Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **Ultratech Labs** Certificate No: CLA150-4006 Dec13/2 Accreditation No.: SCS 108 # CALIBRATION CERTIFICATE (Replacement of No: CLA150-4006_Dec13) Object CLA150 - SN: 4006 Calibration procedure(s) QA CAL-15.v8 Calibration procedure for system validation sources below 700 MHz Calibration date: December 03, 2013 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5058 (20k) | 04-Apr-13 (No. 217-01736) | Apr-14 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 04-Apr-13 (No. 217-01739) | Apr-14 | | Reference Probe EX3DV4 | SN: 3877 | 26-Nov-13 (No. EX3-3877_Nov13) | Nov-14 | | DAE4 | SN: 654 | 18-Jul-13 (No. DAE4-654_Jul13) | Jul-14 | | | | | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 04-Aug-99 (in house check Apr-13) | In house check: Apr-15 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Osreen Chraceg | | Approved by: | Katja Pokovic | Technical Manager | LO KY | | | | | | Issued: April 15, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)". February 2013 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook ### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.7 | |----------------------|---------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | EUT Positioning | Touch Position | | | Zoom Scan Resolution | dx, dy , $dz = 5.0 mm$ | | | Frequency | 150 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 52.3 | 0.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 50.0 ± 6 % | 0.75 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 3.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 3.74 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 2.50 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 2.50 W/kg ± 18.0 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 61.9 | 0.80 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 63.0 ± 6 % | 0.81 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # **SAR result with Body TSL** | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 3.86 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.85 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|------------------|--------------------------| | SAR measured | 1 W input power | 2.60 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 2.59 W/kg ± 18.0 % (k=2) | Certificate No: CLA150-4006_Dec13/2 # **Appendix** ## **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 43.8 Ω - 5.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.4 dB | # **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.0 Ω - 6.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | ## **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 23, 2013 | #### **DASY5 Validation Report for Head TSL** Date: 02.12.2013 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4006 Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; $\sigma = 0.75 \text{ S/m}$; $\varepsilon_r = 50$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: EX3DV4 - SN3877; ConvF(11.76, 11.76, 11.76); Calibrated: 26.11.2013; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn654; Calibrated: 18.07.2013 - Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 - DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.78 W/kg # CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 79.927 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 5.99 W/kg SAR(1 g) = 3.74 W/kg; SAR(10 g) = 2.5 W/kg Maximum value of SAR (measured) = 4.82 W/kg 0 dB = 4.78 W/kg = 6.79 dBW/kg # Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 03.12.2013 Test Laboratory: SPEAG, Zurich, Switzerland DUT: CLA150; Type: CLA150; Serial: CLA150 - SN: 4006 Communication System: UID 0 - CW; Frequency: 150 MHz Medium parameters used: f = 150 MHz; $\sigma = 0.806 \text{ S/m}$; $\varepsilon_r = 63$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: • Probe: EX3DV4 - SN3877; ConvF(11.45, 11.45, 11.45); Calibrated: 26.11.2013; • Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn654; Calibrated: 18.07.2013 • Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 • DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164) # CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 4.96 W/kg ## CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 78.271 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 6.11 W/kg SAR(1 g) = 3.86 W/kg; SAR(10 g) = 2.6 W/kg Maximum value of SAR (measured) = 4.95 W/kg 0 dB = 4.96 W/kg = 6.95 dBW/kg # Impedance Measurement Plot for Body TSL