

RADIATED EMISSIONS

DATA

FOR

KYOCERA WIRELESS CORPORATION 10300 Campus Point Drive San Diego, CA 92121

Prepared by

TÜV PRODUCT SERVICE 10040 Mesa Rim Road San Diego, CA 92121-2912

Measurement Requirements (CFR 47 Part 15, Paragraph 15.109(b) and Part 15, Paragraph 15.238)

The measurements which follow were performed by TÜV Product Service. To the best of my knowledge these tests were conducted in accordance with the procedures outlined in Part 2 of the Commission's Rules and Regulations. The data presented below demonstrates compliance with the appropriate technical standards.

Floyd R. Fleury

7R7laury

EMC Manager

Emissions Test Conditions: SPURIOUS RADIATED EMISSIONS

Roof (small open area test site)

The Spurious Radiated Emissions measurements were performed using the following equipment:

Test Equipment Used:

Model No.	Prop. No.	Description	Manufacturer	Serial No.	Cal Date
HP8586B	721	Spectrum Analyzer	Hewlett Packard	2542A12099	06/02
3115	251	Double Ridge Antenna	EMCO	2495	10/01
FF 6548-2	781	2000 MHz High Pass Filter	Sage	004	N/A*
FF 6549-1	777	900 MHz High Pass Filter	Sage	006	N/A*
AMF-3D-010180- 35-10P	752	Amplifier 20 dB	Miteq	614344	N/A*
83640B	791	Synthesized Swept Signal Generator	Hewlett Packard	3844A00726	05/02
3115	453	Double Ridge Antenna (1 to 18 GHz)	Hewlett Packard	9412-4364	10/01

Remarks: (*) Verified

FCC Testing

RADIATED SPURIOUS - EMISSIONS SIGNAL SUBSTITUTION METHOD

		Test Area: Roof			
Test Method FCC	PART 24.238	Date: 1064 19,	2001	PR	ODUCT SERVICE
		EUT POWER:	2017 - 100 11-		
		⊕ Other:		perature	°C
EUT Description:	Trimode C	ellular 76f	Alr Pi	ressure:	kPa
NOTES:				tive Humidity:	%
Frequency (MHz)	Signal Generator	Gain of Antenna	Total	Y :	
riequency (MIRIZ)	(dBm)	Gain of Antenna	(EIRP)	Limit	Margin (dB)
9256.25	- 38.4	٦,5	- 38.9	-13	-25,9
9400	- 39.5	7	-40,2	-13	- 27.2
9543.75	-36,7	+ .1	-36,6	-13	-23,6
11107,5	- 25.2	+.3	-24.9	-13	-119
11280	-33,2	-1.4	-24.6	-13	-11,6
11452,5	-28.9	~ , 2	-29.1	-13	- 16,1
1.20					

				···	
				1	<u> </u>
ested By: A, L	Printed		- Aller C	Signature	
NOTES:			•	•	

		<u></u>			
					· · · · · · · · · · · · · · · · · · ·

radspursubstmtd.doc

244

L06:

OTHER:

above 1GHz: RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG

CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss

FCC Part 15 para 15.109(b)
5T: 3 Meters
E: Roof

SPEC:

Alan Laudani

TESTER:

REPORT No: SC105530

CUSTOMER: Kyocera

TEST DIST:

TEST SITE:

KCP3035 Trimode Cellular (7GP)

EUT:

EUT MODE: CDMA Cellular Tx

July 18, 2001

DATE:

NOTES:

	dBuV/m		123.3	40.5	46.2	46.0	51.0	51.3	53.3	56.7			123.3	41.7	50.1	47.4	53.5	51.5	57.9	57.6			123.3	42.7	48.6	47.6	51.8	51.3	54.7	58.4			
	Notes		Fundamental			noise floor		noise floor	noise floor	noise floor			Fundamental					noise floor	noise floor	noise floor			Fundamental				noise floor	noise floor	noise floor	noise floor			
	Antenna	Height	1.1		1.5		1		_			 ;		-	1.5	1.5	1.2				H	+	-	1.5	1.5	-			-				-
v.beta1a	EUT Ro	tation	0	160	240	_	0					-	3	8	0	0	160					\dagger	0	240	0	240			_		_		
	MARGIN (dB)	pk av		-41.8	-36.1	-36.3	-31.2	-31	-28.9	-25.6				40.6	-32.1	-34.8	-28.8	-30.8	-24.4	-24.7				-39.6	-33.7	-34.6	30.5	-31	-27.6	23.9			
201	SPEC LIMIT (dBm)	pk av		-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0			,							-13.0			-	-13.0	-13.0		-13.0			-13.0			
20000	MAX LEVEL (dBm(d))	pk	28.0	-54.8	-49.1	49.3	-44.2	-44.0	41.9	-38.6		000	70.07	-53.6	45.1	47.8	-41.8	43.8	-37.4	-37.7			28.1	-52.6	-46.7	47.6	43.5	-44.0					
	CF (dB/m)		22.1	6.3	11.2	14.6	19.3	20.3	22.9	22.4		, ,	1 7,7	+	11.3	\dashv	19.6		23.1				22.3	H	-			20.6					_
	HORIZONTAL (dBuv) pk	AB	89.2	31.9	33	31.2	31.7	31	30.3	34.3		7 00	4:60	34	33.5	31.2	33.9	30.5	34.2	34.9			90.2	30.9	33.9	32.6	31.2	30.3	31.4	35.7			
	VERTICAL (dBuv)	pk av	101.2	34.2	35	31.4	30.7	31	30.4	34.2		101.2	7:0	35.2	38.8	32.6	32.7	31.2	34.8	35.1			101	36	37.1	30.8	32	30.7	31.4	35.1			
	FREQ	(T	824.7	1649.4	2474.1	3298.8	4123.5	4948.2	5772.9	6597.6		836 40	4677.00	10/2.30	7509.47	3345.96	4182.45	5018.94	5855.43	6691.92			848.31	1696.62	2544.93	3393.24	4241.55	5089.86	5938.17	6786.48			

5938.17

above 1GHz: RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG

CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss

OTHER:

LOG:

July 18, 2001

DATE

NOTES:

EUT MODE: FM Tx

BICONICAL:

TEST SITE:

KCP3035 Trimode Cellular (7GP)

EUT:

FCC Part 15 para 15.109(b)
ST: 3 Meters
TE: Roof

SPEC

Alan Laudani

TESTER

REPORT No: SC105530

CUSTOMER: Kyocera

TEST DIST:

	dBuV/m		123.3	40.0	44.2	46.3	51.0	51.4	53.8	57.1			123.1	41.5	46.5	46.3	54.0	52.0	57.9	58.5	58.4		123.1	39.9	45.4	45.9	53.3	52.0	57.7	58.2			
	Notes		Fundamental			noise floor		noise floor	noise floor	noise floor			Fundamental			noise floor			noise floor	noise floor	noise floor		Fundamental			noise floor		noise floor	noise floor	noise floor			
18	Antenna	Height	-	1			-						-	-	-		-	F					-	-	-		-						
v.beta1a	EUT Ro	tation	0	0	0		0					,	٥	0	0		0	0					0	0	0		240						
	MARGIN (dB)	pk av		42.3	-38.1	-36	-31.2	-30.9	-28.4	-25.1				40.8	-35.7	-35.9	-28.3	-30.3	-24.4	-23.8	-23.8			42.4	-36.9	-36.3	-29	-30.3	-24.6	-24.1			
	SPEC LIMIT (dBm)	pk av		-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0				-13.0	-13.0			-13.0	-13.0	-13.0	-13.0			-13.0						-13.0			
	۳ <u>۴</u>	pk av	28.0	-55.3	-51.1	-49.0	44.2	43.9	41.4	-38.1			27.8	-53.8	-48.7	48.9	-41.3	43.3	-37.4	-36.8	-36.8		27.8	-55.4	49.9	49.3	42.0	43.3	-37.6	-37.1			_
	CF (dB/m)		22.1	6.3	11.2	14.6	19.3	20.3	22.9	22.3		,	22.1	6.5	11.3		19.6		23.1		23.4		22.4	┝	Н	15.0		20.6	\dashv	\dashv			
	HORIZONTAL (dBuv) pk	æ	88.8	32.9	32	30.4	31.7	31.1	30.9	34.7		4	90.0	32.8	32.6	31.5	34.4	31.7	34.8	34.8	35		89.5	31	32.8	30.9	33.5	31.4	34.1	35.5			
	VERTICAL (dBuv)	pk av	101.2	33.7	33	31.7	31.4	30.6	30.8	34.8		707	10.	33	35.2	31.2	33.2	31	34.5	36	34.6		100.7	33.2	33.9	30.7	31.9	31.1	34.4	34.9		1	
	FREQ (MHz)		824.04	1648.08	2472.12	3296.16	4120.2	4944.24	5768.28	6592.32		026 40	4670.49	10/2.98	2509.47	3345.96	4182.45	5018.94	5855.43	6691.92	7528.41		848.97	1697.94	2546.91	3395.88	4244.85	5093.82	5942.79	6791.76			

Page 8 of 16

FCC Part 15 para 238

SPEC:

Alan Laudani 🙌

TESTER:

REPORT No: SC105530

CUSTOMER: Kyocera

3 Meters Roof

TEST DIST:

KCP3035 Trimode Cellular (7GP)

EUT

EUT MODE: PCS/CDMA Cellular Tx

July 18, 2001

DATE:

NOTES:

244

TEST SITE:

LOG: OTHER:

above 1GHz. RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG below 1GHz. RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss

	8		121.9	20 22	55.4	200	20.5	67.6	0.70			124 5	57.0	57.5	9 65	63.4	67.8	2					121.6	59.0	56.0	58.7	62.9	68.3					
	Notes		Fundamental			noise floor	noise floor	Dois Section	5000			Fundamental			noise floor	noise floor	noise floor						Fundamental			noise floor	noise floor	noise floor					
1a	Antenna	Height	-	12	-							1,1	1.3	1.3							+		1.1	1.5	1.5							-	
v.beta1a	EUT Ro	tation	0	240	240							0	240	240									0	240	240							1	
	MARGIN (dB)	pk av		-26.4	-27.2	-23.9	-19.2	14.6				-	-25.3	24.8	-22.6	-18.9	14.5				+	+		-23.3	26.3	23.5	19.4	-13.9			1	1	-
	HM C	. ž						İ			1		Ė		-	<u> </u>	<u> </u>				\dagger			•		-	-	1	-	\dashv	\dagger	+	+
	SPEC LIMIT (dBm)	ᇫ		-13.0	-13.0	-13.0	-13.0	-13.0					-13.0	-13.0	-13.0	-13.0	-13.0							-13.0	-13.0	-13.0	-13.0	-13.0	1	1		+	
	MAX LEVEL (dBm(d))	a A																												1	T	1	
	MAX L (dBr	pk	26.6	-39.4	40.2	-36.9	-32.2	-27.6				26.2	-38.3	37.8	-35.6	-31.9	-27.5						26.3	36.3	-39.3	-36.5	-32.4	-26.9	1	+	+	+	
	CF (dB/m)		32.7	16.9	22.5	23.3	27.8	32.5				32.9	17.3	22.7	23.4	27.7	33.1					†	33.0	┪	1	┪	7	7			†	†	
	HORIZONTAL (dBuv) pk	>								1										+										+	-	+	
	HORIZ (dBuv)	à	86.8	33	32.6	35	35.2	35.1				87.2	39.7	34.8	36.2	32	34.7				-		87.4	41.3	13.1	35.1	35.2	34.7	+	+	+	+	+
	ΕŽ	pk av	89.2	34.2	30.6	34.7	35.2	34.1				88.6	36.6	32	35.8	35.7	8						88.6	37.9	35,	34.7	S .	34.2				+	
	FREG		1851.25	3702.5	5553.75	7405	9256.25	11107.5				1880	3760	5640	7520	9400	11280						1908.75	+	27.027	+	+	11452.5		+			

Page 9 of 16

Rev.No 1.0

Testing Facilities

Certificates of Approval

Page 11 of 16

National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

ISO/IEC GUIDE 25:1990 ISO 9002:1987

Scope of Accreditation

Page: 1 of 3

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100268-0

TUV PRODUCT SERVICE, INC.

10040 Mesa Rim Road San Diego, CA 92121-1034 Mr. R. Barry Wallen

Phone: 619-546-3999 Fax: 619-546-0364 E-Mail: bwallen@TUVps.com URL: http://www.tuvps.com

NVLAP Code Designation / Description

Emissions Test Methods:

12/CIS22 IEC/CISPR 22:1993: Limits and methods of measurement of radio disturbance

characteristics of information technology equipment

12/CIS22a IEC/CISPR 22:1993: Limits and methods of measurement of radio disturbance

characteristics of information technology equipment, Amendment 1:1995, and

Amendment 2:1996.

12/CIS22b CNS 13438:1997: Limits and Methods of Measurement of Radio Interference

Characteristics of Information Technology Equipment

12/F01 FCC Method - 47 CFR Part 15 - Digital Devices

12/F01a Conducted Emissions, Power Lines, 450 KHz to 30 MHz

12/F01b Radiated Emissions

December 31, 2001

Effective through

land to Molerman

For the National Institute of Standards and Technology

NVLAP-01S (11-95)

National Institute of Standards and Technology

National Voluntary Laboratory Accreditation Program

ISO/IEC GUIDE 25:1990 ISO 9002:1987

Scope of Accreditation

Page: 2 of 3

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100268-0

TUV PRODUCT SERVICE, INC.

NVLAP Code Designati

Designation / Description

12/T51

AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of

Information Technology Equipment

MIL-STD-462: Conducted Emissions:

12/A01

MIL-STD-462 Method CE01

12/A04

MIL-STD-462 Method CE02

12/A06

MIL-STD-462 Method CE03

12/A08

MIL-STD-462 Method CE04

12/A10

MIL-STD-462 Method CE06

12/A12

MIL-STD-462 Method CE07

MIL-STD-462 : Conducted Susceptibility:

12/B01

MIL-STD-462 Method CS01

12/B02

MIL-STD-462 Method CS02

12/B04

MIL-STD-462 Method CS03/CS04/CS05/CS08

12/B05

MIL-STD-462 Method CS06

December 31, 2001

Effective through

Varid L. Molerman

For the National Institute of Standards and Technology

NVLAP-01S (11-95)

National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

ISO/IEC GUIDE 25:1990 ISO 9002:1987

Scope of Accreditation

Page: 3 of 3

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

NVLAP LAB CODE 100268-0

TUV PRODUCT SERVICE, INC.

NVLAP Code Designation / Description

12/B06 MIL-STD-462 Method CS07

12/B07 MIL-STD-462 Method CS09

MIL-STD-462: Radiated Emissions:

12/D01 MIL-STD-462 Method RE01

12/D02 MIL-STD-462 Method RE02

12/D03 MIL-STD-462 Method RE03

MIL-STD-462: Radiated Susceptibility:

12/E01 MIL-STD-462 Method RS01

12/E02 MIL-STD-462 Method RS02

12/E03 MIL-STD-462 Method RS03 (Consult laboratory for field strengths available)

12/E04 MIL-STD-462 Method RS03 employing RADHAZ procedures for high level testing

(Consult laboratory for field strengths available)

December 31, 2001

Effective through

Paved L. Molerman

For the National Institute of Standards and Technology

NVLAP-01S (11-95)

Photograph of Test Setup

Photograph of Test Setup

