

TEST REPORT

Product Name : Party Speaker

Model Number : Party Rocker One Plus, HP110

FCC ID : ESXHP110

IC : 10485A-HP110

Prepared for : Guangzhou Panyu Juda Car Audio Equipment Co.,Ltd. Address : NO.5 Building ,No.139,Zhouxing Street, Dongchong

Town, Nansha District, Guangzhou, Guangdong, China

Prepared by : EMTEK (SHENZHEN) CO., LTD.

Address : Building 69, Majialong Industry Zone, Nanshan District,

Shenzhen, Guangdong, China

Tel: (0755) 26954280 Fax: (0755) 26954282

Report Number : ENS2203300222W00602R

Date(s) of Tests : March 30, 2022 to June 16, 2022

Date of issue : June 16, 2022

Report No. ENS2203300222W00602R Page 1 of 38 Ver.1.0

Table of Contents

1	TES	ST RESULT CERTIFICATION	3
2	EUT	TTECHNICAL DESCRIPTION	5
3	SUN	MMARY OF TEST RESULT	6
4	TES	ST METHODOLOGY	7
	4.1 4.2 4.3	GENERAL DESCRIPTION OF APPLIED STANDARDSMEASUREMENT EQUIPMENT USEDDESCRIPTION OF TEST MODES	7
5	FAC	CILITIES AND ACCREDITATIONS	9
	5.1 5.2	FACILITIESLABORATORY ACCREDITATIONS AND LISTINGS	
6	TES	ST SYSTEM UNCERTAINTY	10
7	SET	TUP OF EQUIPMENT UNDER TEST	11
	7.1 7.2 7.3 7.4	RADIO FREQUENCY TEST SETUP 1RADIO FREQUENCY TEST SETUP 2CONDUCTED EMISSION TEST SETUPSUPPORT EQUIPMENT	11 13 14
8	TES	ST REQUIREMENTS	
	8.1 8.2 8.3 8.4	BANDWIDTH TESTRADIATED SPURIOUS EMISSION	18 34

1 TEST RESULT CERTIFICATION

Applicant : Guangzhou Panyu Juda Car Audio Equipment Co.,Ltd.

Address NO.5 Building ,No.139,Zhouxing Street, Dongchong Town,Nansha District,

Guangzhou, Guangdong, China

Manufacturer : Guangzhou Panyu Juda Car Audio Equipment Co.,Ltd.

Address NO.5 Building ,No.139,Zhouxing Street, Dongchong Town,Nansha District,

Guangzhou, Guangdong, China

EUT : Party Speaker

Model Name : Party Rocker One Plus, HP110

Trademark : Hisense

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C	PASS			
RSS-GEN Issue 5(04-2018)+A1(03-2019)+A2(02-2021) RSS-210 Issue 10(12-2019)+A1(04-2020)	PASS			

The above equipment was tested by EMTEK (SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2, Part 15.249, IC RSS-210 Issue 10 and IC RSS-GEN Issue 5.

The test results of this report relate only to the tested sample identified in this report

Date of Test :	March 30, 2022 to June 16, 2022
Prepared by :	Una yu
	Una Yu/Editor
Reviewer :	Mill Chen &
	Mill Chen /Supervisor

Approve & Authorized Signer :	ESTING
	Lisa Wang/Manager

Modified Information

Version	Report No.	Revision Date	Summary
Ver.1.0	ENS2203300222W00602R	1	Original Report

2 EUT TECHNICAL DESCRIPTION

Technology:	2.4G RF transceiver		
Sample:	2#		
Modulation: GFSK			
Frequency Range:	2402MHz-2480MHz		
Number of Channels: 40channels			
Max Transmit Power:	98.40 dBuV/m		
Antenna:	FPC Antenna		
Firmware Version Id Number (FVIN):	V115		
Antenna Gain:	5.65 dBi		
Power supply	AC100-240V~ 50/60Hz, DC 12V from DC Port, DC 7.4V from Battery		
Temperature Range:	0°C ~ +45°C		

Note: for more details, please refer to the User's manual of the EUT.

3 SUMMARY OF TEST RESULT

FCC Part Clause	IC Part Clause	Test Parameter	Verdict	Remark
15.207	RSS-GEN Clause 8.8	Conducted Emission	PASS	
15.209	RSS-GEN Clause 8.9	Radiated Emission	PASS	
15.249	RSS-210 Annex B.10	Radiated Spurious Emission	PASS	
15.249	RSS-210 Annex B.10	Band edge test	PASS	
15.249	RSS-GEN Clause 6.7	20dB Bandwidth	PASS	
15.203	RSS-GEN Clause 6.8	Antenna Requirement	PASS	

NOTE1: N/A (Not Applicable)

NOTE2: The report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for **FCC ID:ESXHP110** filling to comply with Section 15.249 of the FCC Part 15, Subpart C Rules.

This submittal(s) (test report) is intended for **IC:10485A-HP110** filing to comply with Section RSS-210 Annex B.10 of the IC.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards:

FCC 47 CFR Part 2, Subpart J

FCC 47 CFR Part 15, Subpart C

RSS-GEN Issue 5(04-2018)+A1(03-2019)+A2(02-2021)

RSS-210 Issue 10(12-2019)+A1(04-2020)

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Test Receiver	Rohde & Schwarz	ESCI	101384	May 14, 2022	1 Year
L.I.S.N.	Rohde & Schwarz	ENV216	5	May 14, 2022	1 Year
L.I.S.N.	Kyoritsu	KNW-407	8-1492-9	May 15, 2022	1 Year

4.2.2 Radiated Emission Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
EMI Test Receiver	Rohde & Schwarz	ESU 26	100154	May 14, 2022	1 Year
Pre-Amplifie	Lunar EM	LNA30M3G-25	J10100000070	May 14, 2022	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	661	Aug. 22, 2021	2 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1177	Jul. 04, 2020	2 Year
Pre-Amplifie	SKET	LNPA_0118G-45	SK2019051801	May 14, 2022	1 Year
Loop Antenna	Schwarzbeck	FMZB1519	1519-012	Jun. 12, 2021	2 Year
Spectrum Analyzer	Rohde & Schwarz	FSV40	100967	May 14, 2022	1 Year
Horn antenna	Schwarzbeck	BBHA9120D	9120D-1178	Jul. 04, 2020	2 Year
Band reject Filter(50dB)	WI/DE	WRCGV-2400(2400 -2485MHz)	2	May 14, 2022	1 Year

4.2.3 Radio Frequency Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Wireless Connectivity Tester	R&S	CMW270	102543	Aug. 27, 2021	1Year
Automatic Control Unit	Tonscend	JS0806-2	2118060480	Nov. 18, 2021	1Year
Signal Analyzer	KEYSIGHT	N9010B	MY60242456	Jan. 21, 2022	1Year
Analog Signal Generator	KEYSIGHT	N5173B	MY61252625	Oct. 29, 2021	1Year
UP/DOWN-Converter	R&S	CMW-Z800A	100274	Sep. 14, 2021	1Year
Vector Signal Generator	KEYSIGHT	N5182B	MY61252674	Oct. 28, 2021	1Year
Frequency Extender	KEYSIGHT	N5182BX07	MY59362541	Nov. 23, 2021	1Year
Temperature&Humidity test chamber	ESPEC	EL-02KA	12107166	Jul. 03, 2021	1 Year

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402MHz	14	2430MHz	28	2458MHz
1	2404MHz	15	2432MHz	29	2460MHz
2	2406MHz	16	2434MHz	30	2462MHz
3	2408MHz	17	2436MHz	31	2464MHz
4	2410MHz	18	2438MHz	32	2466MHz
5	2412MHz	19	2440MHz	33	2468MHz
6	2414MHz	20	2442MHz	34	2470MHz
7	2416MHz	21	2444MHz	35	2472MHz
8	2418MHz	22	2446MHz	36	2474MHz
9	2420MHz	23	2448MHz	37	2476MHz
10	2422MHz	24	2450MHz	38	2478MHz
11	2424MHz	25	2452MHz	39	2480MHz
12	2426MHz	26	2454MHz		
13	2428MHz	27	2456MHz		

Test Frequency and Channel list:

Lowest Frequency	Middle Frequency	Highest Frequency
Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)
2402	2440	2480

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Building 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab. : Accredited by CNAS

The Certificate Registration Number is L2291.

The Laboratory has been assessed and proved to be in compliance

with CNAS-CL01 (identical to ISO/IEC 17025:2017)

Accredited by FCC

Designation Number: CN1204

Test Firm Registration Number: 882943

Accredited by A2LA

The Certificate Number is 4321.01.

Accredited by Industry Canada

The Conformity Assessment Body Identifier is CN0008

Name of Firm : EMTEK (SHENZHEN) CO., LTD.

Site Location : Building 69, Majialong Industry Zone,

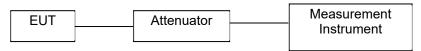
Nanshan District, Shenzhen, Guangdong, China

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%



SETUP OF EQUIPMENT UNDER TEST

RADIO FREQUENCY TEST SETUP 1

The EUT wireless component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

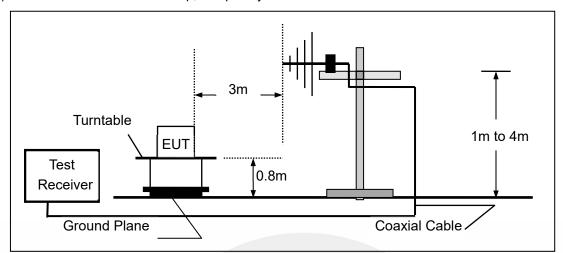
Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

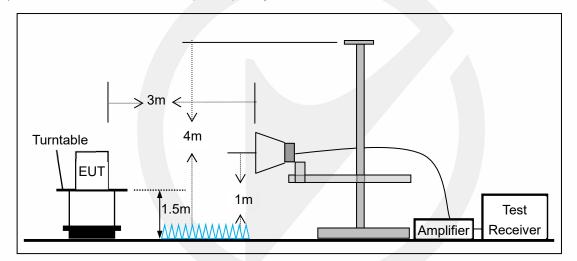

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

Above 1GHz:

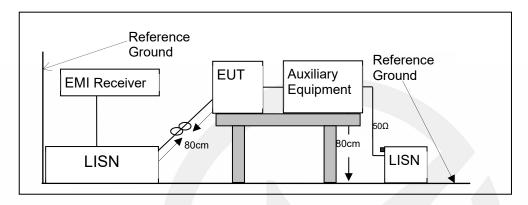

The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz

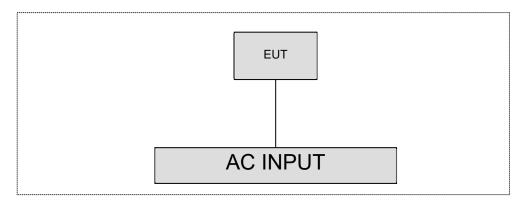


(b) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP


The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.

Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m. According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

EUT Cable List and Details			
LOT Gable List and Details		I	
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite
1	1	1	1

Auxiliary Cable List and Details							
Cable Description	Length (m)	Shielded/Unshielded	With / Without Ferrite				
1	/	1	1				

Auxiliary Equipment List and Details						
Description Manufacturer Model Serial Number						
Adapter	Jache	T91-92-1001-1 Output: DC 12V, 2A	1			

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

TEST REQUIREMENTS

8.1 **BANDWIDTH TEST**

8.1.1 **Applicable Standard**

According to FCC Part 15.249 According to RSS-GEN Clause 6.7

8.1.2 **Conformance Limit**

N/A

8.1.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

8.1.4 **Test Procedure**

The EUT was operating in controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW ≥ 1% of the 20 dB bandwidth(30KHz)

Set the video bandwidth (VBW) ≥ RBW(100KHz).

Set Span= approximately 2 to 3 times the 20 dB bandwidth

Set Detector = Peak.

Set Trace mode = max hold.

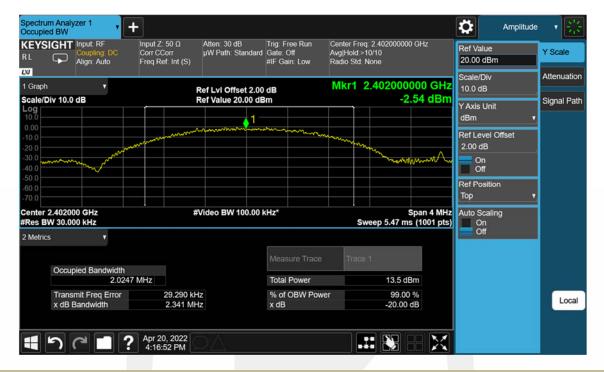
Set Sweep = auto couple.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

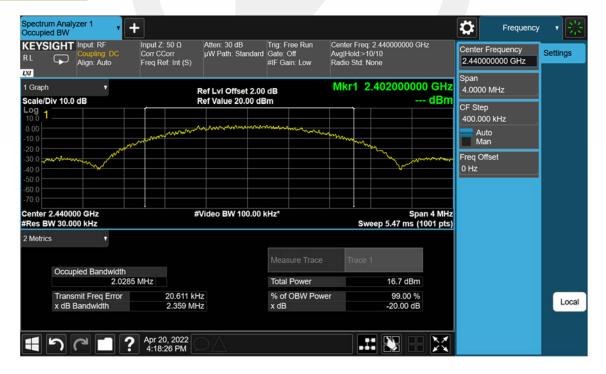
Use measurement function measure 99% Bandwidth.

Measure and record the results in the test report.

Test Results


Temperature:	22° C	
Relative Humidity:	53%	
ATM Pressure:	1011 mbar	

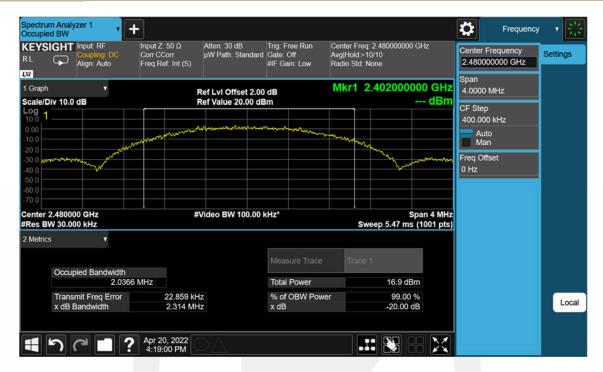
Operation Mode	Channel Frequency (MHz)	20db Measurement Bandwidth (MHz)	99% Measurement Bandwidth (MHz)	Limit (kHz)	Verdict			
	2402	2.341	2.0247	N/A	PASS			
GFSK	2440	2.359	2.0285	N/A	PASS			
	2480	2.314	2.0366	N/A	PASS			
Note: N/A (Not	Note: N/A (Not Applicable)							


20dB Occupied Bandwidth & 99% Occupied Bandwidth Test Model GFSK

Channel: 2402MHz

20dB Occupied Bandwidth & 99% Occupied Bandwidth Test Model GFSK

Channel: 2440MHz



20dB Occupied Bandwidth & 99% Occupied Bandwidth

Test Model GFSK

Channel: 2480MHz

8.2 RADIATED SPURIOUS EMISSION

8.2.1 Applicable Standard

According to FCC Part 15.249 and 15.209 According to RSS-210 Annex B.10 and RSS-GEN Clause 8.9

8.2.2 Conformance Limit

According to FCC Part 15.249: radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 15.205, restricted barres							
MHz	MHz	GHz					
16.42-16.423	399.9-410	4.5-5.15					
16.69475-16.69525	608-614	5.35-5.46					
16.80425-16.80475	960-1240	7.25-7.75					
25.5-25.67	1300-1427	8.025-8.5					
37.5-38.25	1435-1626.5	9.0-9.2					
73-74.6	1645.5-1646.5	9.3-9.5					
74.8-75.2	1660-1710	10.6-12.7					
123-138	2200-2300	14.47-14.5					
149.9-150.05	2310-2390	15.35-16.2					
156.52475-156.52525	2483.5-2500	17.7-21.4					
156.7-156.9	2690-2900	22.01-23.12					
162.0125-167.17	3260-3267	23.6-24.0					
167.72-173.2	3332-3339	31.2-31.8					
240-285	3345.8-3358	36.43-36.5					
322-335.4	3600-4400	(2)					
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHz MHz 16.42-16.423 399.9-410 16.69475-16.69525 608-614 16.80425-16.80475 960-1240 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5-1646.5 74.8-75.2 1660-1710 123-138 2200-2300 149.9-150.05 2310-2390 156.52475-156.52525 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358					

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

		byta and the factor of the annual of a part of the factor								
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance							
0.009-0.490	0.009-0.490 2400/F(KHz)		300							
0.490-1.705	24000/F(KHz)	20 log (uV/m)	30							
1.705-30	30	29.5	30							
30-88	100	40	3							
88-216	150	43.5	3							
216-960	200	46	3							
Above 960	500	54	3							

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] = 10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

Field strength of fundamental and Field strength of harmonics Limit:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
902-928 MHz	50(94 dBuV/m)	500(54 dBuV/m)
2400-2483.5 MHz	50(94 dBuV/m)	500(54 dBuV/m)
5725-5875 MHz	50(94 dBuV/m)	500(54 dBuV/m)
24.0-24.25 GHz	250(108 dBuV/m)	2500(68 dBuV/m)

As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation

For this report

Fundamental Fraguency	Field Strength	Field Strength of Spurious	
Fundamental Frequency	Of Fundamental	Emissions	
	AV:94 dBuV/m at 3m distance	AV:54 dBuV/m at 3m	
2400 2492 5 MH=	AV.94 dBd V/III at 3III distance	distance	
2400-2483.5 MHz	PK:114 dBuV/m at 3m	PK:74 dBuV/m at 3m	
	distance	distance	

8.2.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.2.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Peak power measurement procedures for Above 1GHz:

The EUT was placed on a turn table which is 1.5m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz

VBW ≥ [3 × RBW]

Sweep = auto

Detector function = peak

Trace = max hold

Average power measurement procedures for Above 1GHz:

- a) The EUT shall be configured to operate at the maximum achievable duty cycle
- b) Measure the duty cycle D of the transmitter output signal.
- c) RBW = 1 MHz.
- d) VBW \geq [3 × RBW].
- e) Detector = RMS (power averaging), if span / (# of points in sweep) \leq (RBW / 2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
- f) Averaging type = power (i.e., rms):
- g) Sweep time = auto.
- h) Perform a trace average of at least 100 traces.
- i) A correction factor shall be added to the measurement results prior to comparing with the emission limit to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

- 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is $[10 \log (1 / D)]$, where D is the duty cycle.
- 2) If linear voltage averaging mode was used in step f), then the applicable correction factor is [20 log (1 / D)], where D is the duty cycle.
- 3) If a specific emission is demonstrated to be continuous (D ≥ 98%) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Reduction of the measured emission amplitude levels to account for operational duty cycle is not permitted. Determining compliance is based on emission levels occurring during transmission; it is not based on an average across ON and OFF times of the transmitter.

For Below 1GHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 100 kHz for

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 30MHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 9kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For Below 150KHz:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 200Hz

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit. Submit this data.

8.2.5 Test Results

Temperature:	28.1° C
Relative Humidity:	43%
ATM Pressure:	1011 mbar

■ Spurious Emission below 30MHz (9KHz to 30MHz)

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Field Strength of the fundamental signal

Freq. (MHz)	Ant.Pol.	Det	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Margin (dB)
2402	V	PK	95.95	114.00	-18.05
2402	V	AV	87.85	94.00	-6.15
2402	Н	PK	98.40	114.00	-15.60
2402	Н	AV	90.42	94.00	-3.58
2440	V	PK	94.42	114.00	-19.58
2440	V	AV	86.48	94.00	-7.52
2440	Н	PK	95.70	114.00	-18.30
2440	Н	AV	87.43	94.00	-6.57
2480	V	PK	96.18	114.00	-17.82
2480	V	AV	86.48	94.00	-5.25
2480	Н	PK	96.84	114.00	-17.16
2480	Н	AV	89.50	94.00	-4.50

(1) PK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak; Note:

- (2) AV RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS;
 (3) Emission Level = Reading Level + Correct Factor 1 + Correct Factor 2;
- (4) Correct Factor 1 = Ant_F + Cab_L Preamp;
- (5) Correct Factor $2 = 10 \log (1 / D)$, where D is the duty cycle;
- (6) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-25.50

Out of Band Emissions

2484.164

Test mode:	GFSK	Frequency:	Channel 0: 2402MHz	

Freq. (MHz)	Ant.Pol.	Det	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Margin (dB)
2383.440	V	PK	46.14	74.00	-27.86
2383.440	V	AV	30.80	54.00	-23.20
2381.860	Н	PK	44.89	74.00	-29.11
2381.860	Н	AV	28.70	54.00	-25.30

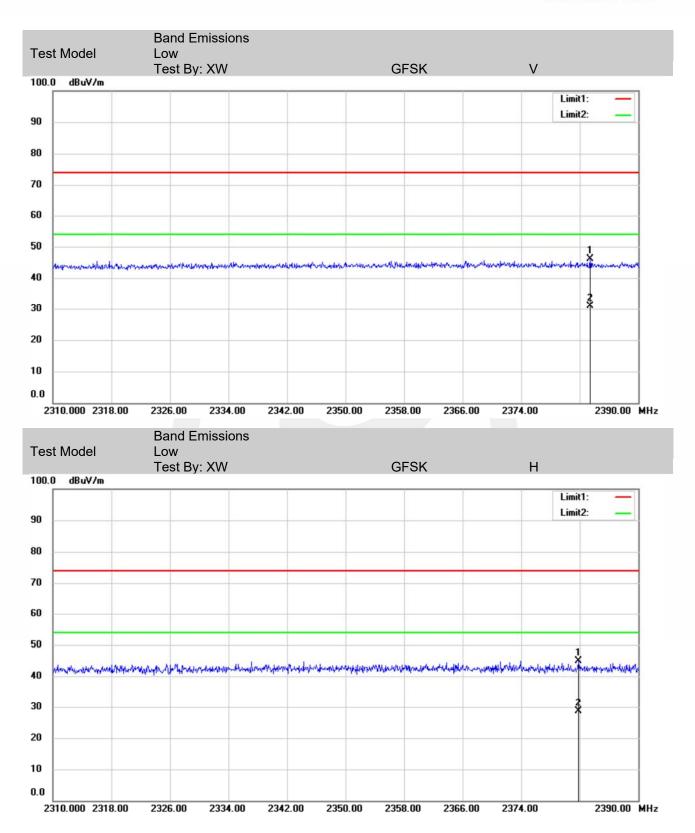
Note: (1) PK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak;

- (2) AV RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS;
- (3) Emission Level = Reading Level + Correct Factor 1 + Correct Factor 2;
- (4) Correct Factor 1 = Ant_F + Cab_L Preamp; (5) Correct Factor 2 = 10 log (1 / D), where D is the duty cycle;
- (6) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

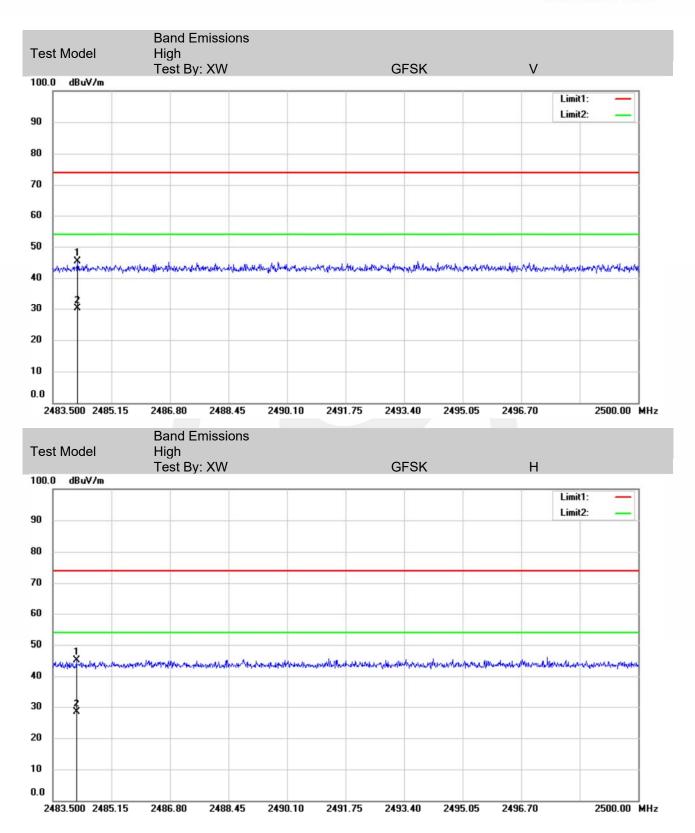
Test mode:	GFSK	Frequ	ency: Ch	Channel 39: 2480MHz			
Freq. (MHz)	Ant.Pol.	Det	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Margin (dB)		
2484.205	V	PK	45.48	74.00	-28.52		
2484.205	V	AV	30.20	54.00	-23.80		
2484.164	Н	PK	45.01	74.00	-28.99		

(1) PK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak; Note:

- (2) AV RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS;
- (3) Emission Level = Reading Level + Correct Factor 1 + Correct Factor 2;


ΑV

- (4) Correct Factor 1 = Ant_F + Cab_L Preamp; (5) Correct Factor 2 = 10 log (1 / D), where D is the duty cycle;
- (6) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.


28.50

54.00

Spurious Emission Above 1GHz (1GHz to 25GHz)

Test mode:	GFSK	Frequ	ency: Ch	annel 0: 2402Ml	·lz
Freq. (MHz)	Ant.Pol.	Det	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Margin (dB)
3991.627	V	PK	45.62	74.00	-28.38
3991.627	V	AV	28.97	54.00	-25.03
10563.31	V	PK	51.95	74.00	-22.05
10563.31	V	AV	33.62	54.00	-20.38
17966.21	V	PK	63.05	74.00	-10.95
17966.21	V	AV	45.79	54.00	-8.21
4566.494	Н	PK	42.97	74.00	-31.03
4566.494	Н	AV	26.67	54.00	-27.33
10456.99	Н	PK	51.64	74.00	-22.36
10456.99	Н	AV	33.74	54.00	-20.26
17901.42	Н	PK	63.08	74.00	-10.92
17901.42	Н	AV	45.29	54.00	-8.71

Note:

- (1) PK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak;
- (2) AV RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS;
- (3) Emission Level = Reading Level + Correct Factor 1 + Correct Factor 2;
- (4) Correct Factor 1 = Ant_F + Cab_L Preamp;

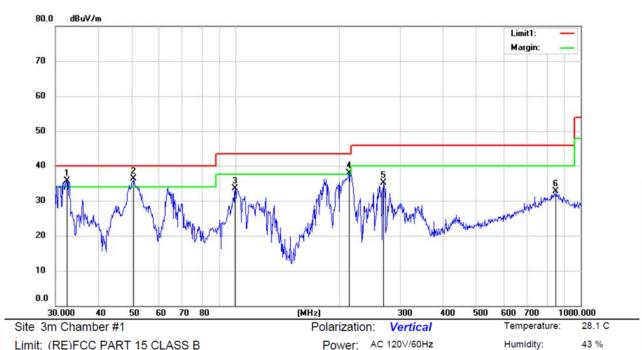
- (5) Correct Factor 2 = 10 log (1 / D), where D is the duty cycle;
- (6) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Test mode:	GFSK	Frequ	ency: Ch	Channel 39: 2441MHz				
Freq. (MHz)	Ant.Pol.	Det	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Margin (dB)			
3985.287	V	PK	47.89	74.00	-26.11			
3985.287	V	AV	30.14	54.00	-23.86			
8346.330	V	PK	50.68	74.00	-23.32			
8346.330	V	AV	32.82	54.00	-21.18			
17932.49	V	PK	63.33	74.00	-10.67			
17932.49	V	AV	45.76	54.00	-8.24			
4683.457	Н	PK	42.88	74.00	-31.12			
4683.457	Н	AV	26.25	54.00	-27.75			
11042.53	Н	PK	52.68	74.00	-21.32			
11042.53	Н	AV	36.33	54.00	-17.67			
17997.39	Н	PK	63.67	74.00	-10.33			
17997.39	Н	AV	45.74	54.00	-8.26			

- (1) PK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak;
- (2) AV RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS;
- (3) Emission Level = Reading Level + Correct Factor 1 + Correct Factor 2;
- (4) Correct Factor 1 = Ant F + Cab L Preamp;
- (5) Correct Factor 2 = 10 log (1 / D), where D is the duty cycle;
- (6) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Test mode:	GFSK	Frequ	ency: Ch	nannel 78: 2480M	1Hz
Freq. (MHz)	Ant.Pol.	Det	Emission Level(dBuV/m)	Limit 3m(dBuV/m)	Margin (dB)
3996.823	V	PK	43.78	74.00	-30.22
3996.823	V	AV	25.17	54.00	-28.83
11488.56	V	PK	53.07	74.00	-20.93
11488.56	V	AV	35.69	54.00	-18.31
17844.59	V	PK	65.22	74.00	-8.78
17844.59	V	AV	48.78	54.00	-5.22
5126.180	Н	PK	45.40	74.00	-28.60
5126.180	Н	AV	28.62	54.00	-25.38
12086.37	Н	PK	54.86	74.00	-19.14
12086.37	Н	AV	36.98	54.00	-17.02
17992.19	Н	PK	64.52	74.00	-9.48
17992.19	Н	AV	47.96	54.00	-6.04

Note: (1) PK RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = Peak;


- (2) AV RBW = 1 MHz, VBW ≥ 3 × RBW, Detector = RMS;
- (3) Emission Level = Reading Level + Correct Factor 1 + Correct Factor 2;

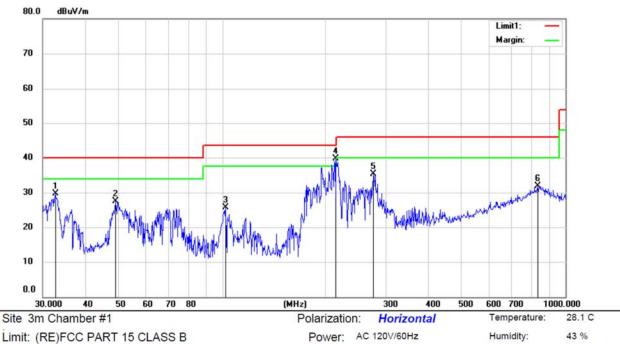
- (4) Correct Factor 1 = Ant_F + Cab_L Preamp;
 (5) Correct Factor 2 = 10 log (1 / D), where D is the duty cycle;
 (6) The reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Spurious Emission below 1GHz (30MHz to 1GHz) All modes have been tested, and the worst result recorded was report as below:

Spurious Emission below 1GHz (30MHz to 1GHz)

Limit: (RE)FCC PART 15 CLASS B

Mode: 2.4G 2402


No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	ļ	32.4913	50.19	-14.39	35.80	40.00	-4.20	QP			
2	*	50.7414	48.23	-11.92	36.31	40.00	-3.69	QP			
3		99.8340	48.17	-14.76	33.41	43.50	-10.09	QP			
4	ļ	213.1085	51.20	-13.35	37.85	43.50	-5.65	QP			
5		268.7207	45.71	-10.52	35.19	46.00	-10.81	QP			
6		848.8001	29.69	2.92	32.61	46.00	-13.39	QP			

Humidity:

43 %

Spurious Emission below 1GHz (30MHz to 1GHz)

Limit: (RE)FCC PART 15 CLASS B

Mode: 2.4G 2402

Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
	MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
	32.6913	44.07	-14.36	29.71	40.00	-10.29	QP			
	48.9285	39.78	-12.28	27.50	40.00	-12.50	QP			
E	102.4494	40.25	-14.54	25.71	43.50	-17.79	QP			
*	214.7966	53.07	-13.31	39.76	43.50	-3.74	QP			
	275.8816	45.44	-10.07	35.37	46.00	-10.63	QP			
	831.8574	29.37	2.51	31.88	46.00	-14.12	QP			
	*	MHz 32.6913 48.9285 102.4494	Mk. Freq. Level MHz dBuV 32.6913 44.07 48.9285 39.78 102.4494 40.25 * 214.7966 53.07 275.8816 45.44	Mk. Freq. Level Factor MHz dBuV dB 32.6913 44.07 -14.36 48.9285 39.78 -12.28 102.4494 40.25 -14.54 * 214.7966 53.07 -13.31 275.8816 45.44 -10.07	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 32.6913 44.07 -14.36 29.71 48.9285 39.78 -12.28 27.50 102.4494 40.25 -14.54 25.71 * 214.7966 53.07 -13.31 39.76 275.8816 45.44 -10.07 35.37	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m dBuV/m 32.6913 44.07 -14.36 29.71 40.00 48.9285 39.78 -12.28 27.50 40.00 102.4494 40.25 -14.54 25.71 43.50 * 214.7966 53.07 -13.31 39.76 43.50 275.8816 45.44 -10.07 35.37 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB dBuV/m dB 32.6913 44.07 -14.36 29.71 40.00 -10.29 48.9285 39.78 -12.28 27.50 40.00 -12.50 102.4494 40.25 -14.54 25.71 43.50 -17.79 * 214.7966 53.07 -13.31 39.76 43.50 -3.74 275.8816 45.44 -10.07 35.37 46.00 -10.63	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector 32.6913 44.07 -14.36 29.71 40.00 -10.29 QP 48.9285 39.78 -12.28 27.50 40.00 -12.50 QP 102.4494 40.25 -14.54 25.71 43.50 -17.79 QP * 214.7966 53.07 -13.31 39.76 43.50 -3.74 QP 275.8816 45.44 -10.07 35.37 46.00 -10.63 QP	Mk. Freq. Level Factor ment Limit Over Height MHz dBuV dB dBuV/m dBuV/m dB Detector cm 32.6913 44.07 -14.36 29.71 40.00 -10.29 QP 48.9285 39.78 -12.28 27.50 40.00 -12.50 QP 102.4494 40.25 -14.54 25.71 43.50 -17.79 QP * 214.7966 53.07 -13.31 39.76 43.50 -3.74 QP 275.8816 45.44 -10.07 35.37 46.00 -10.63 QP	Mk. Freq. Level Factor ment Limit Over Height Degree MHz dBuV dB dBuV/m dB uV/m dB Detector cm degree 32.6913 44.07 -14.36 29.71 40.00 -10.29 QP 48.9285 39.78 -12.28 27.50 40.00 -12.50 QP 102.4494 40.25 -14.54 25.71 43.50 -17.79 QP * 214.7966 53.07 -13.31 39.76 43.50 -3.74 QP 275.8816 45.44 -10.07 35.37 46.00 -10.63 QP

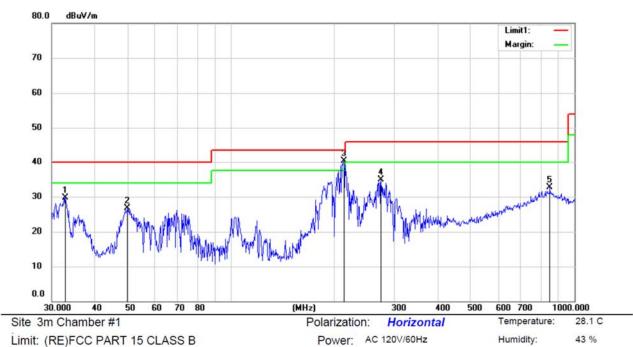
Humidity:

43 %

Spurious Emission below 1GHz (30MHz to 1GHz)

Limit: (RE)FCC PART 15 CLASS B

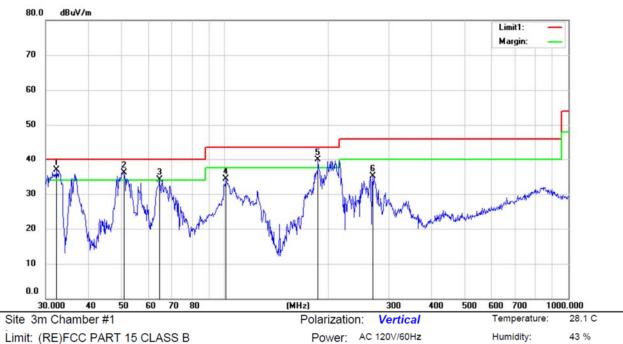
Mode: 2.4G 2440


Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBu∀/m	dB	Detector	cm	degree	Comment
1	*	36.5733	50.31	-13.46	36.85	40.00	-3.15	QP			
2	İ	50.1884	47.86	-11.98	35.88	40.00	-4.12	QP			
3		66.0342	45.46	-12.34	33.12	40.00	-6.88	QP			
4	9	101.0225	48.67	-14.68	33.99	43.50	-9.51	QP			
5	ļ	204.3272	53.24	-13.68	39.56	43.50	-3.94	QP			
6	1	849.9170	28.73	2.92	31.65	46.00	-14.35	QP			

Power: AC 120V/60Hz

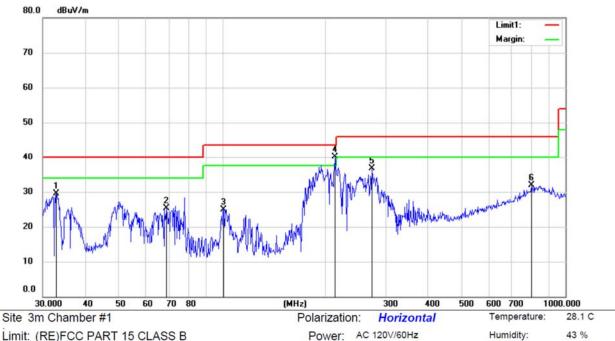
Spurious Emission below 1GHz (30MHz to 1GHz)


Limit: (RE)FCC PART 15 CLASS B

Mode: 2.4G 2440

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∨	dB	dBuV/m	dBu√/m	dB	Detector	cm	degree	Comment
1		32.8925	44.08	-14.32	29.76	40.00	-10.24	QP			
2		49.7722	38.69	-12.06	26.63	40.00	-13.37	QP			
3	*	213.2020	53.62	-13.35	40.27	43.50	-3.23	QP			
4	-	273.4737	45.03	-10.20	34.83	46.00	-11.17	QP			
5		850.2896	29.83	2.91	32.74	46.00	-13.26	QP			

Spurious Emission below 1GHz (30MHz to 1GHz)


Limit: (RE)FCC PART 15 CLASS B

Mode: 2.4G 2480

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu∨/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	32.3207	51.36	-14.41	36.95	40.00	-3.05	QP			
2	İ	50.8082	48.02	-11.91	36.11	40.00	-3.89	QP			
3	!	64.6311	46.25	-12.11	34.14	40.00	-5.86	QP			
4		100.6690	49.06	-14.71	34.35	43.50	-9.15	QP			
5	ļ	186.5226	53.60	-13.72	39.88	43.50	-3.62	QP			
6		269.9012	45.60	-10.45	35.15	46.00	-10.85	QP			

Spurious Emission below 1GHz (30MHz to 1GHz)

Limit: (RE)FCC PART 15 CLASS B

Mode: 2.4G 2480

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		32.9213	43.86	-14.31	29.55	40.00	-10.45	QP			
2		68.8721	38.15	-12.92	25.23	40.00	-14.77	QP			
3		101.0225	39.61	-14.68	24.93	43.50	-18.57	QP			
4	*	213.3890	53.50	-13.34	40.16	43.50	-3.34	QP			
5		273.9536	46.80	-10.17	36.63	46.00	-9.37	QP			
6		797.2306	29.95	1.90	31.85	46.00	-14.15	QP			

8.3 CONDUCTED EMISSIONS TEST

8.3.1 Applicable Standard

According to FCC Part 15.207(a) RSS-GEN Clause 8.8

8.3.2 Conformance Limit

Conducted Emission Limit

Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.3.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

8.3.4 Test Procedure

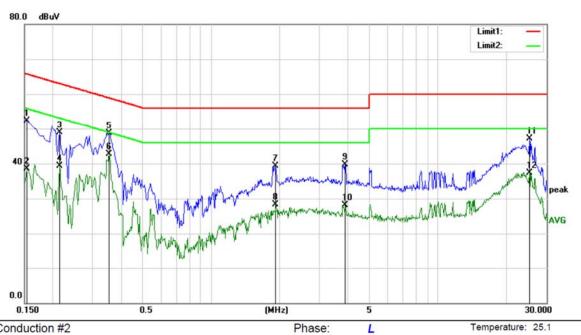
The EUT was placed on a table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Repeat above procedures until all frequency measured were complete.

8.3.5 Test Results

PASS.


The AC120V &240V voltage have been tested, and the worst result recorded was report as below:

Humidity:

45 %

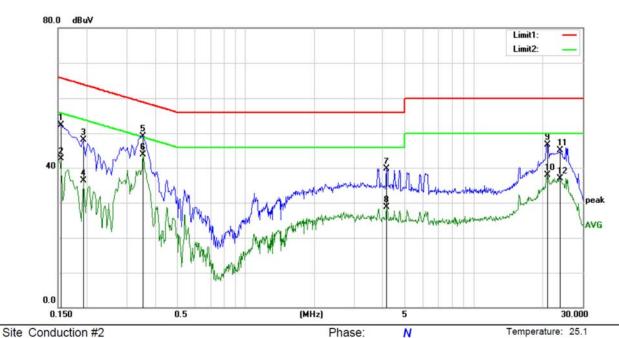
Conducted Emission

Power: AC 120V/60Hz

Site Conduction #2

Limit: (CE)FCC PART 15 class B_QP

Mode: SRD 2.4G


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.1540	41.85	10.48	52.33	65.70	-13.37	QP	
2		0.1540	28.10	10.48	38.58	55.78	-17.20	AVG	
3		0.2140	38.47	10.43	48.90	62.99	-14.09	QP	
4		0.2140	28.90	10.43	39.33	53.05	-13.72	AVG	
5		0.3540	38.35	10.38	48.73	58.84	-10.11	QP	
6	*	0.3540	32.39	10.38	42.77	48.87	-6.10	AVG	
7		1.9100	28.95	10.33	39.28	56.00	-16.72	QP	
8		1.9100	17.99	10.33	28.32	46.00	-17.68	AVG	
9		3.8820	29.21	10.44	39.65	56.00	-16.35	QP	
10		3.8820	17.72	10.44	28.16	46.00	-17.84	AVG	
11		25.3180	36.32	10.86	47.18	60.00	-12.82	QP	
12		25.3180	26.47	10.86	37.33	50.00	-12.67	AVG	

Humidity:

45 %

Conducted Emission

Power: AC 120V/60Hz

Limit: (CE)FCC PART 15 class B_QP

Mode: SRD 2.4G

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1548	41.75	10.48	52.23	65.65	-13.42	QP	
2		0.1548	32.13	10.48	42.61	55.74	-13.13	AVG	
3		0.1940	37.64	10.44	48.08	63.79	-15.71	QP	
4		0.1940	25.80	10.44	36.24	53.86	-17.62	AVG	
5		0.3540	38.81	10.38	49.19	58.84	-9.65	QP	
6	*	0.3540	33.51	10.38	43.89	48.87	-4.98	AVG	
7		4.1380	29.20	10.45	39.65	56.00	-16.35	QP	
8		4.1380	18.28	10.45	28.73	46.00	-17.27	AVG	
9	- 3	21.0420	35.97	10.78	46.75	60.00	-13.25	QP	
10	1	21.0420	27.12	10.78	37.90	50.00	-12.10	AVG	
11	- 3	23.8780	34.27	10.84	45.11	60.00	-14.89	QP	
12	- 3	23.8780	26.13	10.84	36.97	50.00	-13.03	AVG	

8.4 ANTENNA APPLICATION

8.4.1 Antenna Requirement

Standard

Requirement

An intentional radiator shall be designed to ensure that no antenna other

than that furnished by the responsible party shall be used with the

device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance

such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

An intentional radiator shall be designed to ensure that no antenna other

than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of RSS-GEN Clause 6.8. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with RSS-GEN Clause 6.8, must be measured at the installation site. However, the installer shall be

responsible for ensuring that the proper antenna is employed so that the

FCC CRF Part 15.203

RSS-GEN Clause 6.8

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

limits in this part are not exceeded.

8.4.2 **Result**

Е)/	١c	c	
г	•	10	J	

Note:

Antennas use a permanently attached antenna which is not replaceable.

□ Not using a standard antenna jack or electrical connector for antenna replacement
 □ The antenna has to be professionally installed (please provide method of installation)

Which in accordance to section 15.203 and RSS-GEN Clause 6.8, please refer to the internal

photos.

Detail of factor for radiated emission

Frequency(MHz)	Ant_F(dB)	Cab_L(dB)	Preamp(dB)	Correct Factor(dB)
0.009	20.6	0.03	1	20.63
0.15	20.7	0.1	1	20.8
1	20.9	0.15	1	21.05
10	20.1	0.28	1	20.38
30	18.8	0.45	\	19.25
00	44.7	0.00	07.0	45.50
30	11.7	0.62	27.9	-15.58
100	12.5	1.02	27.8	-14.28
300	12.9	1.91	27.5	-12.69
600	19.2	2.92	27	-4.88
800	21.1	3.54	26.6	-1.96
1000	22.3	4.17	26.2	0.27
1000	25.6	1.76	41.4	-14.04
3000	28.9	3.27	43.2	-11.03
5000	31.1	4.2	44.6	-9.3
8000	36.2	5.95	44.7	-2.55
10000	38.4	6.3	43.9	0.8
12000	38.5	7.14	42.3	3.34
15000	40.2	8.15	41.4	6.95
18000	45.4	9.02	41.3	13.12
18000	37.9	1.81	47.9	-8.19
21000	37.9	1.95	48.7	-8.85
25000	39.3	2.01	42.8	-1.49
28000	39.6	2.16	46.0	-4.24
31000	41.2	2.24	44.5	-1.06
34000	41.5	2.29	46.6	-2.81
37000	43.8	2.30	46.4	-0.3
40000	43.2	2.50	42.2	3.5