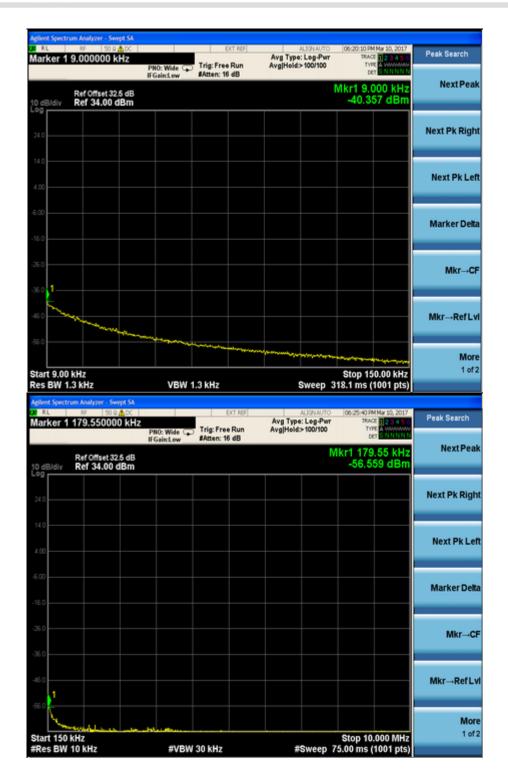


ANT4 Four Carriers





Three Carriers

Two Carriers

One Carrier

11 OCCUPIED BANDWIDTH

11.1 Applicable Standard: FCC §2.1049 §22.917

11.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY52090451	2016-3-15	2017-3-15
DST	DST100 30dB Attenuator	DTS100- 30dB-N	N/A	N/A	N/A
Hewlett Packard	Hewlett Packard RF Cable	8120-6192	01428251	N/A	N/A

^{*}statement of traceability: The RF Laboratory of Shenzhen Zoom Rel Testing Technology Co., Ltd attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

11.3 Test Procedure

The RF out of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation. The resolution bandwidth of the spectrum analyzer was set at 1% of the span or higher and 99%Power bandwidth was recorded.

11.4 Environmental Conditions

Temperature:	20 ° C
Relative Humidity:	53%
ATM Pressure:	1009mbar

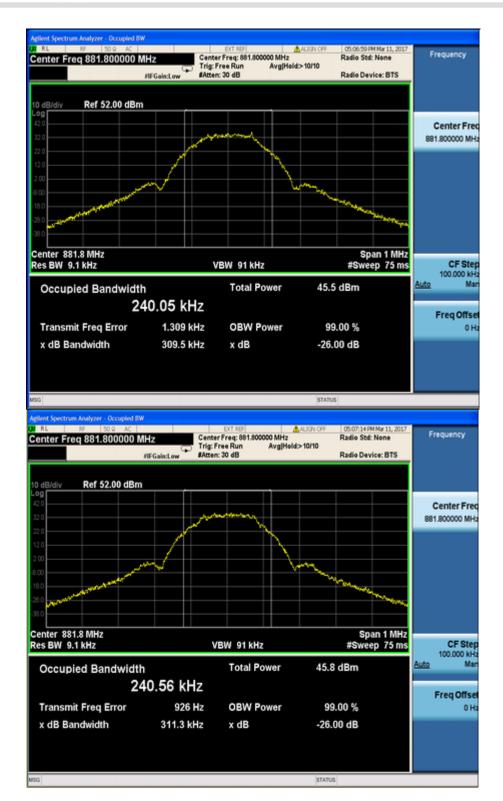
11.5 Test Result: Pass

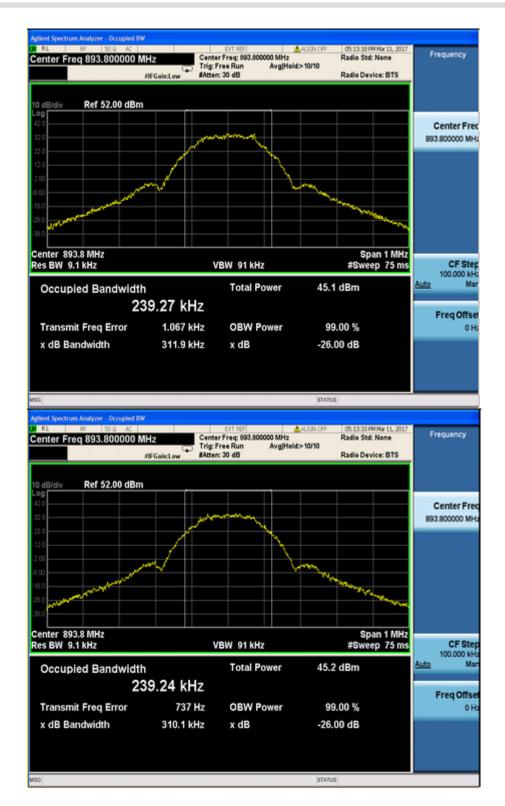
11.6 Test Mode: Transmitting GSM

11.7 Test Data

Modulation	ANT	Frequency (MHz)	99% Power	Limit
			Bandwidth (kHz)	(kHz)
GMSK	ANT1	869.2/881.8/893.8	240.6/240.8/241.84	250
GMSK	ANT2	869.2/881.8/893.8	239.58/239.81/240.65	250

Page 64 of 80




Modulation	ANT	Frequency (MHz)	99% Power	Limit
			Bandwidth (kHz)	(kHz)
8PSK	ANT1	869.2/881.4/893.8	241.79/240.05/239.27	250
8PSK	ANT4	869.2/881.4/893.8	240.37/240.56/239.24	250

12 BAND EDGES

12.1 Applicable Standard: FCC §2.1051

According to §2.1051 and §24.238, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (p) by a factor of at least 43 + 10 log (p) dB. The limit (dBm) should < P - (43+10log(P)) = -13dBm.

12.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	MXA Series Spectrum Analyzer	N9020A	MY52090451	2016-3-15	2017-3-15
DST	DST100 30dB Attenuator	DTS100- 30dB-N	N/A	N/A	N/A
Hewlett Packard	Hewlett Packard RF Cable	8120-6192	01428251	N/A	N/A

^{*}statement of traceability: The RF Laboratory of Shenzhen Zoom Rel Testing Technology Co., Ltd attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

12.3 Test Procedure

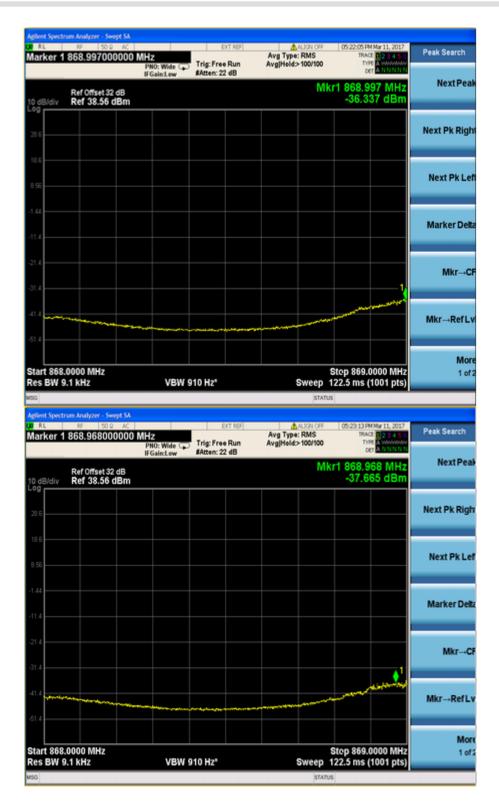
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency.

12.4 Test Data Environmental Conditions

Temperature:	20 °C
Relative	53%
Humidity:	33 /6
ATM Pressure:	1009mbar

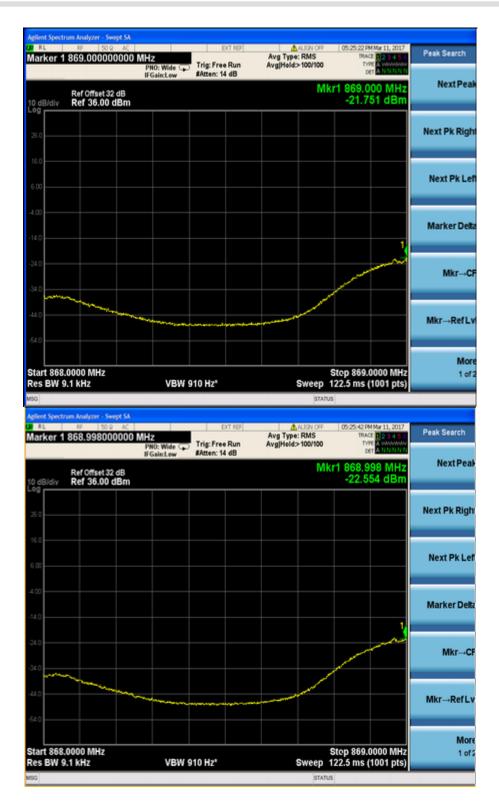
12.5 Test Result: Pass

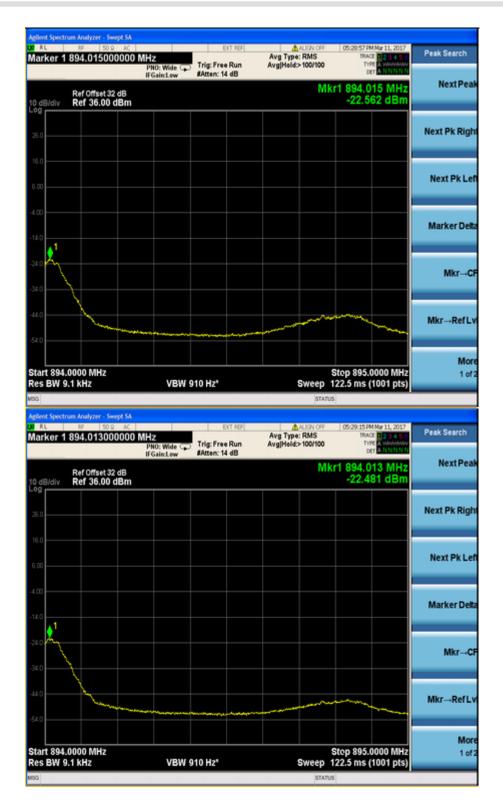

12.6 Test Mode: Transmitting GSM

12.7 Test Data

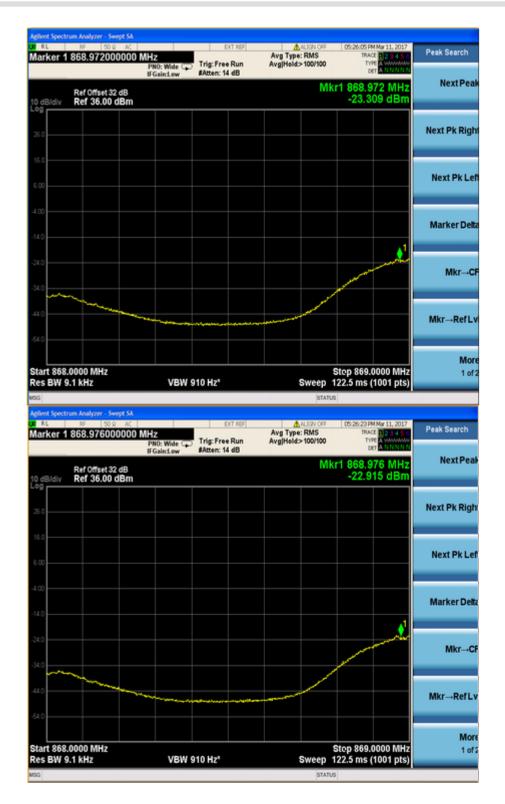
Four carrier

ANT	Frequency channel	Max bandedge	Limit
		Emission (dBm)	(dBm)
ANT1	869.2/877/ 886 /893.8	-36.337/-23.419	-13.00
ANT4	869.2/877/ 886 /893.8	-37.665/-23.112	-13.00




Three carriers

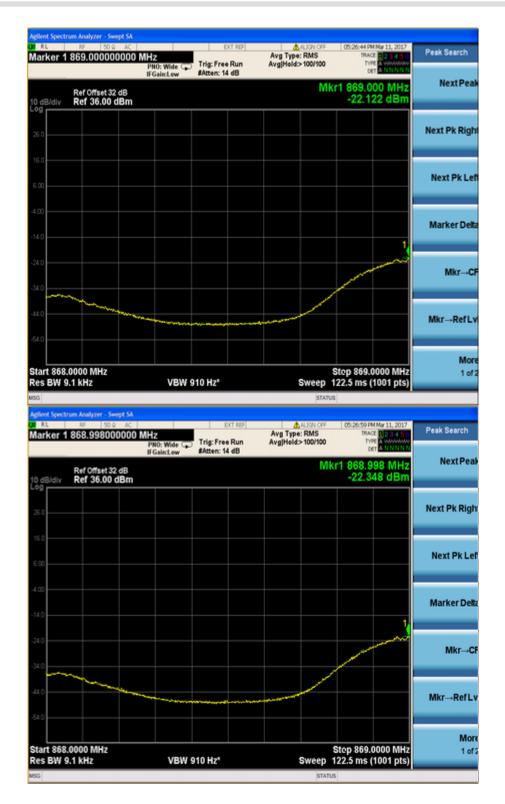
ANT	Frequency channel	Max bandedge	Limit
		Emission (dBm)	(dBm)
ANT1	869.2/881.8/893.8	-27.251/-22.562	-13.00
ANT4	869.2/881.8/893.8	-22.254/-22.481	-13.00



Two carriers

ANT	Frequency channel	Max bandedge	Limit
		Emission (dBm)	(dBm)
ANT1	869.2/893.8	-23.309/-22.027	-13.00
ANT4	869.2/893.8	-22.915/-22.451	-13.00

Page 75 of 80




One carrier

ANT	Frequency channel	Max bandedge Emission (dBm)	Limit (dBm)
ANT1	869.2/ /893.8	-22.122/-22.366	-13.00
ANT4	869.2//893.8	-22.348/-22.79	-13.00

13 12 FREQUENCY STABILITY

13.1 Applicable Standard: FCC § 2.1055

Requirements: FCC § 2.1055 (a)(d),

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

13.2 Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
GZ-ESPEC	Temperature Chamber	GRW-120	00020268	2016-3-15	2017-3-15
Agilent	MXA Series Spectrum Analyzer	N9020A	MY52090451	2016-3-15	2017-3-15
DST	DST100 40dB Attenuator	DTS100- 40dB-N	N/A	N/A	N/A
Hewlett Packard	Hewlett Packard RF Cable	8120-6192	01428251	N/A	N/A

^{*}statement of traceability: The RF Laboratory of Shenzhen Zoom Rel Testing Technology Co., Ltd attest that all calibration have been performed per the NVLAP requirements, traceable to NIST.

13.3 Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to a Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose. After the temperature stabilized for approximately 150 minutes, the frequency output was recorded from the counter.

Frequency Stability vs. Voltage: An external variable DC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

13.4 Environmental Conditions

Normal condition:	25° C
Relative Humidity:	54%
ATM Pressure:	1011 mbar

13.5 Test Result: Pass

13.6 Test Mode: Transmitting GSM

13.7 Test Data

13.7.1 Frequency Stability Versus Temperature

ANT 1

Frequency Stability vs. Temperature						
Temperature °C	Power Supplied	Frequency Measure	Limit Hz	Result		
VDC Error Hz 112 f=869.2MHz						
-40	-48	-0.52	43.46	PASS		
-30	-48	1.35	43.46	PASS		
-20	-48	-0.45	43.46	PASS		
-10	-48	-0.28	43.46	PASS		
0	-48	-1.56	43.46	PASS		
10	-48	0.87	43.46	PASS		
20	-48	0.55	43.46	PASS		
30	-48	2.45	43.46	PASS		
40	-48	-0.17	43.46	PASS		
50	-48	-0.82	43.46	PASS		
55	-48	-0.33	43.46	PASS		
f=881.8MHz						
-40	-48	1.24	44.09	PASS		
-30	-48	2.52	44.09	PASS		
-20	-48	-0.24	44.09	PASS		
-10	-48	-1.56	44.09	PASS		
0	-48	-0.45	44.09	PASS		
10	-48	1.41	44.09	PASS		
20	-48	2.84	44.09	PASS		
30	-48	1.47	44.09	PASS		
40	-48	-1.67	44.09	PASS		
50	-48	0.97	44.09	PASS		
55	-48	1.43	44.09	PASS		
f=893.8MHz						
-40	-48	1.57	44.69	PASS		
-30	-48	0.68	44.69	PASS		
-20	-48	-1.47	44.69	PASS		
-10	-48	-0.24	44.69	PASS		
0	-48	0.67	44.69	PASS		
10	-48	-1.59	44.69	PASS		
20	-48	-1.96	44.69	PASS		
30	-48	0.53	44.69	PASS		
40	-48	-1.47	44.69	PASS		
50	-48	-0.34	44.69	PASS		
55	-48	1.67	44.69	PASS		

ANT4

	•	cy Stability vs.					
Temperature °C	Power	Frequency	Hz	Result			
-40	-48	-1.57	43.46	PASS			
-30	-48	2.54	43.46	PASS			
-20	-48	-0.61	43.46	PASS			
-10	-48	-0.67	43.46	PASS			
0	-48	-1.47	43.46	PASS			
10	-48	1.22	43.46	PASS			
20	-48	0.13	43.46	PASS			
30	-48	1.56	43.46	PASS			
40	-48	-1.34	43.46	PASS			
50	-48	-2.14	43.46	PASS			
55	-48	-0.88	43.46	PASS			
	f=881.8MHz						
-40	-48	0.45	44.09	PASS			
-30	-48	-2.54	44.09	PASS			
-20	-48	0.84	44.09	PASS			
-10	-48	-1.21	44.09	PASS			
0	-48	-2.34	44.09	PASS			
10	-48	-0.54	44.09	PASS			
20	-48	1.32	44.09	PASS			
30	-48	1.54	44.09	PASS			
40	-48	1.66	44.09	PASS			
50	-48	1.23	44.09	PASS			
55	-48	-0.58	44.09	PASS			
f=893.8MHz							
-40	-48	-0.87	44.69	PASS			
-30	-48	-1.21	44.69	PASS			
-20	-48	1.54	44.69	PASS			
-10	-48	1.68	44.69	PASS			
0	-48	1.36	44.69	PASS			
10	-48	1.20	44.69	PASS			
20	-48	-1.33	44.69	PASS			
30	-48	1.06	44.69	PASS			
40	-48	-0.85	44.69	PASS			
50	-48	-0.65	44.69	PASS			
55	-48	-0.69	44.69	PASS			

---End of Report---