

FCC Radio Test Report

FCC ID: 2AF82-BXP350

Report No. : BTL-FCCP-1-2408T098

Equipment : Box PC Model Name : BXP-350 Brand Name : Qbic

Applicant: Qbic Technology Co., Ltd.

Address : 26F.-12, NO.99, SEC. 1, XINTAI 5TH RD., XIZHI DIST., NEW TAIPEI CITY

22175, TAIWAN

Radio Function : Bluetooth

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement : ANSI C63.10-2013

Procedure(s)

Date of Receipt : 2024/8/21

Date of Test : 2024/9/9 ~ 2024/9/26

Issued Date : 2024/10/8

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by : Brett Shen

Brett Shen, Engineer

Approved by

Jerry Chuang, Supervisor

TAF

Testing Laboratory

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Project No.: 2408T098 Page 1 of 79 Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2408T098 Page 2 of 79 Report Version: R00

CONTENTS REVISION HISTORY 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 7 1.2 1.3 **TEST ENVIRONMENT CONDITIONS** 8 1.4 **DUTY CYCLE** 9 2 **GENERAL INFORMATION** 10 2.1 **DESCRIPTION OF EUT** 10 **TEST MODES** 2.2 12 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.3 13 2.4 SUPPORT UNITS 14 3 AC POWER LINE CONDUCTED EMISSIONS TEST 15 3.1 LIMIT 15 3.2 TEST PROCEDURE 15 **DEVIATION FROM TEST STANDARD** 3.3 16 **TEST SETUP** 3.4 16 3.5 **TEST RESULT** 16 RADIATED EMISSIONS TEST 4 17 4.1 LIMIT 17 4.2 TEST PROCEDURE 18 4.3 **DEVIATION FROM TEST STANDARD** 18 4.4 **TEST SETUP** 18 4.5 **EUT OPERATING CONDITIONS** 19 TEST RESULT - 9 KHZ TO 30 MHZ 4.6 20 4.7 TEST RESULT - 30 MHZ TO 1 GHZ 20 4.8 TEST RESULT - ABOVE 1 GHZ 20 5 NUMBER OF HOPPING CHANNEL 21 5.1 **APPLIED PROCEDURES** 21 **TEST PROCEDURE** 5.2 21 5.3 **DEVIATION FROM STANDARD** 21 5.4 **TEST SETUP** 21 **EUT OPERATION CONDITIONS** 5.5 21 5.6 TEST RESULTS 21 6 AVERAGE TIME OF OCCUPANCY 22 6.1 APPLIED PROCEDURES / LIMIT 22 6.2 **TEST PROCEDURE** 22 **DEVIATION FROM STANDARD** 22 6.3 6.4 **TEST SETUP** 22 6.5 **EUT OPERATION CONDITIONS** 22 TEST RESULTS 22 6.6 7 HOPPING CHANNEL SEPARATION MEASUREMENT 23 APPLIED PROCEDURES / LIMIT 23 7.1 7.2 **TEST PROCEDURE** 23 7.3 **DEVIATION FROM STANDARD** 23 7.4 **TEST SETUP** 23 7.5 **TEST RESULTS** 23 **BANDWIDTH TEST** 24 8

8.1	APPL	LIED PROCEDURES	24	
8.2	TEST	PROCEDURE	24	
8.3	DEVI	ATION FROM STANDARD	24	
8.4	TEST	SETUP	24	
8.5	EUT	OPERATION CONDITIONS	24	
8.6	TEST	RESULTS	24	
9	OUTPU	T POWER TEST	25	
9.1	APPL	LIED PROCEDURES / LIMIT	25	
9.2	TEST	PROCEDURE	25	
9.3	DEVI	ATION FROM STANDARD	25	
9.4	TEST	SETUP	25	
9.5	EUT	OPERATION CONDITIONS	25	
9.6	TEST	RESULTS	25	
10	ANTENI	NA CONDUCTED SPURIOUS EMISSION	26	
10.1	APPL	LIED PROCEDURES / LIMIT	26	
10.2	TEST	PROCEDURE	26	
10.3	DEVI	ATION FROM STANDARD	26	
10.4	TEST	SETUP	26	
10.5	EUT	OPERATION CONDITIONS	26	
10.6	TEST	RESULTS	26	
11	LIST OF	MEASURING EQUIPMENTS	27	
12	EUT TE	ST PHOTO	29	
13	EUT PH	OTOS	29	
	., . •		. •	
	.,		_	
	–			
	.,		· ·	
		2.1.2		
	.,	331.31.31.21.	_	
APPEND	IX J	ANTENNA CONDUCTED SPURIOUS EMISSION	/5	
	8.2 8.3 8.4 8.5 8.6 9 9.1 9.2 9.3 9.4 9.5 9.6 10 10.1 10.2 10.3 10.4 10.5 10.6 11 12 13 APPEND APPEN	8.2 TEST 8.3 DEVI 8.4 TEST 8.5 EUT 8.6 TEST 9 OUTPU 9.1 APPL 9.2 TEST 9.3 DEVI 9.4 TEST 9.5 EUT 9.6 TEST 10 ANTENI 10.1 APPL 10.2 TEST 10.3 DEVI 10.4 TEST 10.5 EUT 10.6 TEST 11 LIST OF 12 EUT TE	8.2 TEST PROCEDURE 8.3 DEVIATION FROM STANDARD 8.4 TEST SETUP 8.5 EUT OPERATION CONDITIONS 8.6 TEST RESULTS 9 OUTPUT POWER TEST 9.1 APPLIED PROCEDURES / LIMIT 9.2 TEST PROCEDURE 9.3 DEVIATION FROM STANDARD 9.4 TEST SETUP 9.5 EUT OPERATION CONDITIONS 9.6 TEST RESULTS 10 ANTENNA CONDUCTED SPURIOUS EMISSION 10.1 APPLIED PROCEDURES / LIMIT 10.2 TEST PROCEDURE 10.3 DEVIATION FROM STANDARD 10.4 TEST SETUP 10.5 EUT OPERATION CONDITIONS 10.6 TEST RESULTS 11 LIST OF MEASURING EQUIPMENTS 12 EUT TEST PHOTO 13 EUT PHOTOS APPENDIX A AC POWER LINE CONDUCTED EMISSIONS APPENDIX B RADIATED EMISSIONS - 9 KHZ TO 30 MHZ APPENDIX C RADIATED EMISSIONS - 30 MHZ TO 1 GHZ APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ APPENDIX F AVERAGE TIME OF OCCUPANCY APPENDIX G HOPPING CHANNEL SEPARATION MEASUREMENT APPENDIX I OUTPUT POWER	8.2 TEST PROCEDURE 24 8.3 DEVIATION FROM STANDARD 24 8.4 TEST SETUP 24 8.5 EUT OPERATION CONDITIONS 24 8.6 TEST RESULTS 24 8.6 TEST RESULTS 25 9 OUTPUT POWER TEST 25 9.1 APPLIED PROCEDURES / LIMIT 25 9.2 TEST PROCEDURE 25 9.3 DEVIATION FROM STANDARD 25 9.4 TEST SETUP 25 9.5 EUT OPERATION CONDITIONS 25 9.6 TEST RESULTS 25 10 ANTENNA CONDUCTED SPURIOUS EMISSION 26 10.1 APPLIED PROCEDURES / LIMIT 26 10.2 TEST PROCEDURE 26 10.3 DEVIATION FROM STANDARD 26 10.4 TEST SETUP 26 10.5 EUT OPERATION CONDITIONS 26 10.6 TEST RESULTS 26 11 LIST OF MEASURING EQUIPMENTS 27 12 EUT TEST PHOTO 29 13 EUT P

Project No.: 2408T098 Page 4 of 79 Report Version: R00

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-1-2408T098	R00	Original Report.	2024/10/8	Valid

Project No.: 2408T098 Page 5 of 79 Report Version: R00

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
15.205 15.209 15.247(d)	Radiated Emissions	APPENDIX B APPENDIX C APPENDIX D	Pass	
15.247 (a)(1)(iii)	Number of Hopping Frequency	APPENDIX E	Pass	
15.247 (a)(1)(iii)	Average Time of Occupancy	APPENDIX F	Pass	
15.247 (a)(1)	Hopping Channel Separation	APPENDIX G	Pass	
15.247 (a)(1)	Bandwidth	APPENDIX H	Pass	
15.247 (b)(1)	Output Power	APPENDIX I	Pass	
15.247(d)	Antenna conducted Spurious Emission	APPENDIX J	Pass	
15.203	Antenna Requirement		Pass	

Statement of Conformity

The statement of conformity is based on the binary decision rule according to IEC Guide 115 and ILAC G8 "simple acceptance" principle. Without considering measurement uncertainty, its specific risk is less than 50% PFA. (PFA: Probability of False Accept)

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.

Project No.: 2408T098 Page 6 of 79 Report Version: R00

1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659.

The test location(s) used to collect the test data in this report are:

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

(FCC DN: TW0030)

□ C03 ⊠ CB18 □ CB19

No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C05 □ CB08 □ CB11 □ SR10 ☒ SR11

No. 68-2, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ CB12 ⊠ SR05

No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

(FCC DN: TW0659)

□ C06 ⊠ CB21 □ CB22

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = \mathbf{2}$, providing a level of confidence of approximately 95 %.

A. AC power line conducted emissions test:

-	Test Site	Method	Measurement Frequency Range	U (dB)
	SR05	CISPR	150 kHz ~ 30 MHz	3.44

B. Radiated emissions test:

Test Site	Measurement Frequency Range	U (dB)
CB21	0.03 GHz ~ 0.2 GHz	4.17
CBZT	0.2 GHz ~ 1 GHz	4.72

Test Site	Measurement Frequency Range	U (dB)
	1 GHz ~ 6 GHz	4.62
CB18	1 GHz ~ 6 GHz	4.62
CB16	6 GHz ~ 18 GHz	4.24
	6 GHz ~ 18 GHz	4.06

C. Conducted test:

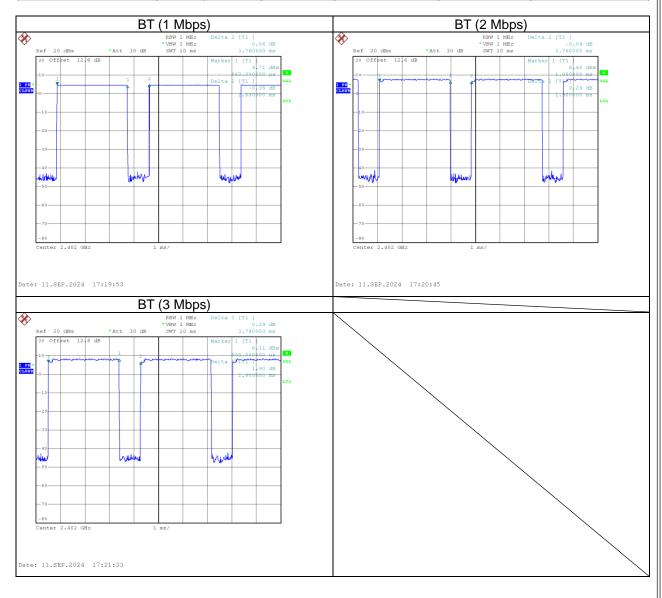
4 1001 .	
Test Item	U (dB)
Occupied Bandwidth	0.5338
Output power	0.3659
Conducted Spurious emissions	0.5416
Conducted Band edges	0.5348
Dwell time	0.6606
Channel separation	0.6606
Channel numbers	0.6606

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	26 °C, 42 %	AC 120V	Ken Lan
Radiated emissions below 1 GHz	Refer to data	AC 120V	Emily Chang
Radiated emissions above 1 GHz	Refer to data	AC 120V	Sean Huang
Number of Hopping Frequency	25.3 °C, 49 %	AC 120V	Ken Lan
Average Time of Occupancy	25.3 °C, 49 %	AC 120V	Ken Lan
Hopping Channel Separation	25.3 °C, 49 %	AC 120V	Ken Lan
Bandwidth	25.3 °C, 49 %	AC 120V	Ken Lan
Output Power	25.3 °C, 49 %	AC 120V	Ken Lan
Antenna conducted Spurious Emission	25.3 °C, 49 %	AC 120V	Ken Lan


Project No.: 2408T098 Page 8 of 79 Report Version: R00

1.4 DUTY CYCLE

If duty cycle is \geq 98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

Remark	Delta 2			Delta 3	On Time/Period	10 log(1/Duty Cycle)
Mode	ON	Numbers	On Time (B)	Period (ON+OFF)	Duty Cycle	Duty Factor
Wiode	(ms)	(ON)	(ms)	(ms)	(%)	(dB)
BT (1 Mbps)	2.880	1	2.880	3.760	76.60%	1.16
BT (2 Mbps)	2.900	1	2.900	3.760	77.13%	1.13
BT (3 Mbps)	2.900	1	2.900	3.780	76.72%	1.15

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Box PC			
Model Name	BXP-350			
Brand Name	Qbic			
Model Difference	N/A			
Power Source	DC Voltage supplied from AC/DC adapter.			
	EUT: DC 12V, 2.5A			
Power Rating	For Adapter			
	I/P: 100-240V~, 50-60Hz, 0.9A Max			
	O/P: DC 12.0V, 2.5A 30.0W			
Products Covered	1 * Adapter: APD / WA-30P12R			
Operation Band	2400 MHz ~ 2483.5 MHz			
Operation Frequency	2402 MHz ~ 2480 MHz			
Modulation Type	GFSK, π/4-DQPSK, 8DPSK			
Modulation Technology	FHSS			
Transfer Rate	1 Mbps, 2 Mbps, 3Mbps			
	1 Mbps: 7.72 dBm (0.0059 W)			
Output Power Max.	2 Mbps: 9.78 dBm (0.0095 W)			
·	3 Mbps: 10.11 dBm (0.0103 W)			
Test Software Version	ADB			
Test Model	BXP-350			
Sample Status	Engineering Sample			
EUT Modification(s)	N/A			

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

Project No.: 2408T098 Page 10 of 79 Report Version: R00

(2) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2403	28	2430	55	2457
02	2404	29	2431	56	2458
03	2405	30	2432	57	2459
04	2406	31	2433	58	2460
05	2407	32	2434	59	2461
06	2408	33	2435	60	2462
07	2409	34	2436	61	2463
08	2410	35	2437	62	2464
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2440	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2470
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

(3) Table for Filed Antenna:

Antenna	Manufacture	Model name	Туре	Connector	Frequency (MHz)	Gain (dBi)
1	Joymax	TWX-100BRS3B-1 242	Dipole	RP SMA Plug	2400-2500	2.08

(4) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

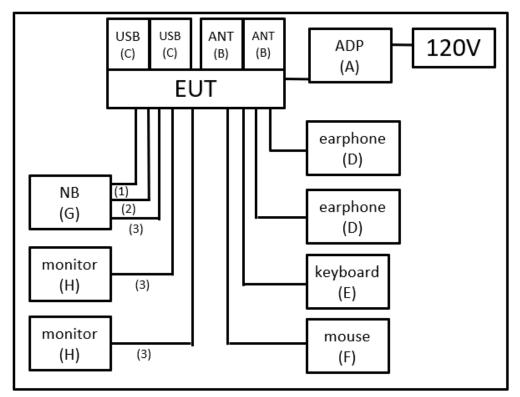
Project No.: 2408T098 Page 11 of 79 Report Version: R00

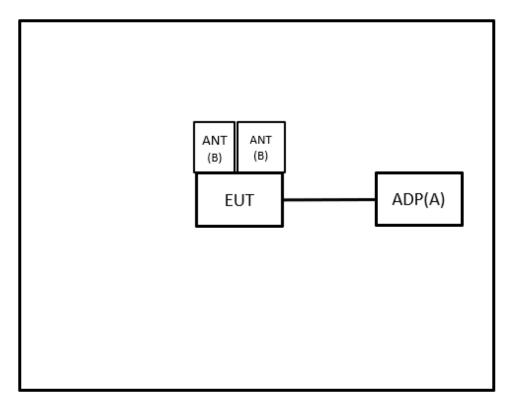
2.2 TEST MODES

Test Items	Test mode	Channel	Note
AC power line conducted emissions	Normal/Idle	-	-
Transmitter Radiated Emissions (below 1GHz)	3 Mbps	78	-
Transmitter Radiated Emissions	1/3 Mbps	00/78	Bandedge
(above 1GHz)	1/3 Mbps	00/39/78	Harmonic
Transmitter Radiated Emissions (above 18GHz)	3 Mbps	78	-
Number of Hopping Frequency	1/3 Mbps	00~78	-
Average Time of Occupancy	1/3 Mbps	00/39/78	-
Hopping Channel Separation	1/3 Mbps	00/39/78	-
Bandwidth	1/3 Mbps	00/39/78	-
Peak Output Power	1/2/3 Mbps	00/39/78	-
Antenna conducted Spurious Emission	1/3 Mbps	00/39/78	-

NOTE:

- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.


Project No.: 2408T098 Page 12 of 79 Report Version: R00


2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

AC power line conducted emissions

Radiated Emissions

Project No.: 2408T098 Page 13 of 79 Report Version: R00

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	ADP	WA-30P12R	N/A	N/A	Supplied by test requester
В	ANT	N/A	N/A	N/A	Supplied by test requester
С	USB	N/A	N/A	N/A	Furnished by test lab.
D	Earphone	N/A	N/A	N/A	Furnished by test lab.
E	Keyboard	N/A	N/A	N/A	Furnished by test lab.
F	Mouse	N/A	N/A	N/A	Furnished by test lab.
G	NB	N/A	N/A	N/A	Furnished by test lab.
Н	Monitor	N/A	N/A	N/A	Furnished by test lab.

Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	0.7m	Lan	Furnished by test lab.
2	N/A	N/A	0.7m	Type-C	Furnished by test lab.
3	N/A	N/A	2m	HDMI	Furnished by test lab.

Project No.: 2408T098 Page 14 of 79 Report Version: R00

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBμV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level (dBµV)		Correct Factor (dB)		Measurement Value (dBµV)
38.22	+	3.45	=	41.67

Measurement Value		Limit Value		Margin Level
(dBµV)		(dBµV)		(dB)
41.67	•	60	II	-18.33

The following table is the setting of the receiver.

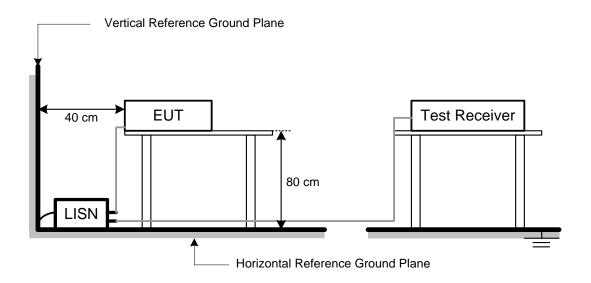
Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - All other support equipment were powered from an additional LISN(s).
 - The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.
 - The end of the cable will be terminated, using the correct terminating impedance.
 - The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.


Project No.: 2408T098 Page 15 of 79 Report Version: R00

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 TEST RESULT

Please refer to the APPENDIX A.

Project No.: 2408T098 Page 16 of 79 Report Version: R00

4 RADIATED EMISSIONS TEST

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	Radiated (dBu	Measurement Distance	
(IVITIZ)	Peak	Average	(meters)
Above 1000	74	54	3

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

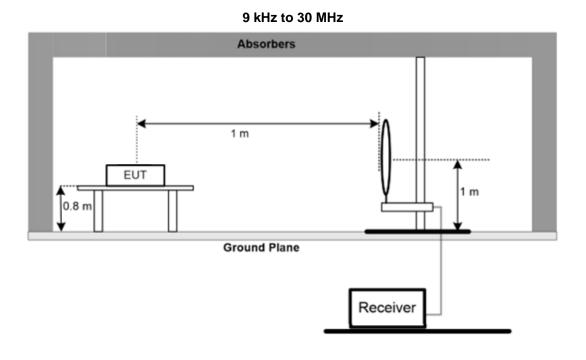
Reading Level (dBµV)		Correct Factor (dB/m)		Measurement Value (dBµV/m)
35.45	+	-11.37	II	24.08

Measurement Value		Limit Value		Margin Level
(dBµV/m)		(dBµV/m)		(dB)
24.08	-	40	=	-15.92

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	1MHz / 3MHz for Peak,
(Emission in restricted band)	1MHz / 1/T for Average

Spectrum Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9KHz~90KHz for PK/AVG detector
Start ~ Stop Frequency	90KHz~110KHz for QP detector
Start ~ Stop Frequency	110KHz~490KHz for PK/AVG detector
Start ~ Stop Frequency	490KHz~30MHz for QP detector
Start ~ Stop Frequency	30MHz~1000MHz for QP detector

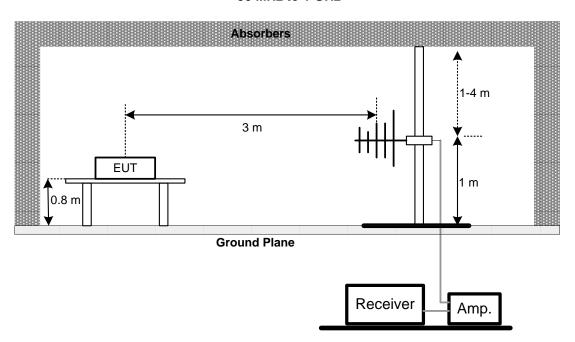
Project No.: 2408T098 Page 17 of 79 Report Version: R00


4.2 TEST PROCEDURE

- a. The measuring distance of 1 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 30MHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- c. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- d. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- f. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- g. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- h. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- i. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- j. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

4.3 DEVIATION FROM TEST STANDARD

No deviation.


4.4 TEST SETUP

Project No.: 2408T098 Page 18 of 79 Report Version: R00

30 MHz to 1 GHz

Above 1 GHz

4.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULT - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

4.7 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX C.

4.8 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX D.

NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2408T098 Page 20 of 79 Report Version: R00

5 NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	neters Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

5.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.3 DEVIATION FROM STANDARD

No deviation.

5.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULTS

Please refer to the APPENDIX E.

Project No.: 2408T098 Page 21 of 79 Report Version: R00

6 AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(1)(iii)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS

6.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. Measure the maximum time duration of one single pulse.

A Period Time = (channel number) * 0.4

For Non-AFH Mode (79 Channel):

DH1 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH3 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

DH5 Time Solt: Reading * (1600/6)/79 * (0.4 * 79)

For AFH Mode (20 Channel):

DH1 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

DH3 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

DH5 Time Solt: Reading * (800/6)/20 * (0.4 * 20)

6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.6 TEST RESULTS

Please refer to the APPENDIX F.

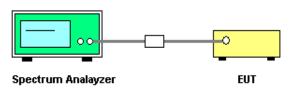
Project No.: 2408T098 Page 22 of 79 Report Version: R00

7 Hopping Channel Separation Measurement

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RBW	30 KHz
VBW	100 KHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto


7.2 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 TEST RESULTS

Please refer to the APPENDIX G.

Project No.: 2408T098 Page 23 of 79 Report Version: R00

8 BANDWIDTH TEST

8.1 APPLIED PROCEDURES

Section	Test Item	Frequency Range (MHz)	
15.247(a)(2)	Bandwidth	2400-2483.5	

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS

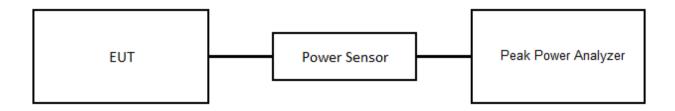
Please refer to the APPENDIX H.

Project No.: 2408T098 Page 24 of 79 Report Version: R00

9 OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

Section Test Item		Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125Watt or 21dBm	2400-2483.5	PASS


9.2 TEST PROCEDURE

- a. The EUT was directly connected to the peak power analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 3MHz, VBW= 3MHz, Sweep time = Auto.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.6 TEST RESULTS

Please refer to the APPENDIX I.

Project No.: 2408T098 Page 25 of 79 Report Version: R00

10 ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 TEST SETUP

EUT SPECTRUM ANALYZER

10.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 3.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.6 TEST RESULTS

Please refer to the APPENDIX J.

Project No.: 2408T098 Page 26 of 79 Report Version: R00

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	TWO-LINE V-NETWORK	R&S	ENV216	101497	2024/5/20	2025/5/19
2	Test Cable	EMCI	EMC400-BM-BM- 5000	170501	2024/7/31	2025/7/30
3	EMI Test Receiver	R&S	ESR3	102950	2024/4/12	2025/4/11
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Radiated Emissions					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2024/9/5	2025/9/4
2	Preamplifier	EMCI	EMC001340	980579	2024/9/4	2025/9/3
3	Test Cable	EMCI	EMC104-SM-100 0	180809	2024/3/8	2025/3/7
4	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2024/3/8	2025/3/7
5	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2024/3/8	2025/3/7
6	EXA Signal Analyzer	keysight	N9020B	MY57120120	2024/2/23	2025/2/22
7	Loop Ant	Electro-Metrics	EMCI-LPA600	291	2024/9/9	2025/9/8
8	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2024/6/14	2025/6/13
9	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2024/6/14	2025/6/13
10	Preamplifier	EMCI	EMC12630SE	980577	2023/9/20	2024/9/19
11	Pre-Amplifier	EMCI	EMC012645SE	980410	2023/9/20	2024/9/19
12	Test Cable	EMCI	EMC104-SM-SM- 1500	210630	2023/9/20	2024/9/19
13	Test Cable	EMCI	EMC104-SM-SM- 3000	170204	2023/9/20	2024/9/19
14	Test Cable	EMCI	EMC104-SM-SM- 7000	240110	2024/1/30	2025/1/29
15	EXA Signal Analyzer	keysight	N9020B	MY60112534	2024/5/2	2025/5/1
16	Horn Antenna	RFSPIN	BBHA-9120D	9120D-1297	2023/11/21	2024/11/20
17	Horn Ant	Broad-Band Horn		764	2024/7/4	2025/7/3
18	Test Cable	EMCI	EMC120-KM-KM- 3300	181204	2023/9/19	2024/9/18
19	Test Cable	EMCI	EMC120-KM-KM- 1000	150805	2023/9/19	2024/9/18
20	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A

	Number of Hopping Frequency									
ItemKind of EquipmentManufacturerType No.Serial No.Calibrated DateCalibrated Unti										
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26				

	Average Time of Occupancy									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26				

	Hopping Channel Separation									
ItemKind of EquipmentManufacturerType No.Serial No.Calibrated DateCalibrated Until										
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26				

Bandwidth									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26			

	Output Power									
Item	Kind of Equipment	Calibrated Date	Calibrated Until							
1	Peak Power Analyzer	Keysight	8990B	MY51000517	2024/3/12	2025/3/11				
2	Power Sensor	Keysight	N1923A	MY58310005	2024/3/12	2025/3/11				

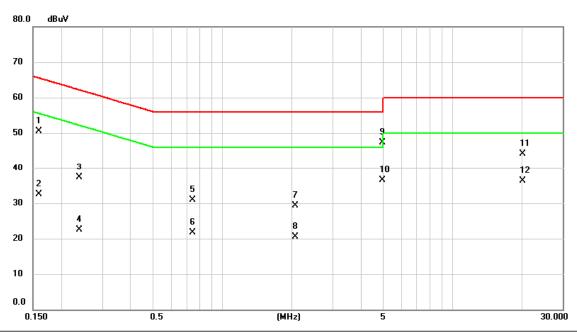
	Antenna conducted Spurious Emission									
ItemKind of EquipmentManufacturerType No.Serial No.Calibrated DateCalibrated Until										
1	Spectrum Analyzer	R&S	FSP 40	100129	2024/3/27	2025/3/26				

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2408T098 Page 28 of 79 Report Version: R00

12 EUT TEST PHOTO
Please refer to document Appendix No.: TP-2408T098-FCCP-1 (APPENDIX-TEST PHOTOS).
13 EUT PHOTOS
Please refer to document Appendix No.: EP-2408T098-1 (APPENDIX-EUT PHOTOS).
riease relei to document Appendix No.: Er-24001090-1 (AFFENDIX-E01 F110103).

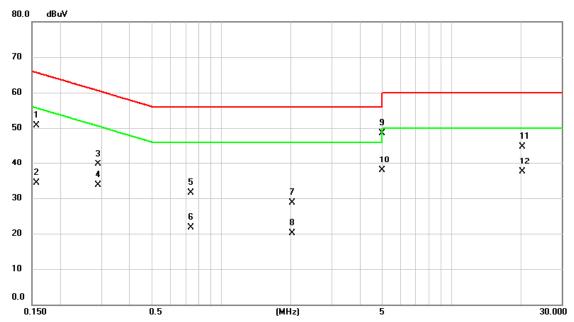
Project No.: 2408T098 Page 29 of 79 Report Version: R00



APPENDIX A	AC POWER LINE CONDUCTED EMISSIONS

Project No.: 2408T098 Page 30 of 79 Report Version: R00

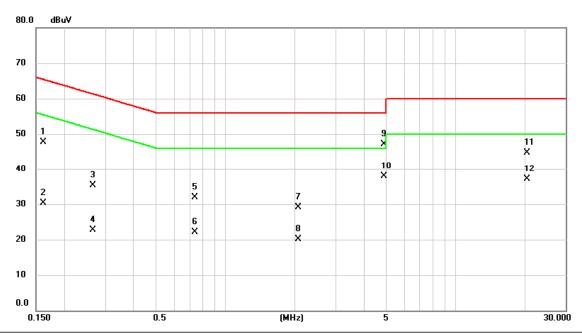
Test Mode	Normal	Tested Date	2024/9/13
Test Frequency	-	Phase	Line



No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1590	40.84	9.59	50.43	65.52	-15.09	QP	
2	0.1590	22.87	9.59	32.46	55.52	-23.06	AVG	
3	0.2378	27.72	9.59	37.31	62.17	-24.86	QP	
4	0.2378	12.88	9.59	22.47	52.17	-29.70	AVG	
5	0.7417	21.22	9.60	30.82	56.00	-25.18	QP	
6	0.7417	12.15	9.60	21.75	46.00	-24.25	AVG	
7	2.0760	19.72	9.64	29.36	56.00	-26.64	QP	
8	2.0760	10.86	9.64	20.50	46.00	-25.50	AVG	
9 *	4.9718	37.45	9.78	47.23	56.00	-8.77	QP	
10	4.9718	26.63	9.78	36.41	46.00	-9.59	AVG	
11	20.1143	33.82	10.24	44.06	60.00	-15.94	QP	
12	20.1143	26.09	10.24	36.33	50.00	-13.67	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

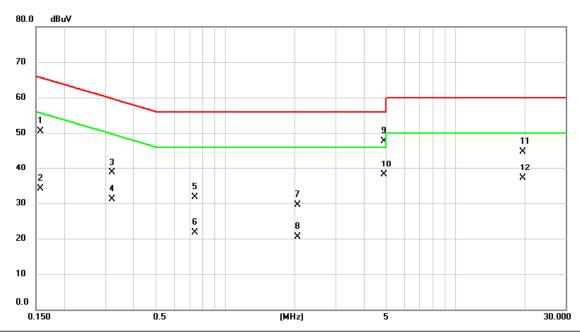
Test Mode	Normal	Tested Date	2024/9/13
Test Frequency	-	Phase	Neutral



No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1	0.1568	41.13	9.57	50.70	65.63	-14.93	QP	
2	0.1568	24.71	9.57	34.28	55.63	-21.35	AVG	
3	0.2895	30.03	9.58	39.61	60.54	-20.93	QP	
4	0.2895	24.20	9.58	33.78	50.54	-16.76	AVG	
5	0.7395	21.94	9.60	31.54	56.00	-24.46	QP	
6	0.7395	12.18	9.60	21.78	46.00	-24.22	AVG	
7	2.0288	19.03	9.65	28.68	56.00	-27.32	QP	
8	2.0288	10.48	9.65	20.13	46.00	-25.87	AVG	
9 *	4.9920	38.75	9.81	48.56	56.00	-7.44	QP	
10	4.9920	28.09	9.81	37.90	46.00	-8.10	AVG	
11	20.2268	34.35	10.41	44.76	60.00	-15.24	QP	
12	20.2268	27.15	10.41	37.56	50.00	-12.44	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2024/9/13
Test Frequency	-	Phase	Line

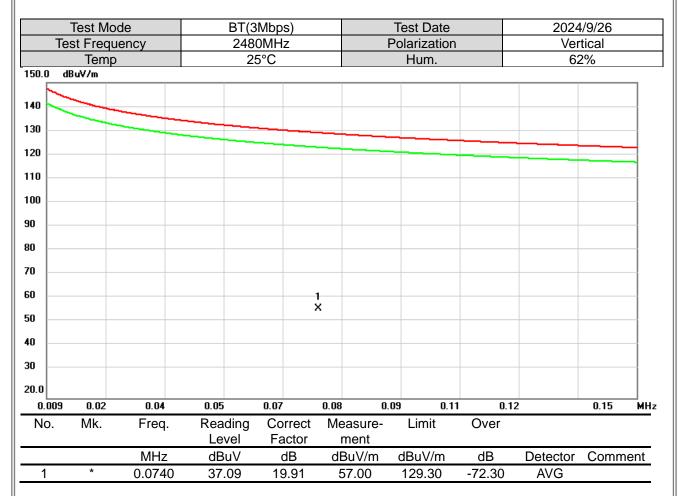


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1		0.1613	38.11	9.59	47.70	65.40	-17.70	QР	
2		0.1613	20.69	9.59	30.28	55.40	-25.12	AVG	
3		0.2647	25.74	9.59	35.33	61.28	-25.95	QP	
4		0.2647	13.12	9.59	22.71	51.28	-28.57	AVG	
5		0.7395	22.29	9.60	31.89	56.00	-24.11	QP	
6		0.7395	12.46	9.60	22.06	46.00	-23.94	AVG	
7		2.0738	19.44	9.64	29.08	56.00	-26.92	QP	
8		2.0738	10.40	9.64	20.04	46.00	-25.96	AVG	
9		4.9020	37.35	9.78	47.13	56.00	-8.87	QP	
10	*	4.9020	28.13	9.78	37.91	46.00	-8.09	AVG	
11		20.3753	34.52	10.23	44.75	60.00	-15.25	QP	
12		20.3753	26.96	10.23	37.19	50.00	-12.81	AVG	

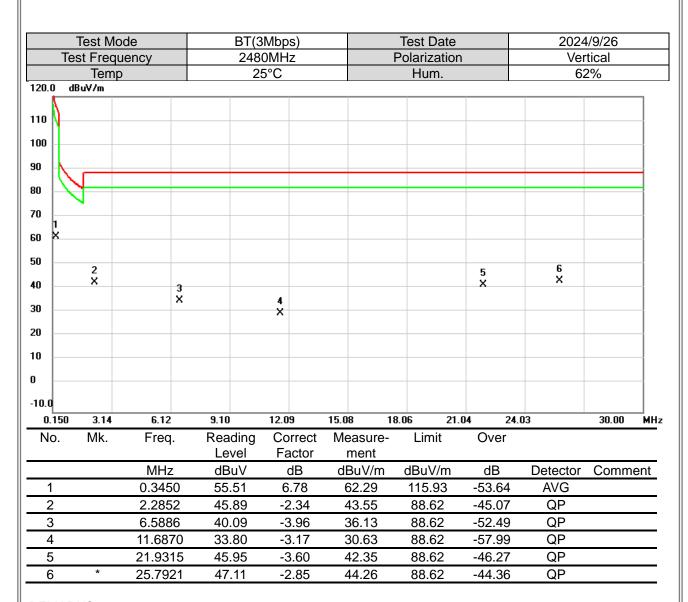
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

Test Mode	Idle	Tested Date	2024/9/13
Test Frequency	-	Phase	Neutral

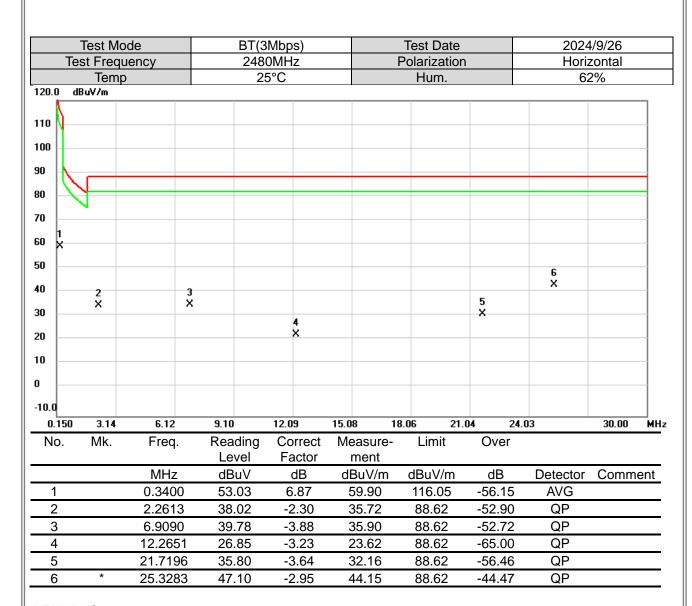
No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1	0.1568	41.01	9.57	50.58	65.63	-15.05	QР	
2	0.1568	24.63	9.57	34.20	55.63	-21.43	AVG	
3	0.3210	29.09	9.58	38.67	59.68	-21.01	QP	
4	0.3210	21.59	9.58	31.17	49.68	-18.51	AVG	
5	0.7395	22.12	9.60	31.72	56.00	-24.28	QP	
6	0.7395	12.08	9.60	21.68	46.00	-24.32	AVG	
7	2.0558	19.95	9.65	29.60	56.00	-26.40	QP	
8	2.0558	10.79	9.65	20.44	46.00	-25.56	AVG	
9	4.9020	37.85	9.81	47.66	56.00	-8.34	QP	
10 *	4.9020	28.26	9.81	38.07	46.00	-7.93	AVG	
11	19.5405	34.30	10.39	44.69	60.00	-15.31	QP	
12	19.5405	26.67	10.39	37.06	50.00	-12.94	AVG	


- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

APPENDIX B	RADIATED EMISSIONS - 9 KHZ TO 30 MHZ

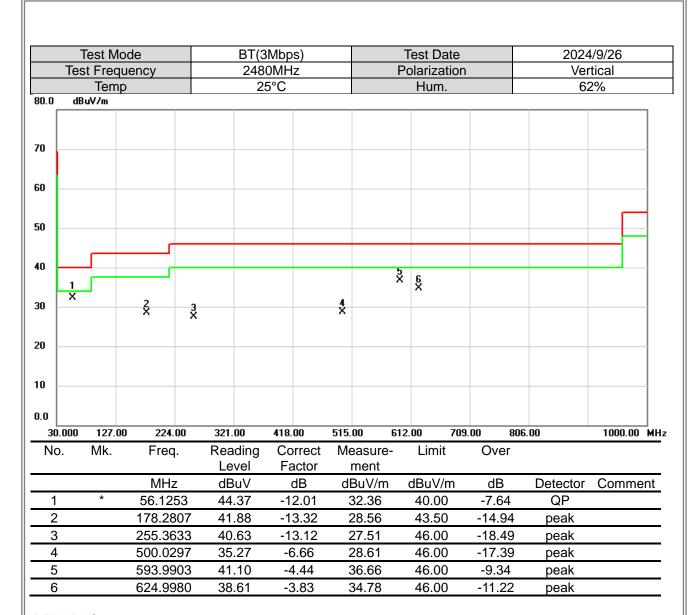

Project No.: 2408T098 Page 35 of 79 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

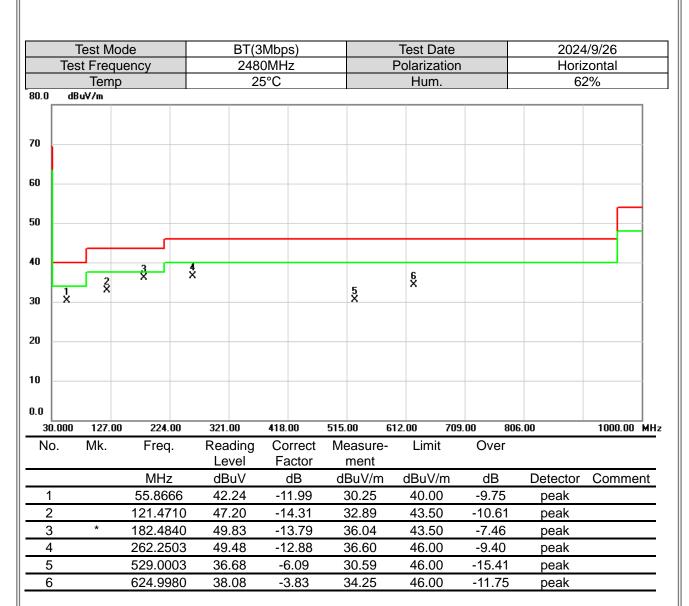

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test Mod	de	BT(3	BMbps)		Test Date			1/9/26	
Te	st Freque	ency	248	0MHz		Polarization			zontal	
	Temp		2	5°C		Hum.		62	2%	
150.0 dl	BuV/m									_
140										
130										4
120										
110										+
100										-
90 -										+
BO										-
70										+
60 <u> </u>					1					\exists
50					×					+
40										+
30										\dashv
20.0										
0.009	0.02	0.04	0.05	0.07		09 0.11	0.12		0.15	MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comm	ent
1	*	0.0743	34.35	19.87	54.22	129.26	-75.04	AVG		

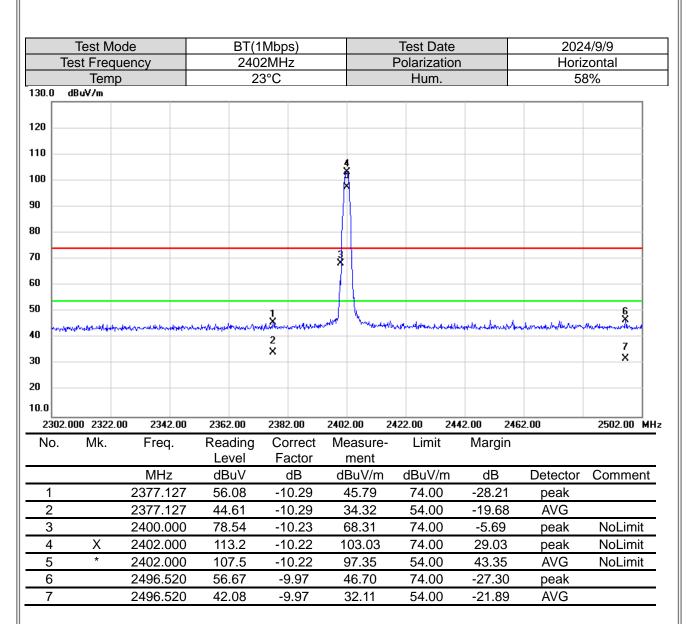
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX C	RADIATED EMISSIONS - 30 MHZ TO 1 GHZ


Project No.: 2408T098 Page 40 of 79 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

APPENDIX D RADIATED EMISSIONS - ABOVE 1 GHZ

Project No.: 2408T098 Page 43 of 79 Report Version: R00

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.

	Test F	t Mo			1Mbps) 30MHz		Test Date Polarization	2		4/9/9 zontal
		emp	СПСУ		23°C		Hum.	<u> </u>		3%
130.0					23 0		Hulli.		J(<i>5</i> 70
Γ										
120										
110						3 ¥				
00										
90										
30										
70										
60										
50						<u> </u>				
3U	1 X		gadin Nationara and protein	سيجيد فاستناه	والمستعدد المستعدد		Make Marchania and March			s
40	and Philips of the American	warden ament	Marshith Band under AMah anna	an Calabridge a consider	inounder American	6 X	a de de mande de la constante d	to a contract of	Adam Jacob Britania de la Labora de Antonia.	and and other states
	2 X					^				
· [
20										
10.0										
23	80.000 2	400.0	0 2420.00	2440.00	2460.00	2480.00	2500.00 25	20.00 254	0.00	2580.00 MH
No	. M	k.	Freq.	Reading		Measure-	Limit	Margin		
				Level	Factor	ment				
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1			2382.460	55.60	-10.28	45.32	74.00	-28.68	peak	
2			2382.460	43.15	-10.28	32.87	54.00	-21.13	AVG	
3		<u> </u>	2480.000	116.4	-10.01	106.40	74.00	32.40	peak	NoLimit
4		k	2480.000	110.6	-10.01	100.68	54.00	46.68	AVG	NoLimit
			2484.373	63.41	-10.00	53.41	74.00	-20.59	peak	
5 6			2484.373	47.01	-10.00	37.01	54.00	-16.99	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	To at N	1l -		DT/ON	Ale ee e \			т.	-4 D-4-			000	4/0/0	
	Test M			BT(3N 2402N		-			st Date arizatio				4/9/9 zontal	
	Ten			23°					Hum.	<u>/11 </u>			8%	
130.0	dBuV/m		•								•			_
120														
110														
100						6								-
90														-
80						*								-
70														
60						+								-
50	drophenia dimen	arrianism production descentant	-Levels Hoger A	of the contract of	parameter design	NAM!	Marin	A.	damin'ny aran'n'	Managene	المراجعة المساحة	المعرب المطاورة معودة المعرفة والمعرفة	6 X	A
40 30	2 X												7 X	
20														-
10.0		2.00 2342.0			2202.00	2402	00	2422	20 0	442.00	0.40	2.00	2502.00	
No	02.000 2322 D. Mk.	Freq.	00 2362 Read Lev	ding	Correct Factor	Me	asure nent	2422.(-	Limit	44 2. 00 Mar	2 46 2 gin	2.00	2502.00	<u> </u>
		MHz	dB		dB		BuV/m	dE	3uV/m	dE	3	Detector	Commo	ent
1		2314.76	0 56.	85	-10.45	4	6.40	7	74.00	-27.	60	peak		
2		2314.76			-10.45		5.49		54.00	-18.		AVG		
3		2400.00			-10.23		1.05		74.00	7.0		peak	NoLin	
4		2402.00			-10.22		06.63		74.00	32.0		peak	NoLin	
5		2402.00			-10.22		9.56		54.00	45.		AVG	NoLin	nit
6		2487.02			-9.99		7.15		74.00	-26.		peak		
7		2487.02	7 42.	32	-9.99	3	2.33	5	54.00	-21.	67	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.
 (2) Margin Level = Measurement Value Limit Value.

	Test Mo				Mbps)			Test D				4/9/9	
	Test Freq				MHz			Polariza				zontal	
100.0	Tem)		23	3°C			Hum	۱.		58	3%	
130.0	dBuV/m												7
120													
						,	,						
110						Š							1
100						,	4						-
90													
,,													
BO													1
70 🗀													_
so													
							5 X						
50	1					M	Made.						+
40 📉		Mark Commence of the Commence	ografia sa tenset persendiral	Maran and his a	maney de phasel		6 ×	Marsa paparanta	Angel Malace Land Land Land Land	Mary Mary	hand the second of the second	respectformation and the	^4
30	2 X												
20													+
10.0													
	.000 2400.				2460.00	2480		2500.00	2520.00	2540	0.00	2580.00	МН
No.	Mk.	Freq.	Read Lev		Correct Factor		easure- ment	Limi	t Mar	gın			
		MHz	dB		dB		BuV/m	dBuV	/m dl	3	Detector	Comme	ent
1		2388.200			-10.26		15.20	74.0			peak	Commi	<u> </u>
2		2388.200			-10.26		32.54	54.0			AVG		
3	Χ	2480.000) 118	3.3	-10.01	1	08.35	74.0	0 34.	35	peak	NoLim	nit
4	*	2480.000) 111	1.4	-10.01	1	01.40	54.0	0 47.	40	AVG	NoLim	nit
5		2483.867	7 65.	07	-10.00	5	55.07	74.0	0 -18	.93	peak		
6		2483.867	7 49.		-10.00		39.44	54.0	0 -14		AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de			BT(1	Mbps)			•	Test Da	ate		202	24/9/9
Te	est Frequ					2MHz				Р	olarizat				rtical
	Temp	l			2	3°C					Hum.			5	8%
130.0	dBuV/m														
120															
110 -															
100 -															
90															
во															
70															
60															
50															
40			X												
30			2 X												
20															
10.0															
	000 2700.0			6100		7800.		9500			200.00	1290		4600.00	18000.00 MH
No.	Mk.	Freq.		Rea Le		Cor Fac	rect ctor		easure ment)-	Limit		Margir	า	
		MHz		dB	uV	d	В	dl	3uV/m	1	dBuV/r	m	dB	Detector	Comment
1		4804.0	00	47.	18	-4.	15		13.03		74.00		-30.97	' peak	
2	*	4804.0	00	36.	59	-4.	15	3	32.44		54.00)	-21.56	6 AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			Mbps)		Test Date			4/9/9
T	est Frequ			2MHz		Polarization	1		zontal
100.0	Temp)	2;	3°C		Hum.		58	3%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1 X							
40		2							
30		×							
20									
10.0									
	.000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4804.000	48.23	-4.15	44.08	74.00	-29.92	peak	
2	*	4804.000	38.95	-4.15	34.80	54.00	-19.20	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de			BT(1	Mbps)				Test Da	ate		2	024/9/9	
Te	est Frequ	ency				1MHz				P	olariza	tion		١	Vertical	
	Temp				23	3°C					Hum.				58%	
130.0	dBuV/m															
120																
110 -																
100 -																
90 —																
80																
70																
60																
50			1													
£0			1 X 2													
30 -			x													
20																
10.0																
1000.0	000 2700.0			6100		7800.		9500	0.00	11:	200.00	1290		14600.00	18000.00 1	ΜН
No.	Mk.	Freq.		Read Lev		Cor Fac			easure ment) -	Limit	t	Margi	n		
		MHz		dBı	uV	d	3	dl	3uV/n	า	dBuV/	m	dB	Detect	or Commen	١t
1		4882.00	00	48.	03	-3.	91	4	14.12		74.00		-29.88	3 peak		
2	*	4882.00	00	37.	03	-3.	91	3	33.12		54.00)	-20.88	B AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test	Mod	le				Mbp:					Test Da					4/9/9	
T	est Fr	eque	ency				1MH	Z			Р	olariza	tion				zontal	
		mp				2	3°C					Hum				58	3%	
30.0	dBuV/m	1																_
20																		-
110																		-
100																		\parallel
30 <u> </u>																		+
30																		+
'o																		7
io																		+
io 🗀				,														7
0				1 X 2 X														-
30				^														+
20																		+
10.0																		
	000 27				6100		7800		9500			00.00		00.00		00.00	18000.0	O MI
No.	Mk	ζ	Freq	•		ding vel		rrect ctor		easure ment)- 	Limit	t 	Marg	gin			
			MHz	<u>. </u>	dB	uV	(dΒ	dl	3uV/m)	dBuV/	m	dB		Detector	Commo	ent
1			4882.0	000	47	.07	-3	3.91		13.16		74.00)	-30.8	34	peak		
2	*		4882.0	00	38	.93	-3	3.91	3	35.02		54.00)	-18.9	98	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test N	Mod	е			BT(1	Mbp	s)			1	Test Da	ate			202	4/9/9	
Te	est Fre	que	ency				0MH	Z			Р	olariza	tion				tical	
	Ter	np				2	3°C					Hum				58	3%	
130.0	dBuV/m																	7
120																		
110 -																		-
100																		-
90 —																		\parallel
30																		-
'o																		
50																		\parallel
50				_														
10				1 X 2														$\frac{1}{2}$
30				×														\parallel
20																		-
0.0																		
	000 270		4400		6100		7800		9500			00.00		00.00		00.00	18000.0	O MI
No.	Mk.		Freq	•		ding vel		rrect actor		easure ment	-	Limit	t	Marg	gin			
			MHz	-	dB	uV	(dB	dl	3uV/m		dBuV/	m	dB	.	Detector	Comme	ent
1			4960.0			.80		3.64		12.16		74.00		-31.8		peak		
2	*		4960.0	00	36	.87	-3	3.64	3	33.23		54.00)	-20.7	77	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				BT(1						Test Da					4/9/9	
l e	est Frequ					0MH	Z			Р	olariza					zontal	
130.0	Temp				2:	3°C					Hum.				58	3%	
130.0	ub u ¥ / III																\neg
120																	
110																	
100																	
90																	
80																	
70																	1
60 —																	\parallel
50																	=
40 L			X X														_
30			2 X														
20																	1
10.0	000 0300 0		1 00	0100	00	7000		0500	1 00	440	00.00	1000	0.00	1.100	3.00	10000 0	
No.	000 2700.0 Mk.	0 4400 Freq		Read		7800	rrect	9500 Ma	easure		00.00 Limit	1290	Marg	14600	J. UU	18000.0	UMH
INO.	IVIIX.	1 164	•	Lev			ctor		ment	•	LIIIII		iviaiy				
		MHz		dBı	uV		dΒ		3uV/m)	dBuV/	m	dB		Detector	Comme	ent
1		4960.0		46.			3.64		12.71		74.00		-31.2		peak		
2	*	4960.0	000	37.	55	-3	3.64	3	33.91		54.00)	-20.0	9	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test M				(3Mbps)		Test Da			4/9/9
Т	est Fred				02MHz		Polarizat	ion		rtical
100.0	Tem	р			23°C		Hum.		58	8%
130.0	dBuV/m									
120										
110										
100										
90										
80										
70										
60										
50			1 X 2							
40			2 X							
30										
20										
10.0										
	.000 2700		0.00	6100.00	7800.00	9500.00			4600.00	18000.00 MHz
No.	Mk.	Fred	٦.	Readino Level	g Correct Factor	Measure ment	e- Limit	Margin		
		МН	Z	dBuV	dB	dBuV/n	n dBuV/r	n dB	Detector	Comment
1		4804.0	000	50.49	-4.15	46.34	74.00	-27.66	peak	
2	*	4804.0	000	42.86	-4.15	38.71	54.00	-15.29	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test N	/lode)				Mbps					Test Da				2024/9/9		
T	est Fre	quer	псу				2MHz	<u>-</u>			Р	olariza	tion				zontal	
	Ten	np				2	3°C					Hum				58	3%	
130.0	dBuV/m																	_
120																		_
10																		_
100																		-
90 <u> </u>																		-
30																		-
70 <u> </u>																		7
50 —																		+
50				ž Ž														
10 <u> </u>				X														-
30																		+
20																		-
10.0																		
	000 270	0.00	4400.		6100		7800		9500			200.00		00.00		00.00	18000.0	00 MF
No.	Mk.		Freq.		Rea Le	ding vel		rect ctor		easure ment)- -	Limit	t	Marg	gin			
			MHz		dB	uV	С	ΙB	dl	3uV/m	1	dBuV/	m	dB	.	Detector	Comm	ent
1			4804.00		53.			.15		19.74	·	74.00		-24.2		peak		·
2	*	4	4804.00	00	46.	88	-4	.15	4	12.73		54.00)	-11.2	27	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo			3Mbps)		Test Date			4/9/9
Ţ	est Frequ			1MHz		Polarization)		tical
	Temp		2	3°C		Hum.		58	3%
130.0	dBuV/m								
120									
110									
100									
90									
80									
70									
60									
50		1.							
40		1 2 2							
30									
20									
10.0									
	000 2700.0		6100.00	7800.00				00.00	18000.00 MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	- Limit	Margin		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4882.000	49.74	-3.91	45.83	74.00	-28.17	peak	
2	*	4882.000	43.53	-3.91	39.62	54.00	-14.38	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test N	Mod	e					BT(3Mbps)					ate			2024/9/9		
T	est Fre	que	ncy				1MH	Z			Р	olariza	tion				zontal	
	Ter	np				2	3°C					Hum				58	3%	
130.0	dBuV/m																	_
120																		4
110																		-
100																		-
30																		+
30																		\parallel
70																		
io <u> </u>																		-
io <u> </u>				1 Ž														
10 <u> </u>				X														+
30																		+
20 —																		-
0.0																		
1000.	000 270		4400		6100		7800		9500	0.00	112	200.00		00.00		00.00	18000.0	O MH
No.	Mk.		Freq	•		ding vel		rrect ctor		easure ment	-	Limit	t	Marg	gin			
			MHz		dB	uV	(dΒ	dl	3uV/m	1	dBuV/	m	dB	3	Detector	Comm	ent
1			4882.0	00		.79	-3	.91		48.88		74.00)	-25.′		peak		
2	*		4882.0	00	47	.22	-3	.91	4	43.31		54.00)	-10.6	69	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test I	Mod	le			BT(3	Mbps	3)				Test Da	ate			2024/9/9		
T	est Fre	eque	ency				0MHz	<u> </u>			Р	olariza	tion				tical	
		mp				2	3°C					Hum				58	3%	
30.0	dBuV/m																	_
20																		-
10																		-
100																		-
30																		+
30																		+
70																		
io —																		+
50																		
0				1 X														-
30				2 X														-
20																		-
0.0																		
	000 270				6100		7800		9500			200.00		00.00		0.00	18000.0	0 MI
No.	Mk	•	Freq			ding vel		rrect ctor		easure ment) -	Limit	t	Marg	gin			
			MHz		dB	uV	С	ΙB	dl	3uV/n	1	dBuV/	m	dB	b	Detector	Commo	ent
1			4960.0	000	46	.37	-3	.64	4	12.73		74.00)	-31.2	27	peak		
2	*		4960.0	000	35	.42	-3	.64	- 3	31.78		54.00)	-22.2	22	AVG		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo	de			BT(3Mbps)					-	Test Da	ate		202	24/9/9
Te	est Frequ					0MHz					olariza				zontal
	Temp				23	3°C					Hum.			5	8%
130.0	dBuV/m														
120															
110															
100															
90 -															
80															
70															
60															
50			1												
40			1 2 X												
30															
20															
10.0															
	000 2700.0			6100		7800		9500			200.00	1290		14600.00	18000.00 MH
No.	Mk.	Freq.		Read Lev			rrect ctor		easure ment) -	Limit		Margir	า	
		MHz		dBı	uV	C	ΙB	dl	3uV/n	1	dBuV/	m	dB	Detector	Comment
1		4960.00	00	48.	92	-3	.64		15.28		74.00)	-28.72		
2	*	4960.00	00	41.	97	-3	.64	- 3	38.33		54.00)	-15.67	7 AVG	

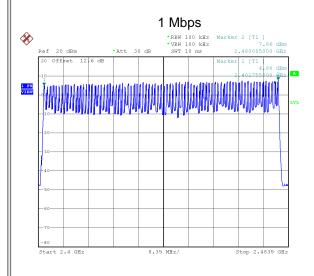
- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

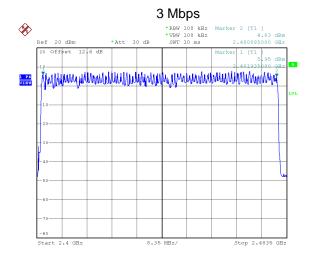
	Test Mo	ode				BT(3						est Da				2024/9/10		
T	est Freq		У				OMH.	Z			Р	olariza				Vert		
	Tem	р				2	6°C					Hum	١.			53	%	
130.0	dBuV/m																	_
120																		4
110 —																		-
100 -																		-
30																		\parallel
во																		-
70																		
50 <u> </u>																		-
50																		
10																		+
30				1 X														-
20				2 X														-
10.0																		
).00018850		1970			50.00		0.00		50.00		00.00			24800.00		26500.0	O ME
No.	Mk.		Freq			ding vel		rrect ictor		easure ment) -	Limit	t	Margir	n			
			MHz			uV		dB		3uV/m	1	dBuV/	m	dB	Detec	tor	Comm	ent
1		19	840.	00	31	.63	-1	.06	- (30.57		74.00	0	-43.43	3 peal	k		
2	*	19	840.	00	22	.63	-1	.06	2	21.57		54.00	0	-32.43	3 AVG	}		

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.

	Test Mo				3Mbps)			Date			1/9/10
	<u>Fest Frequ</u> Temp				80MHz 26°C		Polari	zatioi im.	1		zontal 3%
130.0	dBuV/m				20 0		110	4111.			J 70
120											
110											
100											
90											
80											
70											
60											
50											
40											
30			1 X								
20			2 X								
10.0											
	0.000 18850.			20550.00	21400.00	22250.00	23100.00			300.00	26500.00 MHz
No.	Mk.	Freq		Reading Level	Correct Factor	Measure ment	e- Liı	mit	Margin		
		MHz	·	dBuV	dB	dBuV/m	n dBu	V/m	dB	Detector	Comment
1		19840.		32.46	-1.06	31.40		.00	-42.60	peak	
2	*	19840.	00	21.53	-1.06	20.47	54	.00	-33.53	AVG	

- (1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value Limit Value.


	Report No.: BTE-FCCF-1-24061098
APPENDIX E	NUMBER OF HOPPING CHANNEL

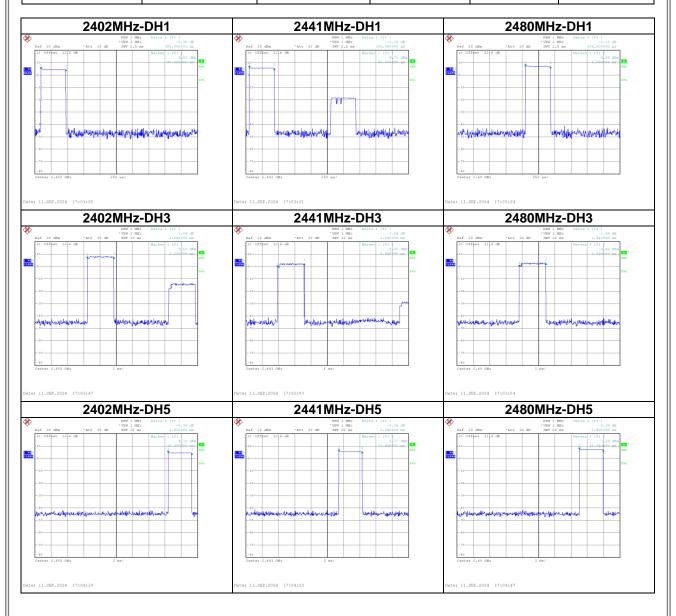

Project No.: 2408T098 Page 62 of 79 Report Version: R00

Test Mode	1/3Mbps
TEST MICHE	

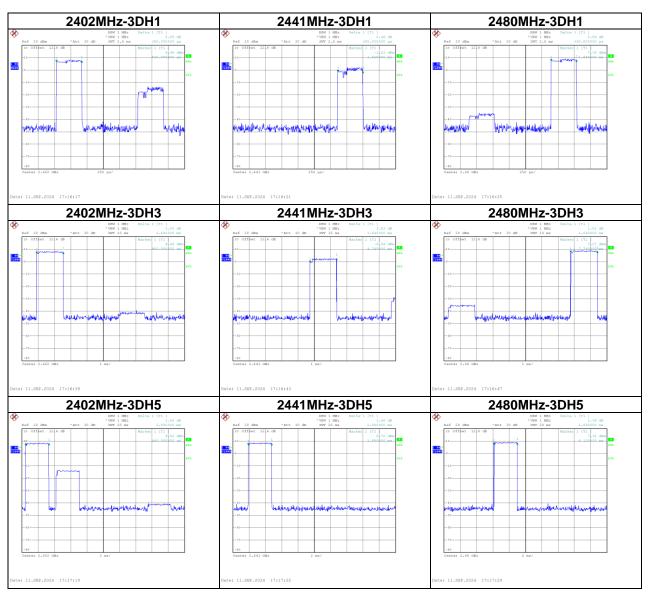
Test Mode	Number of Hopping Channel	≥ Limit	Test Result
1 Mbps	79	15	Pass
3 Mbps	79	15	Pass

Date: 11.SEP.2024 12:02:30 Date: 11.SEP.2024 17:14:48

	Report No.: BTL-FCCP-1-2408T098
APPENDIX F	AVERAGE TIME OF OCCUPANCY

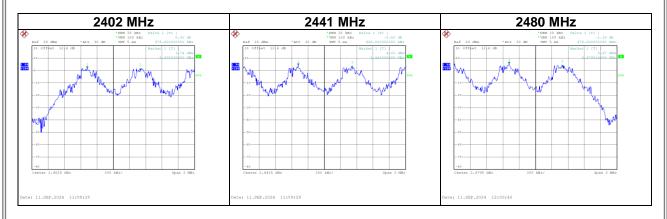

Project No.: 2408T098 Page 64 of 79 Report Version: R00

Test Mode:	1Mbps


Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9200	0.3115	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.3850	0.1232	0.4000	Pass
DH5	2441	2.8800	0.3072	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3850	0.1232	0.4000	Pass
DH5	2480	2.9200	0.3115	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH1	2480	0.3850	0.1232	0.4000	Pass

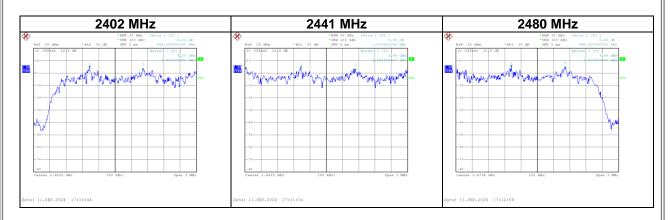
Test Mode: 3Mbps

Data Packet	Frequency	Pulse Duration(ms)	Dwell Time(s)	Limits(s)	Test Result
3DH5	2402	2.8800	0.3072	0.4000	Pass
3DH3	2402	1.6400	0.2624	0.4000	Pass
3DH1	2402	0.3900	0.1248	0.4000	Pass
3DH5	2441	2.8800	0.3072	0.4000	Pass
3DH3	2441	1.6400	0.2624	0.4000	Pass
3DH1	2441	0.3850	0.1232	0.4000	Pass
3DH5	2480	2.8800	0.3072	0.4000	Pass
3DH3	2480	1.6400	0.2624	0.4000	Pass
3DH1	2480	0.3900	0.1248	0.4000	Pass


APPENDIX G	HOPPING CHANNEL SEPARATION MEASUREMENT

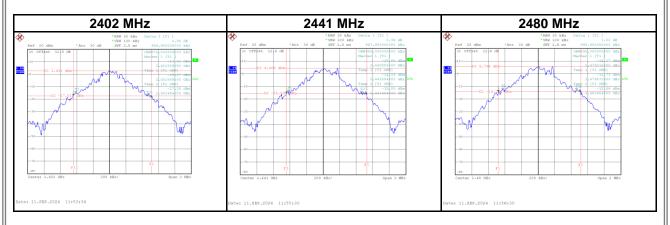
Project No.: 2408T098 Page 67 of 79 Report Version: R00

Test Mode :	Hopping on _1Mbps


Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.978	0.638	Pass
2441	0.996	0.645	Pass
2480	0.976	0.664	Pass

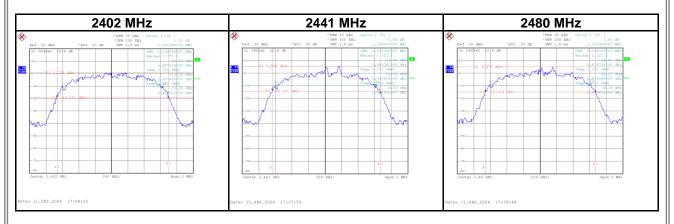
Test Mode : Hopping on _3Mbps

Frequency (MHz)	Channel Separation (MHz)	2/3 of 20dB Bandwidth (MHz)	Test Result
2402	0.984	0.908	Pass
2441	1.004	0.871	Pass
2480	0.996	0.888	Pass


3 T L		Report No.: BTL-FCCP-1-2408T098
		Troport Hom B 12 1 GOT 1 2 100 1000
	APPENDIX H	BANDWIDTH

Project No.: 2408T098 Page 70 of 79 Report Version: R00

Test Mode :	1Mbps


Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	0.957	0.876	Pass
2441	0.968	0.880	Pass
2480	0.996	0.892	Pass

Test Mode :	3Mbps
-------------	-------

Frequency (MHz)	20dB Bandwidth (MHz)	99% Occupied BW (MHz)	Test Result
2402	1.362	1.232	Pass
2441	1.306	1.212	Pass
2480	1.332	1.216	Pass

	Report No.: BTL-FCCP-1-2408T098
ADDENDIVI	
APPENDIX I	OUTPUT POWER

Page 73 of 79 Project No.: 2408T098 Report Version: R00

Report No.: BTL-FCCP-1-2408T098

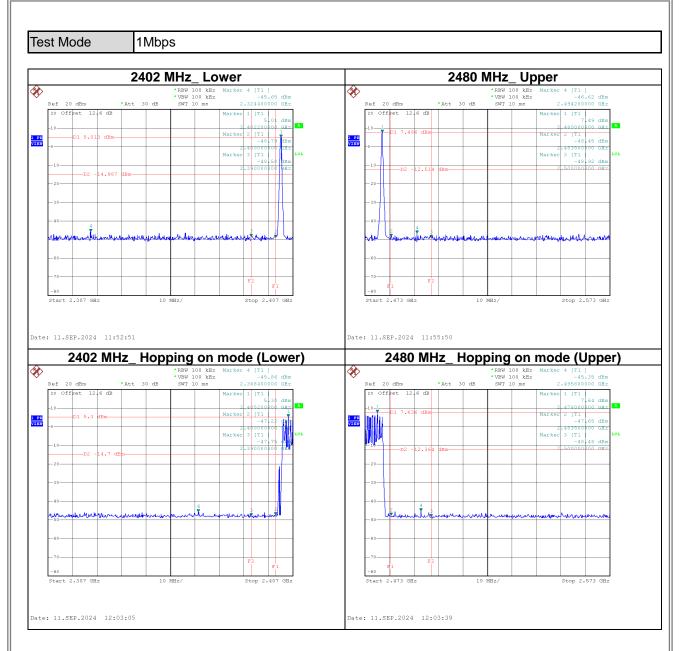
Test Mode :	1Mbps			d Date 2	2024/9/11	
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result	
2402	5.29	0.0034	20.97	0.1250	Pass	
2441	6.31	0.0043	20.97	0.1250	Pass	
2480	7.72	0.0059	20.97	0.1250	Pass	

Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.02	0.0080	20.97	0.1250	Pass
2441	9.30	0.0085	20.97	0.1250	Pass
2480	9.78	0.0095	20.97	0.1250	Pass

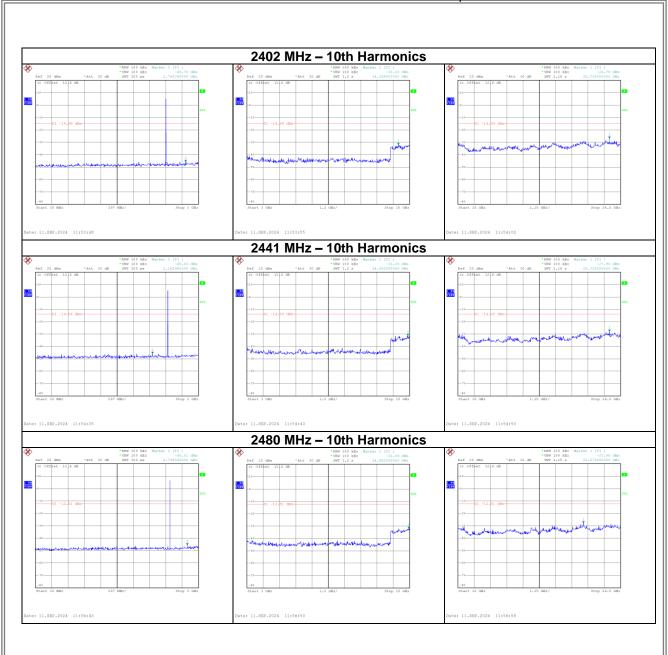
Test Mode:	3Mbps	Tested Date	2024/9/11
------------	-------	-------------	-----------

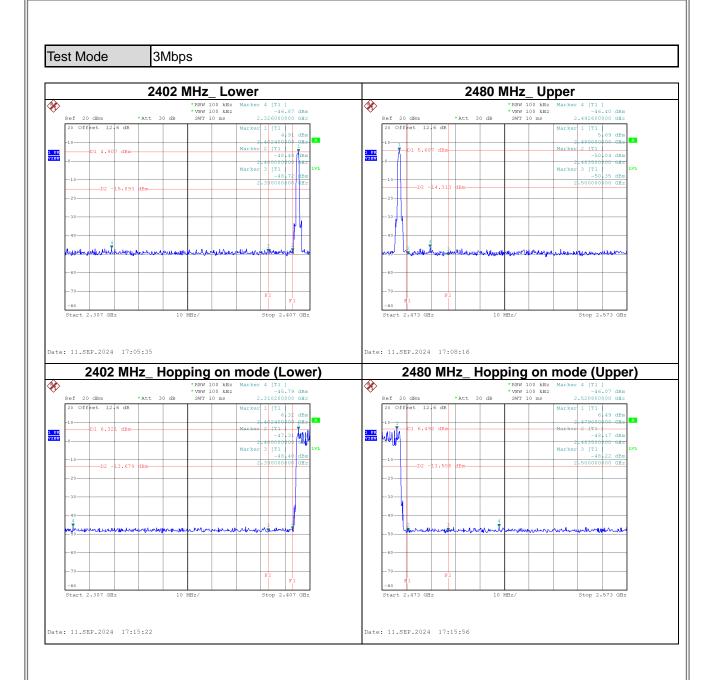
Frequency (MHz)	Conducted Power (dBm)	Conducted Power (W)	Max. Limit (dBm)	Max. Limit (W)	Test Result
2402	9.42	0.0087	20.97	0.1250	Pass
2441	9.63	0.0092	20.97	0.1250	Pass
2480	10.11	0.0103	20.97	0.1250	Pass

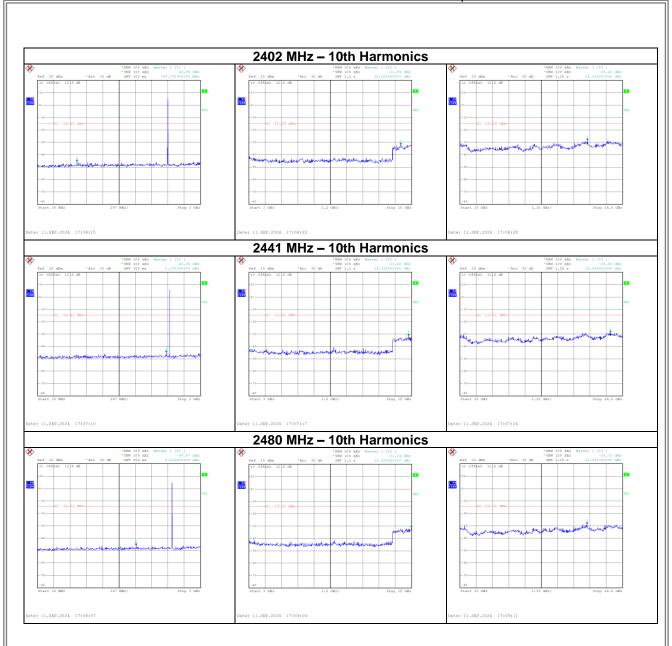
Project No.: 2408T098 Page 74 of 79 Report Version: R00



APPENDIX J	ANTENNA CONDUCTED SPURIOUS EMISSION


Project No.: 2408T098 Page 75 of 79 Report Version: R00





End of Test Report