىيەر سىرى	eren with the second	1.47 304 v	homenet	uh julanmuhula	Select Marker 3
-16.0		Normal	-16.00 -16.0			X					Norma
-26.0		Delta	-26.0 -36.0 -46.0	4		<u> </u>		*		n -	Delta
-66.0		Fixed⊳	-56.0 -66.0								Fixed
Center 5.190000000 GHz Res BW 8 MHz #VBW 8. MRR MODE TRC SCL X 1 A2 1 t 1 A2 1 t (Δ)	Span 0 Hz Span 0 Hz <t< td=""><td>off</td><td>Cente Res B</td><td>EF 5.210 W 8 MH DE TRC SC 2 1 t</td><td>000000 GH; Hz (Δ)</td><td>z #VB × 464.0 µs (/</td><td>W 8.0 MHz</td><td>FUNCTION</td><td>Sweep 2</td><td>Span 0 Hz .000 ms (1001 pts) FUNCTION VALUE</td><td>Of</td></t<>	off	Cente Res B	EF 5.210 W 8 MH DE TRC SC 2 1 t	000000 GH; Hz (Δ)	z #VB × 464.0 µs (/	W 8.0 MHz	FUNCTION	Sweep 2	Span 0 Hz .000 ms (1001 pts) FUNCTION VALUE	Of
2 P 1 t (Δ) 1.970 ms (Δ) 4 F 1 t (Δ) 1.970 ms (Δ)	2011 dBm 2011 dB 7.011 dBm	Properties►	2 F 3 A 4 F 5 6 7		(Δ)	500.0 μs (Δ 674.0 μs	2.599 dBm 0.018 dB 2.599 dBm				Properties •
8 9 10 11 12		More 1 of 2	8 9 10 11 12								Mon 1 of:
	erans	1 of 2	11				ш		STATU		

3.5 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.6 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.
А	Notebook	Dell	WIN-Q473UQS5N2A	N/A

Item	Cable Type	Shielded Type	Ferrite Core	Length
1	DC Cable	NO	NO	1.5m
2	USB cable	NO	NO	1.5m

3.7 CUSTOMER INFORMATION DESCRIPTION

 The antenna gain is provided by the manufacturer. Except for AC power line conducted emissions and radiated emissions, the results of all test items include cable losses. All cable losses are provided by the testing laboratory.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF UNWANTED EMISSION OUT OF THE RESTRICTED BANDS (Above 1000 MHz)

Frequency (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength at 3m (dBµV/m)
5150-5250	-27	68.2
5250-5350	-27	68.2
5470-5725	-27	68.2
	-27	68.2
5725-5850	10	105.2
NOTE (2)	15.6	110.8
	27	122.2

NOTE:

(1) The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $100000\sqrt{30P}$ E

$$=$$
 μ V/m, where P is the eirp (Watts)

(2) According to 15.407(b)(4)(i), all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:

Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic or 40 GHz, whichever is lower
RBW / VBW	1 MHz / 3 MHz for PK value
(Emission in restricted band)	1 MHz / 1/T Hz for AVG value

Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~40 GHz for PK/AVG detector

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

Above 1 GHz

4.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX A.

Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX B.

4.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX C.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. BANDWIDTH

5.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
	26 dB Bandwidth	-	5150-5250
FCC 15.407(a)	26 dB Bandwidth	-	5250-5350
FCC 15.407(e)	26 dB Bandwidth	-	5470-5725
	6 dB Bandwidth	Minimum 500 kHz	5725-5850

5.2 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below

b. Spectrum Setting:

For UNII-1, UNII-2A, UNII-2C:

Spectrum Parameter	Setting
Span Frequency	> 26 dB Bandwidth
RBW	Appromiximately 1% of the emission bandwidth
VBW	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For UNII-3:

Spectrum Parameter	Setting
Span Frequency	> 6 dB Bandwidth
RBW	100 kHz
VBW	300 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

For 99% Occupied Bandwidth:

Spectrum Parameter	Setting
Span Frequency	1.5 times to 5 times the OBW
RBW	1% to 5% of the OBW
VBW	≥3*RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

c. Measured the spectrum width with power higher than 26 dB / 6 dB below carrier.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

5.6 TEST RESULTS

Please refer to the APPENDIX D.

6. MAXIMUM OUTPUT POWER

6.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a) Maximum Output Power	AP device: 1 Watt (30 dBm) Client device: 250 mW (23.98 dBm)	5150-5250	
	250 mW (23.98 dBm)	5250-5350	
		250 mW (23.98 dBm)	5470-5725
		1 Watt (30dBm)	5725-5850

Note:

- a. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- b. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26dB Bandwidth in megahertz.

6.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below.
- b. The test was performed in accordance with method of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

6.6 TEST RESULTS

Please refer to the APPENDIX E.

7. POWER SPECTRAL DENSITY

7.1 LIMIT

Section	Test Item	Limit	Frequency Range (MHz)
FCC 15.407(a) Power Spectral Density	AP device: 17 dBm/MHz Client device: 11 dBm/MHz	5150-5250	
	11 dBm/MHz	5250-5350	
		11 dBm/MHz	5470-5725
		30 dBm/500 kHz	5725-5850

7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting:
 - For UNII-1, UNII-2A, UNII-2C:

Spectrum Parameter	Setting
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1 MHz.
VBW	3 MHz.
Detector	RMS
Trace average	100 trace
Sweep Time	Auto

For UNII-3:

Spectrum Parameter	Setting
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	100 kHz.
VBW	300 kHz.
Detector	RMS
Trace average	100 trace
Sweep Time	Auto

Note:

 For UNII-3, according to KDB publication 789033 D02 General UNII Test Procedures New Rules v02r01, section II.F.5., it is acceptable to set RBW at 100kHz and VBW at 300kHz if the spectrum analyzer does not have 500 kHz RBW. Then, add 10 log (500 kHz/100 kHz) to the measured result, i.e. 7 dB.

 During the test of U-NII 3 PSD, the measurement result with RBW=100kHz has been added 7 dB by compensating offset. For example, the cable loss is 13 dB, and the final offset is 13 + 7 = 20 dB when RBW=100kHz is used.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

7.6 TEST RESULTS

Please refer to the APPENDIX F.

8. ME	EASUREMENT INST	RUMENTS LIST			
		Radiated Err	hissions - 9 kHz to 3	0 MHz	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Loon Antenna	EMCI		275	Mar. 12, 2025
		EWO		215	Mar. 11, 2026
2	EXA Spectrum Analyzer	Keysight	N9010A	MY56480579	Jan. 18, 2026
3	Measurement Software	Farad	EZ-EMC Ver.NB-03A1	N/A	N/A
4	Pre-Amplifier	emci	EMC9135	980401	Jan. 18, 2026
		Radiated Em	issions - 30 MHz to	1 GHz	

		Radiated Err	hissions - 30 MHz to	1 GHz	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	emci	VULB 9168	1467	Mar. 8, 2025 Mar. 7, 2026
2	Pre-Amplifier	emci	EMC9135	980401	Jan. 18, 2026
3	EXA Spectrum Analyzer	Keysight	N9010A	MY56480579	Jan. 18, 2026
4	Test Cable	emci	EMC104-SM-SM-7 000	181020	May. 20, 2025
5	Test Cable	emci	RWP50-4.6A-SMS M-1M	20200928 002	May. 20, 2025
6	Test Cable	emci	EMC104-SM-SM-2 500	170618	May. 20, 2025
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1	N/A	N/A

		Radiated E	missions - Above 1	GHz	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Double-Ridged Waveguide Horn Antenna	ETS-Lindgren	BBHA 9120D	9120D-1817	Mar. 8, 2025 Mar. 7, 2026
2	Pre-Amplifier	emci	EMC051845SE	980725	Jul. 12, 2025
3	EXA Spectrum Analyzer	Keysight	N9010A	MY56480579	Jan. 18, 2026
4	Test Cable	emci	EMC104-SM-SM-7 000	181020	May 20, 2025
5	Test Cable	emci	RWP50-4.6A-SMS M-1M	20200928 002	May 20, 2025
6	Test Cable	emci	EMC104-SM-SM-2 500	170618	May 20, 2025
7	Measurement Software	Farad	EZ-EMC Ver.NB-03A1	N/A	N/A
8	Antenna	Schwarzbeck	BBHA9170	9170-651	Mar. 17, 2025 Mar. 16, 2026
9	Pre-Amplifier	EMC INSTRUMENT	EMC184045B	980265	Jan. 18, 2026
10	Test Cable	emci	EMC-104HS-SM-S M-1000	240625	Jul. 27, 2025
11	Test Cable	emci	EMC104HS-SM-S M-5000	240627	Aug. 5, 2025

		Ban	dwidth		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EXA Spectrum Analyzer	Keysight	N9010A	MY56480545	Jul. 12, 2025
2	BTL Conducted Test	BTL	20250107	N/A	N/A

		Outpu	ut Power		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Peak Power Analyzer	Keysight	8990B	MY51000507	Jan. 18, 2026
2	Wideband Power Sensor	Keysight	N1923A	MY58310003	Jan. 18, 2026

		Power Spe	ectral Density		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EXA Spectrum Analyzer	Keysight	N9010A	MY56480545	Jul. 12, 2025
2	BTL Conducted Test	BTL	20250107	N/A	N/A

		Radiated Emissio	ns - 30 MHz to 1 GHz	z_DG_CB03	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	01462	Dec. 14, 2025
2	Attenuator	EMC INSTRUMENT	EMCI-N-6-06	AT-06009	Dec. 14, 2025
3	Preamplifier	EMC INSTRUMENT	EMC001330	980998	May 31,2025
4	Cable	RegalWay	LMR400-NMNM-12 .5m	N/A	Jun. 06, 2025
5	Cable	RegalWay	LMR400-NMNM-3 m	N/A	Jun. 06, 2025
6	Cable	RegalWay	LMR400-NMNM-0. 5m	N/A	Jun. 06, 2025
7	Receiver	Agilent	N9038A	MY52130039	Jan. 10, 2026
8	Positioning Controller	MF	MF-7802	N/A	N/A
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
10	966 Chamber room	CM	9*6*6	N/A	May 16, 2025
11	wideband radio communication tester	R&S	CMW500	152372	Dec. 06, 2025
12	Broadband double ridged horn antenna	Regalway	RW10180-N	1911004	N/A

		Radiated Emissi	ons - Above 1 GHz	DG CB03	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Receiver	Agilent	N9038A	MY52130039	Jan. 10, 2026
2	Preamplifier	EMC INSTRUMENT	EMC118A45SE	980888	Oct. 29, 2025
3	Double Ridged Guide Antenna	ETS	3115	75846	Mar. 02, 2026
4	Cable	RegalWay	RWLP50-4.0A-SMS M-12.5M	N/A	Jul. 03, 2025
5	966 Chamber room	СМ	9*6*6	N/A	Dec. 28, 2025
6	Cable	RegalWay	RWLP50-4.0A-NM RASM-2.5M	N/A	Jul. 03, 2025
7	Cable	RegalWay	RWLP50-4.0A-NM RASMRA-0.8M	N/A	Jul. 03, 2025
8	Positioning Controller	MF	MF-7802	N/A	N/A
9	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
10	Filter	STI	STI15-9969	N/A	May 31, 2025
11	Filter	Wairrwright Instruments Gmbh	WHK 1.5/15G-10ST	N/A	Dec. 06, 2025
12	wideband radio communication tester	R&S	CMW500	152372	Dec. 06, 2025
13	Broadband double ridged horn antenna	Regalway	RW10180-N	1911004	N/A
14	966 Chamber room	СМ	9*6*6	N/A	Dec. 28, 2025
15	Positioning Controller	MF	MF-7802	N/A	N/A
16	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A
17	Preamplifier	EMC INSTRUMENT	EMC184045SE	980905	Oct. 29, 2025
18	Broad-Band Horn Antenna	Schwarzbeck	BBHA9170(3m)	9170-319	Jun. 16, 2025
19	Cable	RegalWay	RWLP50-2.6A-2.92 M2.92M-1.1M	N/A	Jul. 25, 2025
20	Cable	Tonscend	HF160-KMKM-3M	N/A	Jul. 25, 2025
21	EXA Spectrum Analyzer	Keysight	N9010A	MY55150209	Aug. 20, 2025

Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

9. EUT TEST PHOTOS

Radiated Emissions Test Photos

9 kHz to 30 MHz

Above 18 GHz

BTL

Above 18G_co - emitted radiatio

APPENDIX A - RADIATED EMISSION - 9 KHZ TO 30 MHZ

BIL

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	-							
	MHz	dBuV		dBuV/m	dBuV/m	dB	Detector	Comment
1 *	0.0090	22.00	70.03	92.03	128.52	-36.49	peak	
2	0.0528	8.42	40.83	49.25	113.15	-63.90	peak	
3	0.1250	9.42	26.16	35.58	105.67	-70.09	peak	

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX B - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

1 *	48.9150	49.75	-17.16	32.59	40.00	-7.41	peak
2	60.5550	47.14	-17.84	29.30	40.00	-10.70	peak
3	131.3650	44.24	-18.03	26.21	43.50	-17.29	peak
4	808.4250	34.20	-5.86	28.34	46.00	-17.66	peak
5	901.0600	40.92	-5.54	35.38	46.00	-10.62	peak
6	948.1050	40.67	-4.85	35.82	46.00	-10.18	peak

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

-14.29

46.00

peak

REMARKS:

6

(1) Measurement Value = Reading Level + Correct Factor.

-4.87

31.71

(2) Margin Level = Measurement Value - Limit Value.

36.58

959.7450

est Moc	le	BT+WI	FI 5G+W	WAN			Polariza	ition	Ver	tical	
130.0	dBu∀/m										1
120											
110											
100											
90											
80											
70											
60											
50											
40						5			Š		
30	1 X	2	3 K	\$		x					
20		×									
10.0											
30.	.000 127.	.00 224.	00 321.	00 418.0	0 515.00	612.0	10 709.0	0 806.00		1000.00	MHz
No. Mk	. Freq	Readir Level	ng Corre Facto	ct Measu or men	re- t Limit	Margi	n				
	MHz	dBuV	dB	dBuV/r	n dBuV/m	dB	Detector	Comment			
1	40.670) 43.1	6 -11.77	31.39	40.00	-8.61	peak				
2	136.700) 37.4	5 -11.96	3 25.49	43.50	-18.01	peak				
3	225.940	0 44.8	-13.87	30.93	46.00	-15.07	peak				
4	406.360	37.6	-7.88	3 29.76	6 46.00	-16.24	peak				
5	589.690	38.8	-3.93	34.87	46.00	-11.13	peak				
6 *	882.630	39.2	4 0.17	39.41	46.00	-6.59	peak				

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

BIL

t Mode	•	BT+WIFI	5G+WW	AN			Polariza	ation	Horizontal	
100.0	15.941									
130.0	dBu¥/m									
120										
110										
100										
90										
80										
70										
60										
50										
40								_		
40		3			4		5 X	х Х		
30		ž X			-					
20 -										
30.0	000 127.0	0 224.00	321.00	418.00	515.00	612.0	0 709.0	00 806.00	1000.00 M	IHz
lo. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margir	n			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment		
1 *	34.850	43.78	-12.40	31.38	40.00	-8.62	peak			
2	159.980	36.98	-11.02	25.96	43.50	-17.54	peak			
3	222.060	43.29	-14.13	29.16	46.00	-16.84	peak			
4	478.140	37.92	-6.15	31.77	46.00	-14.23	peak			
5	645.950	37.32	-2.65	34.67	46.00	-11.33	peak			
6	736.160	38.16	-1.31	36.85	46.00	-9.15	peak			

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

APPENDIX C - RADIATED EMISSION - ABOVE 1000 MHZ

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BII

Test	Mode	UNII-1_TX A	A Mode 5240	MHz			Polarization	Vertical
120	dBuV/m							
70	1 2 ×	3 	hen where the same of the same	5 1000000000000000000000000000000000000		huju ju		
20								
510	0.00 5130.00	5160.00	5190.00 52	20.00 5250.	00 5280.	00 531	0.00 5340.00	5400.00 (MHz)
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margir	1	(**** 12.)
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	5120. 268	50 14.39	38.93	53.32	74.00	-20.68	B Peak	
2	5120. 265	50 4.26	38.93	43. 19	54.00	-10.81	AVG	
3	5150.000	00 11.89	38.97	50.86	74.00	-23.14	Peak	
1	5150.000	00 1.88	38.97	40.85	54.00	-13.15	6 AVG	
j *	5243.263	50 56.18	39.09	95.27	68.20	27.07	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

BII

				MHZ		ł	Polarization	Horizontal
120 d	lBuV/m							
70 -	Jakyki francisjinak			5 ////////////////////////////////////				1
20 5100	0.00 5130.0	0 5160.00	5190.00 52	20.00 5250.	00 5280.	00 5310	0.00 5340.00	5400.00
No.	Freq.	Reading Level	g Correct Factor	Measure ment	Limit	Margin		(1911-12.)
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
<u> </u>	5136.58	350 13.93	38.95	52.88	74.00	-21.12	Peak	
2	5136.58	350 3.55	38.95	42.50	54.00	-11.50	AVG	
5	5150.00	00 2 46	38.97	<u>51.84</u>	<u>(4.00</u>	-22.16	Peak	
t : •	5224 00		38.91	41.43	04.00 69.00	-12.07	AVG Doolt	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

6

5179. 1250 54. 02

(1) Measurement Value = Reading Level + Correct Factor.

39.01

93.03

68.20

24.83

AVG

(2) Margin Level = Measurement Value - Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

Test I	Mode U	NII-1_TX	AC(VHT20) Mode	5180 M	Hz	F	Polarization	Horizontal
120	dBuV/m								
			C MAN						
			Mr. m						
			×						
70									
			(N						
	1	. /							
	markle whether have a starter	mound	h	www.	angellight	and have been and the second	Antonia Mandalana	when the month and the second	Helpontering norther the second
	2	4							
	×	×							
20									
510	0.00 5130.00	5160.00	5190.00	5220.00	5250.0	0 5280.	00 5310	0.00 5340.00	5400.00 (MHz)
		Reading	Correc	t Me	asure		. ·		
0.	Freq.	Level	Factor	me	nt	Limit	Margin		
	MHz	$\frac{dBuV}{m}$	dB		1V/m	dBuV/m	dB	Detector	Comment
	5128 6349	3 32	38.94		20	54 00	-19.74	AVG	
	5150, 0000) 12.23	38, 97	51.	20	74.00	-22, 80	Peak	
	5150, 0000) 3 40	38, 97	42	37	54 00	-11 63	AVG	

5 *

6

5182. 0350 55. 32

5182. 0350 42. 69

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

39.01

39.01

94.33

81.70

68.20

68.20

26.13

13.50

Peak

AVG

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

est	Mode U	NII-1_TX A	AC(VHT20) N	/lode 5240 N	lHz		Polarization	Horizontal
120	dBuV <i>I</i> m					1		
70	1 2 ×					were the two of two		
20 510	0.00 5130.00	5160.00	5190.00 52	220.00 5250.	00 5280 .	00 531	0.00 5340.00	5400.00
No.	Freq.	Reading Level	Correct Factor	Measure ment	Limit	Margin	L	(MHZ)
	MHz	dBuV/m	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	5103.9750) 15.41	38.91	54.32	74.00	-19.68	Peak	
2	5103. 9750	3. 30	38.91	42.21	54.00	-11.79	AVG	
3	5150.0000) 11.66	38.97	50.63	74.00	-23.37	Peak	
ł	5150.0000	3.24	38.97	42.21	54.00	-11.79	AVG	
j *	5238. 9450	57.53	39.09	96.62	68.20	28.42	Peak	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

5 *

5187. 5700 57. 23

(1) Measurement Value = Reading Level + Correct Factor.

39.02

96.25

68.20

28.05

Peak

(2) Margin Level = Measurement Value - Limit Value.