

FCC CERTIFICATION TEST REPORT

Applicant	:	SDI Technologies Inc.	
Address	:	299 Main Street, Rahway, NJ 07065, U.S.A	
Equipment under Test	:	Compact Bluetooth Bedside Alarm Clock with Qi Vireless and USB Charging	
Model No.	••	iBTW22, iBTW22B, iBTW22X (X could be single or multiple digits by any alphabets denote different cabinet color)	
Trade Mark	:	iHome	
FCC ID	:	EMOIBTW22A	
Manufacturer	:	SDI Technologies Inc.	
Address	:	1299 Main Street, Rahway, NJ 07065, U.S.A	

FOR

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add.: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808

Tel.: +86-0769-38826678, E-mail: ddt@dgddt.com, http://www.dgddt.com

Table of Contents

	Test report declares	3
1	Summary of Test Results	
2	General Test Information	6
2.1.	Description of EUT	6
2.2.	Accessories of EUT	6
2.3.	Assistant equipment used for test	6
2.4.	Block diagram of EUT configuration for test®	7
2.5.	Deviations of test standard	7
2.6.	Test environment conditions	
2.7.	Test laboratory	7
2.8.	Measurement uncertainty	7
3	Equipment Used During Test	9
4	20 dB Bandwidth	11
4.1.	Block diagram of test setup	11
4.2.	Limits	11
4.3.	Test procedure	
4.4. 🖌	Test result	
4.5.	Original test data	
5	Radiated Emission	13
5.1.	Block diagram of test setup	13
5.2.	Limit	14
5.3.	Test procedure	
5.4.	Test result	
6	Power Line Conducted Emission	20
6.1.	Block diagram of test setup	
6.2.	Power line conducted emission limits	20
6.3.	Test procedure	
6.4.	Test result	21
7	Antenna Requirements	24

Page 2 of 24

Test Report Declare

	_	
Applicant	:	SDI Technologies Inc.
Address	:	1299 Main Street, Rahway, NJ 07065, U.S.A
Equipment under Test	:	Compact Bluetooth Bedside Alarm Clock with Qi Wireless and USB Charging
Model No.	iBTW/22_iBTW/22B_iBTW/22X (X could be single or multin	
Trade Mark	iHome ®	
Manufacturer	: SDI Technologies Inc.	
Address	:	1299 Main Street, Rahway, NJ 07065, U.S.A
Factory	:	DONGGUAN SYNST ELECTRONICS CO.,LTD
Address	:	THE SCIENCE & TECHNOLOGY INDUSTRIAL PARK, HOUJIE TOWN, DONGGUAN, GUANGDONG, CHINA

Test Standard Used:

FCC Rules and Regulations Part 15 Subpart C

Test procedure used:

ANSI C63.10:2013

We Declare:

The equipment described above is tested by Dongguan Dongdian Testing Service Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

After test and evaluation, our opinion is that the equipment provided for test compliance with the requirement of the above FCC standards.

Report No:	DDT-R21041216-2E3	E E	B
Date of Receipt:	Apr. 20, 2021	Date of Test:	Apr. 20, 2021 ~ May 14, 2021
Prepared I	B <i>y</i> :	DR	Approved By:
Som	Li		CONCOUNT TESTING
Sam Li/Eng	lineer		Damon Hu/EMC Manager


Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Revision History

Rev.	Revisions		Issue Date	Revised By
	Initial issue	(C)	May 14, 2021	®
	bP!	nP/	nP	

1	Summary of Test Results	, bb.	
ſ	Description of Test Item	Standard	Results
	8 20 dB Bandwidth	FCC Part 15: 15.215	Pass
	Radiated Emission	FCC Part 15: 15.209	Pass
C	Power Line Conducted Emissions	FCC Part 15: 15.207	Pass ®
	Antenna Requirement	FCC Part 15: 15.203	Pass

2 General Test Information

2.1. Description of EUT

EUT* Name	:	Compact Bluetooth Bedside Alarm Clock with Qi Wireless and USB Charging		
Model Number		iBTW22, iBTW22B, iBTW22X (X could be single or multiple digits by any alphabets denote different cabinet color)		
Difference of model number	All models are identical except the color. (X could be single o			
EUT function description	:	Please reference user manual of this device		
Power supply		DC 9V by external AC-DC Adapter: BQ30A-0903000-U DC 3.0V by CR2450 battery for clock backup		
Wireless charging Operation frequency	: 110 kHz - 205 kHz			
Antenna Type	:	Inductive loop coil antenna 🛛 🔍 🛞		
Serial Number	j.	N/A		
Noto: EUT is the abbreviation		f aquipment under test		

Note: EUT is the abbreviation of equipment under test.

In section 15.31(m), regards to the operating frequency range less than 1 MHz, only one of channel was selected to perform the test.

© Channel ©	Frequency (kHz)	
Testing channel	146	

2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number	Serial No.	Other
AC-DC Adapter	SDI	BQ30A-0903000-U	N/A	Input: AC100-240V 50/60Hz Output: DC 9V/3A Length: 1.84m, Unshielded

2.3. Assistant equipment used for test

Assistant equipment	Manufacturer	Model number or Type	Description	Other	
Dummy load	N/A ®	N/A	N/A	N/A	

2.4. Block diagram of EUT configuration for test

2.5. Deviations of test standard

No deviation.

2.6. Test environment conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature range:		21-25 ℃	
[®] Humidity range:	®	40-75%®	
Pressure range:		86-106 kPa	

2.7. Test laboratory

Dongguan Dongdian Testing Service Co., Ltd.

Add.: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808.

Tel.: +86-0769-38826678, http://www.dgddt.com, Email: ddt@dgddt.com.

CNAS Accreditation No. L6451; A2LA Accreditation Number: 3870.01 FCC Designation Number: CN1182, Test Firm Registration Number: 540522 Innovation, Science and Economic Development Canada Site Registration Number: 10288A Conformity Assessment Body identifier: CN0048 VCCI facility registration number: C-20087, T-20088, R-20123, G-20118

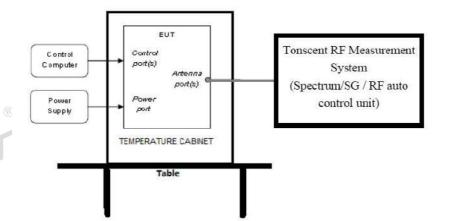
2.8. Measurement uncertainty

Test Item	Uncertainty	
Uncertainty for Conduction emission test	3.32 dB (150 kHz - 30 MHz)	
Uncertainty for Conduction emission test	3.72 dB (9 kHz - 150 kHz)	
Uncertainty for Radiation Emission test	4.70 dB (Antenna Polarize: V)	
(30 MHz - 1 GHz)	4.84 dB (Antenna Polarize: H)	
Uncertainty for Radiation Emission test	4.10 dB (1-6 GHz)	

	8	8	8		8
	(1 GHz to 18 GH	z)	4.40 dB (6 GHz - 1	18 GHz)	e)
	Bandwidth Note: This uncertainty represent	s an expanded uncer	1.1%	oximately the	
B	95% confidence level using a co	verage factor of k=2.			
<i>y</i>	pp/	pp,	PR		pP)
ß			8	®	
	D.D.	D	<i>y</i>		P
		8	ß	(e	
Pk	y pe	1		DB	
	e e	A CONTRACTOR	(Contraction of the second sec		A r
			DR	PR	9
8	B	B	pe	©	bi
ð	B	pę		B	D
pR		®		B	
ļ		B	B		[®]
8	8	ß		[®] Page 8 of 24	G

3 Equipment Used During Test

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
RF Connected Tes				Last Val.	
	R&S		101272	Jul 01 2020	® 1 Year
Spectrum analyzer	r	FSU26		Jul. 01, 2020	
Spectrum analyzer	Agilent	N9020D	MY49100362	Sep. 28, 2020	1 Year
Wideband Radio Communication tester	R&S	CMW500	117491	Jul. 01, 2020	1 Year
Vector Signal Generator	Agilent	E8267D	US49060192	Sep. 24, 2020	1 Year
Vector Signal Generator	Agilent	N5182A	MY48180737	Jul. 01, 2020	1 Year
Power Sensor	Agilent	U2021XA	MY55150010	Jul. 01, 2020	1 Year
Power Sensor	Agilent		MY55150011		1 Year
RF Cable	Micable	C10-01-01-1		Sep. 28, 2020	
Temp&Humi Programmable	ZHIXIANG	ZXGDJS-15 0L	ZX170110-A	Jul. 01, 2020	1 Year
Test Software	JS Tonscend	JS1120-3	Ver.2.7	N/A	N/A
RF Connected Tes		Measureme			
Spectrum analyzer	R&S	FSU26	200071	Sep. 25, 2020	1 Year
Spectrum analyzer	Agilent	N9020D	MY49100362	Sep. 28, 2020	
Wideband Radio Communication tester	R&S	CMW500	117491	Jul. 01, 2020	1 Year
Vector Signal Generator	Agilent	N5182A	MY19060405	Jul. 01, 2020	1 Year
Vector Signal Generator	Agilent	N5182A	MY48180912	Jul. 01, 2020	1 Year
RF Control Unit	Tonsend	JS0806-2	DDT-ZC01449	Jul. 01, 2020	1 Year
RF Cable	Micable	C10-01-01-1	100309	Sep. 28, 2020	1 Year
Temp&Humi Programmable	ZHIXIANG	ZXGDJS-15 0L	ZX170110-A	Jul. 01, 2020	1 Year
Test Software	JS Tonscend	JS1120-3	Ver.2.7	N/A	N/A
Radiation 1#chaml	ber				
EMI Test Receiver	R&S	ESU8	100316	Sep. 24, 2020	1 Year
Spectrum analyzer	Agilent	E4447A	MY50180031	Jul. 01, 2020	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB9163	9163-462	Nov. 13, 2020	
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Nov. 18, 2020	1 Year
Double Ridged Horn Antenna	R&S	HF907	100276	Nov. 13, 2020	
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	790	May 08, 2021	1 Year
Pre-amplifier	A.H.	PAM-0118	360	Sep. 28, 2020	1 Year
RF Cable	HUBSER	CP-X2+ CP-X1	W11.03+ W12.02	Sep. 24, 2020	
RF Cable	N/A	5m+6m+1m	06270619	Sep. 30, 2020	1 Year
MI Cable	HUBSER	C10-01-01-1 M	1091629	Sep. 30, 2020	
Test software	Audix	E3	V 6.11111b	N/A	N/A


P

P

Radiation 2#cham	ber				
EMI Test Receiver	R&S	ESCI	101364	Sep. 28, 2020	1 Year
Spectrum analyzer	Agilent	E4447A	MY50180031	Jul. 01, 2020	1 Year
Trilog Broadband Antenna	Schwarzbeck	VULB 9163	9163-994	Nov. 13, 2020	1 Year
Active Loop antenna	Schwarzbeck	FMZB-1519	1519-038	Nov. 18, 2020	1 Year
Double Ridged Horn Antenna	Schwarzbeck	BBHA9120	02108	Jul. 11, 2020	1 Year
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	790	May 08, 2021	1 Year
Pre-amplifier	TERA-MW	TRLA-0040 G35	1013 [©] 03	Sep. 28, 2020	1 Year
RF Cable	N/A	14+1.5m	06270619	Sep. 28, 2020	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A
Power Line Cond	ucted Emissior	ns Test 1#			
EMI Test Receiver	R&S	ESU8	100316	Sep. 24, 2020	1 Year
LISN 1	R&S 🥂 🛞	ENV216	101109	Sep. 28, 2020	1 Year
LISN 2	R&S	ESH2-Z5	100309	Sep. 28, 2020	1Year 🐋
Pulse Limiter	R&S	ESH3-Z2	101242	Sep. 24, 2020	1 Year
CE Cable 1	HUBSER	N/A	W10.01	Sep. 24, 2020	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A
Power Line Cond	ucted Emissior	ns Test 2#			
Test Receiver	R&S	ESPI	101761	Sep. 24, 2020	1 Year
LISN 1	R&S	ENV216	101170	Sep. 28, 2020	1 Year
LISN 2	R&S	ESH2-Z5	100309	Sep. 28, 2020	1 Year
Pulse Limiter	R&S	KH43101	43101180156 8-12#	Jul. 01, 2020	1 Year
CE Cable 2	HUBSER	N/A	W11.02	Sep. 24, 2020	1 Year
Test software	Audix	E3	V 6.11111b	N/A	N/A

4 20 dB Bandwidth

4.1. Block diagram of test setup

4.2. Limits

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

4.3. Test procedure

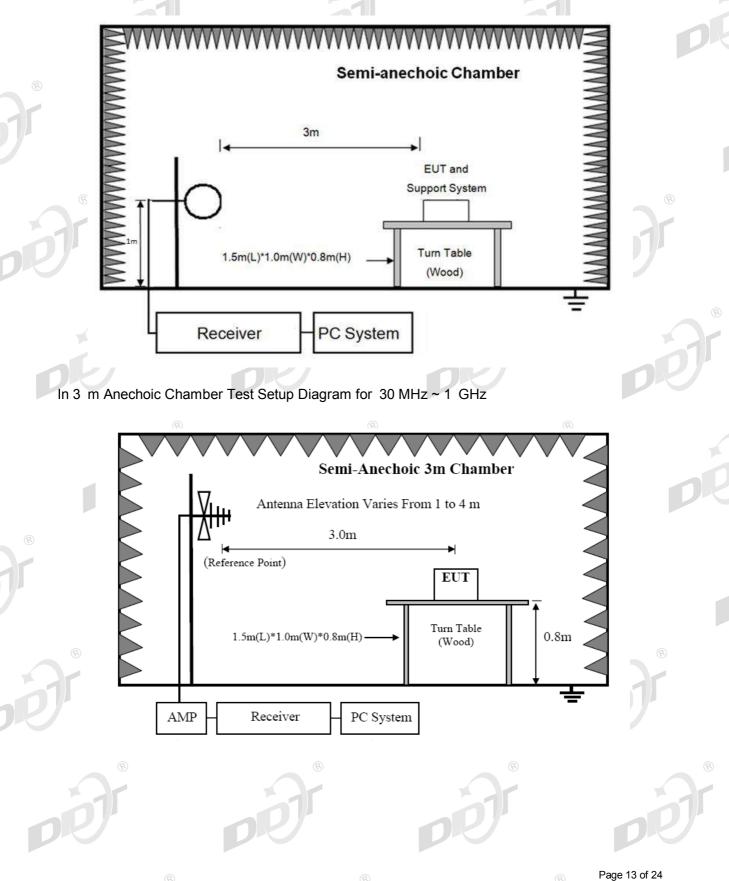
- (1) Connect EUT's antenna output to spectrum analyzer by RF cable.
- (2) The bandwidth of the fundamental frequency was measured by spectrum analyzer with 300 Hz RBW and 1 kHz VBW. The 20 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20 dB.

4.4. Test result

Freq. (kHz)	20 dB bandwidth Result (kHz)	Conclusion		
146	1.442	PASS		

Dongguan Dongdian Testing Service Co., Ltd

Report No.: DDT-R21041216-2E3


4.5. Original test data

5 Radiated Emission

5.1. Block diagram of test setup

In 3 m Anechoic Chamber Test Setup Diagram for 9 kHz ~ 30 MHz

5.2. Limit

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT			
MHz	Meters	μV/m	dB(μV)/m		
0.009 ~ 0.490	300 ®	2400/F(kHz)	67.6-20log(F)		
0.490 ~ 1.705	30	24000/F(kHz)	87.6-20log(F)		
1.705 ~ 30.0	30	30	29.54		
30 ~ 88	3	100	40.0		
88 ~ 216	3	150	43.5		
216 ~ 960	3	200	46.0		
960 ~ 1000 _	3	500	54.0 殿		

Note: (1) The emission limits shown in the above table are based on measurements employing a CISPR QP detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emissions limits in these three bands are based on measurements employing an average detector.

(2) At frequencies below 30 MHz, measurement may be performed at a distance closer than that specified, and the limit at closer measurement distance can be extrapolated by below formula:

 $\begin{array}{l} \mbox{Limit}_{3m}(dBuV/m) = \mbox{Limit}_{300m}(dBuV/m) + 40\mbox{Log}(300m/3m) = \mbox{Limit}_{300m}(dBuV/m) + 80 \\ \mbox{Limit}_{3m}(dBuV/m) = \mbox{Limit}_{30m}(dBuV/m) + 40\mbox{Log}(30m/3m) = \mbox{Limit}_{30m}(dBuV/m) + 40 \\ \end{array}$

5.3. Test procedure

(1) EUT was placed on a non-metallic table, 150 cm above the ground plane inside a

semi-anechoic chamber.

(2) Test antenna was located 3m from the EUT on an adjustable mast, and the antenna used as below table.

Test frequency range	Test antenna used	Test antenna distance
9 kHz - 30 MHz	Active Loop antenna	3 m
30 MHz - 1 GHz	Trilog Broadband Antenna	3 m

According ANSI C63.10:2013 clause 6.4.4.2 and 6,5.3, for measurements below 30 MHz, the loop antenna was positioned with its plane vertical from the EUT and rotated about its vertical axis for maximum response at each azimuth position around the EUT. And the loop antenna also is positioned with its plane horizontal at the specified distance from the EUT. The center of the loop is 1 m above the ground. For measurement above 30 MHz, the Trilog Broadband Antenna or Horn Antenna was located 3 m from EUT, Measurements were made with the antenna positioned in both the horizontal and vertical planes of Polarization, and the measurement antenna was varied from 1 m to 4 m. in height above the reference ground plane to obtain the maximum signal strength.

(3) Below pre-scan procedure was first performed in order to find prominent frequency spectrum radiated emissions from 9 kHz to 1 GHz:

(a) Scanning the peak frequency spectrum with the antenna specified in step (3), and the EUT

was rotated 360 degree, the antenna height was varied from 1 m to 4 m (Except loop antenna, it's fixed 1 m above ground.)

(b) Change work frequency or channel of device if practicable.

(c) Change modulation type of device if practicable.

(d) Rotated EUT though three orthogonal axes to determine the attitude of EUT arrangement produce highest emissions. Spectrum frequency from 9 kHz to 1 GHz (tenth harmonic of fundamental frequency) was investigated.

(4) For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission.

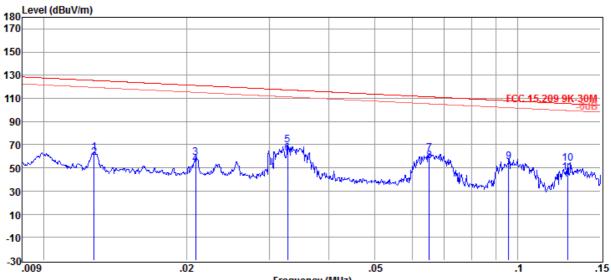
Measurements in both horizontal and vertical polarities were made and the data was recorded. In order to find the maximum emission, the relative positions of equipments and all of the interface cables were changed according to ANSI C63.10:2013 on Radiated Emission test.

(5) The emissions from 9 kHz to 1 GHz were measured based on CISPR QP detector except for the frequency bands 9-90 kHz, 110-490 kHz, for emissions from 9 kHz - 90 kHz, 110 kHz - 490 kHz and above 1 GHz were measured based on average detector, for emissions above 1 GHz, peak emissions also be measured and need comply with Peak limit.

(6) The emissions from 9 kHz to 1 GHz, QP or average values were measured with EMI receiver with below RBW.

Frequency band	RBW
9 kHz - 150 kHz	200 Hz
150 kHz - 30 MHz	9 kHz
30 MHz - 1 GHz	120 kHz

5.4. Test result


Pass. (See below detailed test result)

Dongguan Dongdian Testing Service Co., Ltd

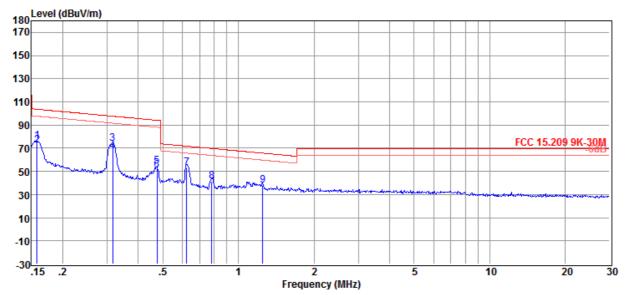
Below 30 MHz: TR-4-E-009 Radiated Emission Test Result

Test Site	: DDT 3m Chamber 2#	D:\2021 RE2# Repo 9K-30M.EM6	rt Data\Q21041216-1E iBTW22-1\FCC
Test Date	: 2021-04-29	Tested By	: Jacky Huang
EUT	Compact Bluetooth Bedside Alarm : Clock with Qi Wireless and USB Charging	Model Number	: iBTW22
Power Supply	: AC 120V/60Hz	Test Mode ®	: Tx mode
Condition	Temp:24.1°C,Humi:43%,Press:101.4k Pa	Antenna/Distance	: 2020 FMZB1519/3m/VERTICAL
Memo	0K) (DR

Data: 1

Frequency (MHz)

Item	Freq.	Read Level (dBµV)	Antenna Factor (dB/m)	AMP Factor dB	Cable Loss dB	Result Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit	Detecto r	Polarization
1	0.01	39.07	21.16	0.00	3.00	63.23	145.47	-82.24	Peak	VERTICAL
2	0.01	34.44	21.16	0.00	3.00	58.60	125.47	-66.87	Average	VERTICAL
3	0.02	34.65	21.10	0.00	3.00	58.75	141.17	-82.42	Peak	VERTICAL
4	0.02	29.11	21.10	0.00	3.00	53.21	121.17	-67.96	Average	VERTICAL
5	0.03	45.87	21.05	0.00	3.01	69.93	137.29	-67.36	Peak	VERTICAL
6	0.03	38.47	21.05	0.00	3.01	62.53	117.29	-54.76	Average	VERTICAL
7	0.07	38.04	21.00	0.00	3.04	62.08	131.31	-69.23	Peak	VERTICAL
8	0.07	32.11	21.00	0.00	3.04	56.15	111.31	-55.16	Average	VERTICAL
9	0.10	30.93	21.00	0.00	3.06	54.99	107.96	-52.97	QP	VERTICAL
10	0.13	29.79	20.96	0.00	3.08	53.83	125.47	-71.64	Peak	VERTICAL
11	0.13	21.88	20.96	0.00	3.08	45.92	105.47	-59.55	Average	VERTICAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - AMP Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: 9k-150kHz, RBW: 200Hz; 150k-30Mhz, RBW: 9kHz, Sweep time: auto.

TR-4-E-009 Radiated Emission Test Result

Test Site	: DDT 3m Chamber 2#	D:\2021 RE2# Repo 9K-30M.EM6	rt Data\Q21041216-1E iBTW22-1\FCC	
Test Date	: 2021-04-29	Tested By	: Jacky Huang	
EUT	Compact Bluetooth Bedside Alarm : Clock with Qi Wireless and USB Charging	Model Number	: iBTW22	
Power Supply	: AC 120V/60Hz	Test Mode	: Tx mode	
® Condition Memo	Temp:24.1°C,Humi:43%,Press:101.4k Pa	® Antenna/Distance	: 2020 FMZB1519/3m/VERTICAL	
Data: 2		D/		

Item	Freq.	Read Level	Antenna Factor	AMP Factor	Cable Loss	Result Level	Limit Line	Over Limit	Detecto r	Polarization
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	0.16	52.33	20.93	0.00	3.11	76.37	123.62	-47.25	Peak	VERTICAL
2	0.16	48.14	20.93	0.00	3.11	72.18	103.62	-31.44	Average	VERTICAL
3	0.32	49.96	20.95	0.00	3.12	74.03	117.59	-43.56	Peak	VERTICAL
4	0.32	43.68	20.95	0.00	3.12	67.75	97.59	-29.84	Average	VERTICAL
5	0.47	30.08	20.99	0.00	3.12	54.19	114.10	-59.91	Peak	VERTICAL
6	0.47	26.41	20.99	0.00	3.12	50.52	94.10	-43.58	Average	VERTICAL
7	0.62	28.92	21.03	0.00	3.13	53.08	71.71	-18.63	QP	VERTICAL
8	0.78	17.05	21.06	0.00	3.11	41.22	69.74	-28.52	QP	VERTICAL
9	1.25	13.69	21.04	0.00	3.21	37.94	65.70	-27.76	QP	VERTICAL

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss - AMP Factor.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: 9k-150kHz, RBW: 200Hz; 150k-30Mhz, RBW: 9kHz, Sweep time: auto.

Dongguan Dongdian Testing Service Co., Ltd

50 40

30 20 10

0<mark>____</mark>

50

500

Above 30 MHz: TR-4-E-009 Radiated Emission Test Result

Tes	t Site	: DDT 3m Cl	namber 2#		D:\2021 RE2# Re BELOW1G.EM6	TW22-1\F	-CC		
Tes	t Date	: 2021-05-06	5		Tested By	: Jacky Huar	ng		
EU	г	Compact Bluetooth Bedside Alarm Clock with Qi Wireless and USB Charging			Model Number	: iBTW22			
Pov	ver Supply	: AC 120V/6	0Hz		Test Mode	: Tx mode			
Cor	®		Antenna/Distanc e	c : 2020 VULB 9163 2#/3m/VERTICA					
Me	mo		Ø		pP!		DP		
Da	ta:								
14									
	90 Level (d	BuV/m)							
	80								
	70		· · · · · · · · · · · · · · · · · · ·						
	60						ECC DAD		
							FUC PAR	T15 C RE	

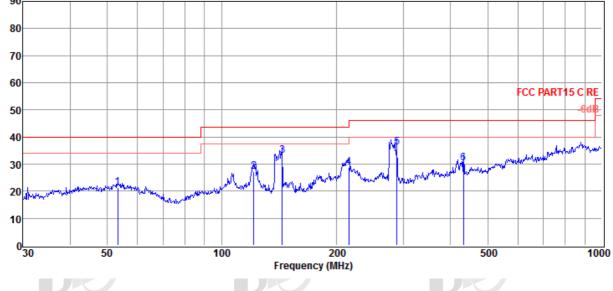
Polarization Cable Limit Over Detector Item Freq. Read Antenna Result Factor Level Line Limit Level Loss (Mark) (MHz) (dBµV) (dB/m) dB (dBµV/m) (dBµV/m) (dB) 1 58.61 13.55 11.54 3.95 29.04 40.00 -10.96 QP VERTICAL VERTICAL 2 92.14 10.67 9.51 4.35 24.53 43.50 -18.97 QP 3 122.40 15.38 8.58 4.57 28.53 43.50 -14.97 QP VERTICAL 4 143.83 22.91 7.68 4.71 35.30 43.50 -8.20 QP VERTICAL 213.02 16.05 11.00 43.50 QP VERTICAL 5 5.10 32.15 -11.35 6 287.99 11.19 12.94 5.43 29.56 46.00 -16.44 QP VERTICAL

Frequency (MHz)

200

Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.


3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

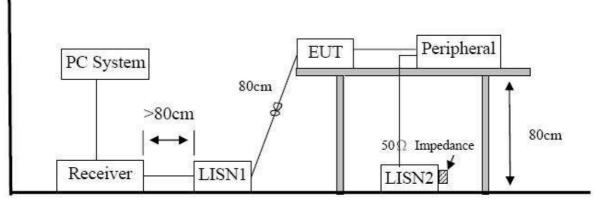
100

1000

TR-4-E-009 Radiated Emission Test Result

Test Site	: DDT 3m Chamber 2#	D:\2021 RE2# Rep BELOW1G.EM6	ort Data\Q21041216-1E iBTW22-1\FCC
Test Date	: 2021-05-06	Tested By	: Jacky Huang
EUT	Compact Bluetooth Bedside Alarm Clock with Qi Wireless and USB Charging	Model Number	: iBTW22
Power Supply	: AC 120V/60Hz	Test Mode	: Tx mode
Condition	: TEMP:24.5℃, RH:55%, BP:101.4kPa	Antenna/Distanc e	: 2020 VULB 9163 2#/3m/HORIZONTAL
Memo			
Data: 15	DP I		D
90 Level (dl	BuV/m)		

ltem	Freq.	Read	Antenna	Cable	Result	Limit	Over	Detector	Polarization
R		Level	Factor	Loss	Level	Line	Limit		R
(Mark)	(MHz)	(dBµV)	(dB/m)	dB	(dBµV/m)	(dBµV/m)	(dB)		
1	53.32	3.94	13.64	3.89	21.47	40.00	-18.53	QP	HORIZONTAL
2	121.55	13.99	8.69	4.57	27.25	43.50	-16.25	QP	HORIZONTAL
3	144.34	20.78	7.69	4.72	33.19	43.50	-10.31	QP	HORIZONTAL
4	216.02	12.54	11.09	5.12	28.75	46.00	-17.25	QP	HORIZONTAL
5	289.00	17.76	12.98 🙍	5.44	36.18	46.00	-9.82	QP	HORIZONTAL
6	432.55	8.31	16.03	6.05	30.39	46.00	-15.61	QP	HORIZONTAL


Note: 1. Result Level = Read Level + Antenna Factor + Cable loss.

If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.
Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

6 Power Line Conducted Emission

6.1. Block diagram of test setup

6.2. Power line conducted emission limits

F	reque	ency	Quasi-Peak Level dB(μV)	Average Level dB(µV)			
150 kHz	~	500 kHz	66 ~ 56*	56 ~ 46*			
500 kHz	~	5 MHz	56	46			
5 MHz	~	30 MHz	60	50			

Note 1: * Decreasing linearly with logarithm of frequency.

Note 2: The lower limit shall apply at the transition frequencies.

6.3. Test procedure

The EUT and Support equipment, if needed, were put placed on a non-metallic table, 80 cm above the ground plane.

Configuration EUT to simulate typical usage as described in clause 2.4 and test equipment as described in clause 10.2 of this report.

All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.

All support equipment power received from a second LISN.

Emissions were measured on each current carrying line of the EUT using an EMI Test Receiver connected to the LISN powering the EUT.

The Receiver scanned from 150 kHz to 30 MHz for emissions in each of the test modes.

During the above scans, the emissions were maximized by cable manipulation.

The test mode(s) described in clause 2.4 were scanned during the preliminary test.

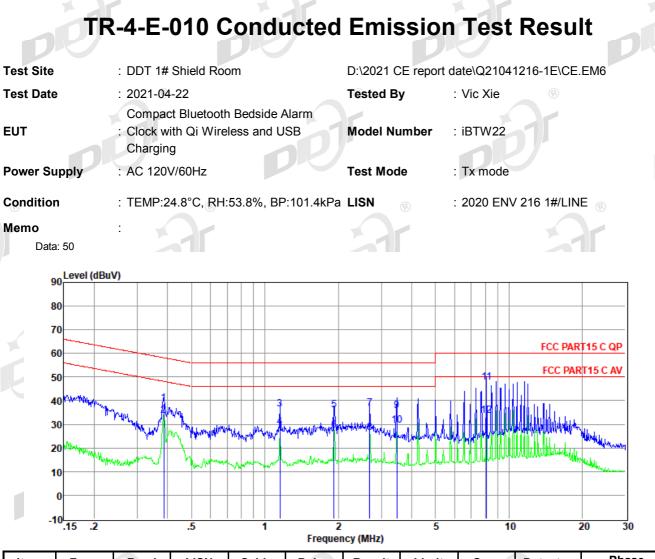
After the preliminary scan, we found the test mode producing the highest emission level.

The EUT configuration and worse cable configuration of the above highest emission levels were recorded for reference of the final test.

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test.

A scan was taken on both power lines, Neutral and Line, recording at least the six highest emissions.

Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit.

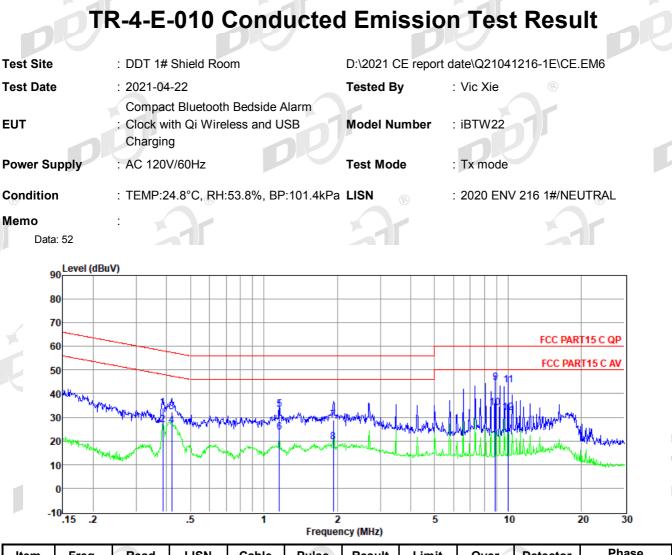

The test data of the worst-case condition(s) was recorded.

The bandwidth of test receiver is set at 9 kHz.

6.4. Test result

Pass. (See below detailed test result)

Note1: All emissions not reported below are too low against the prescribed limits. Note2: "-----" means Peak detection; "-----" means Average detection. Note3: Pre-test AC conducted emission at both voltage AC 120V/60Hz and AC 240V/60Hz, recorded worse case (AC 120V/60Hz).


ltem	Freq.	Read Level	LISN Factor	Cable Loss	Pulse Limiter Factor	Result Level	Limit Line	Over Limit	Detector	Phase
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.39	19.56	9.41	0.02	9.86	38.85	58.17	-19.32	QP	LINE
2	0.39	14.36	9.41	0.02	9.86	33.65	48.17	-14.52	Average	LINE
3	1.15	17.21	9.42	0.03	9.86	36.52	56.00	-19.48	QP	LINE
4	1.15	9.54	9.42	0.03	9.86	28.85	46.00	-17.15	Average	LINE
5	1.92	16.63	9.42	0.05	9.87	35.97	56.00	-20.03	QP	LINE
6	1.92	8.06	9.42	0.05	9.87	27.40	46.00	-18.60	Average	LINE
7	2.69	17.55	9.43	0.06	9.87	36.91	56.00	-19.09	QP	LINE
8 🦪	2.69	7.08	9.43	0.06	9.87	26.44	46.00	-19.56	Average	LINE
9	3.47	16.18	9.45	0.07	9.87	35.57	56.00	-20.43	QP	LINE
10	3.47	9.98	9.45	0.07	9.87	29.37	46.00	-16.63	Average	LINE
11	8.11	28.08	9.57	0.10	9.88	47.63	60.00	-12.37	QP	LINE
12	8.11	14.26	9.57	0.10	9.88	33.81	50.00	-16.19	Average	LINE

Note:

1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).

4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

Item	Freq.	Read	LISN	Cable	Pulse	Result	Limit	Over	Detector	Phase
		Level	Factor	Loss	Limiter	Level	Line	Limit		
					Factor					
(Mark)	(MHz)	(dBµV)	(dB)	(dB)	(dB)	(dBµV)	(dBµV)	(dB)		
1	0.39	14.69	9.38	0.02	9.86	33.95	58.17	-24.22	QP	NEUTRAL
2	0.39	7.40	9.38	0.02	9.86	26.66	48.17	-21.51	Average	NEUTRAL
ິ 3	0.42	13.00	9.39	0.02	9.86	32.27	57.46	-25.19	QP	NEUTRAL
4	0.42	7.30	9.39	0.02	9.86	26.57	47.46	-20.89	Average	NEUTRAL
5	1.16	13.86	9.39	0.03	9.86	33.14	56.00	-22.86	QP	NEUTRAL
6	1.16	4.30	9.39	0.03	9.86	23.58	46.00	-22.42	Average	NEUTRAL
7	1.93	9.38	9.40	0.05	9.87	28.70	56.00	-27.30	QP	NEUTRAL
8	1.93	0.27	9.40	0.05	9.87	19.59	46.00	-26.41	Average	NEUTRAL
9	8.87	25.16	9.55	0.10	9.89	44.70	60.00	-15.30	QP	NEUTRAL
10	8.87	14.40	9.55	0.10	9.89	33.94	50.00	-16.06	Average	NEUTRAL
11	10.02	23.98	9.57	0.11	9.89	43.55	60.00	-16.45	QP	NEUTRAL
12	10.02	12.38	9.57	0.11	9.89	31.95	50.00	-18.05	Average	NEUTRAL

Note:

1. Result Level = Read Level +LISN Factor + Pulse Limiter Factor + Cable loss.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz-150 kHz), 9 kHz (150 kHz-30 MHz).
- 4. Step size: 80Hz (0.009MHz-0.15MHz), 4 kHz (0.15MHz-30MHz), Scan time: auto.

7 Antenna Requirements

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Conclusion: The antenna used for this product is inductive loop coil antenna and that no antenna other than that furnished by the responsible party shall be used with the device.

END OF REPORT