

3.7. Frequency Stability Measurement

Limit

FCC Part 15 Subpart C(15.407)					
Test Item	Limit	Frequency Range(MHz)			
	Specified in the user's manual,	5150~5250			
Peak Excursion Measurement	the transmitter center frequency tolerance shall be ±20 ppm maximum for the 5 GHz band	5250~5350			
Peak Excursion Measurement		5500~5700			
	(IEEE 802.11n specification)	5725~5850			

Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyzer center frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10MHz, VBW=10MHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 6.66V to 8.14V percent of the nominal value.
- (6) Extreme temperature is -10°C~40°C
- NOTE: The EUT was set to continuously transmitting in continuously un-modulation transmitting mode. The limit for frequency stability is maintained within the band of operation.

Test Mode

Please refer to the clause 2.4.

Test Result

				Voltage				
TestMode	Antenna	Channel	Voltage	Temperat ure	Deviation	Deviation	Limit	Verdict
restinoue	Antenna	Channel	[Vdc]	(°C)	(Hz)	(ppm)	(ppm)	Veruici
			NV	NŤ	-18980	-3.664093	20	PASS
	Ant1	5180	LV	NT	-19480	-3.760618	20	PASS
-			HV	NT	-19480	-3.760618	20	PASS
	A 10	5400	NV	NT	-19480	-3.760618	20	PASS
	Ant2	5180	LV	NT	-19480	-3.760618	20	PASS
-			HV NV	NT NT	<u>-19480</u> -17980	-3.760618 -3.457692	20 20	PASS PASS
	Ant1	5200	LV	NT	-18980	-3.65	20	PASS
	/	0200	HV	NT	-19480	-3.746154	20	PASS
-			NV	NT	-19480	-3.746154	20	PASS
	Ant2	5200	LV	NT	-19480	-3.746154	20	PASS
_			HV	NT	-19480	-3.746154	20	PASS
			NV	NT	-17480	-3.335878	20	PASS
	Ant1	5240	LV	NT	-19480	-3.717557	20	PASS
-			HV	NT	-19480	-3.717557	20	PASS
	Ant2	5240	NV LV	NT NT	-19480 -19480	-3.717557 -3.717557	20 20	PASS PASS
11AC20MIM	Antz	5240	HV	NT	-19980	-3.812977	20	PASS
0			NV	NT	-20480	-3.564839	20	PASS
C	Ant1	5745	LV	NT	-21480	-3.738903	20	PASS
			HV	NT	-21480	-3.738903	20	PASS
-			NV	NT	-21480	-3.738903	20	PASS
	Ant2	5745	LV	NT	-21480	-3.738903	20	PASS
-			HV	NT	-21480	-3.738903	20	PASS
			NV	NT	-19480	-3.367329	20	PASS
	Ant1 5785	5785	LV	NT	-21480	-3.713051	20	PASS
-			HV NV	NT NT	-21480	-3.713051	20	PASS PASS
	Ant2	5785	LV	NT	-21480 -21480	-3.713051 -3.713051	20 20	PASS
	Antz	5765	HV	NT	-21480	-3.713051	20	PASS
-			NV	NT	-20980	-3.601717	20	PASS
	Ant1	5825	LV	NT	-21480	-3.687554	20	PASS
			HV	NT	-21480	-3.687554	20	PASS
			NV	NT	-21480	-3.687554	20	PASS
	Ant2	5825	LV	NT	-21480	-3.687554	20	PASS
			HV	NT	-21480	-3.687554	20	PASS
	A	5400	NV	NT	-18980	-3.657033	20	PASS
	Ant1	5190	LV HV	NT NT	-18980 -18980	-3.657033 -3.657033	20 20	PASS PASS
-			NV	NT	-18980	-3.657033	20	PASS
	Ant2	5190	LV	NT	-19480	-3.753372	20	PASS
			HV	NT	-18980	-3.657033	20	PASS
-			NV	NT	-18480	-3.533461	20	PASS
	Ant1	5230	LV	NT	-19480	-3.724665	20	PASS
-			HV	NT	-19480	-3.724665	20	PASS
			NV	NT	-19480	-3.724665	20	PASS
	Ant2	5230	LV	NT	-19480	-3.724665	20	PASS
11AC40MIM			HV	NT	-19480	-3.724665	20	PASS
0	Ant1	5755	NV LV	NT NT	-20480 -20980	-3.558645 -3.645526	20 20	PASS PASS
	71111	5755	HV	NT	-20980	-3.645526	20	PASS
		1	NV	NT	-20980	-3.645526	20	PASS
	Ant2	5755	LV	NT	-20980	-3.645526	20	PASS
			HV	NT	-21480	-3.732407	20	PASS
ľ			NV	NT	-20980	-3.620362	20	PASS
	Ant1	5795	LV	NT	-21480	-3.706644	20	PASS
l			HV	NT	-21480	-3.706644	20	PASS
			NV	NT	-21480	-3.706644	20	PASS
	Ant2	5795	LV	NT	-21480	-3.706644	20	PASS
			HV	NT	-21480	-3.706644	20	PASS

CTC Laboratories, Inc.

EN

中国国家认证认可监督管理委员会 Cric Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521059 For anti-fake verification, please visit the official website of Certification and Cric Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521059 For anti-fake verification, please visit the official website of Certification and Cric Laboratories, Inc. Accreditation Administration of the People's Republic of China : yz.cnca.cn

Page 173 of 182

			NV	NT	-18480	-3.547025	20	PASS
	Ant1	5210	LV	NT	-18980	-3.642994	20	PASS
			HV	NT	-18980	-3.642994	20	PASS
			NV	NT	-18980	-3.642994	20	PASS
	Ant2	5210	LV	NT	-18980	-3.642994	20	PASS
11AC80MIM			HV	NT	-18980	-3.642994	20	PASS
0			NV	NT	-20980	-3.6329	20	PASS
	Ant1	5775	LV	NT	-20980	-3.6329	20	PASS
		HV	NT	-20980	-3.6329	20	PASS	
			NV	NT	-20480	-3.54632	20	PASS
	Ant2	5775	LV	NT	-20480	-3.54632	20	PASS
			HV	NT	-20480	-3.54632	20	PASS

				Temperature)			
TestMode	Antenna	Channel	Voltage [Vdc]	Temperat ure	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict
			NV	(°C) -10	. ,			PASS
			NV	-10	-19480 -18980	-3.760618 -3.664093	20 20	PASS
			NV	10	-18980	-3.664093	20	PASS
	Ant1	5180	NV	20	-19480	-3.760618	20	PASS
			NV	30	-18980	-3.664093	20	PASS
			NV	40	-19480	-3.760618	20	PASS
			NV	-10	-19480	-3.760618	20	PASS
			NV	0	-19480	-3.760618	20	PASS
			NV	10	-19480	-3.760618	20	PASS
	Ant2	5180	NV	20	-19480	-3.760618	20	PASS
			NV	30	-19480	-3.760618	20	PASS
			NV	40	-18980	-3.664093	20	PASS
			NV	-10	-19480	-3.746154	20	PASS
			NV	0	-19480	-3.746154	20	PASS
	Anti	5000	NV	10	-19480	-3.746154	20	PASS
	Ant1	5200	NV	20	-19480	-3.746154	20	PASS
			NV	30	-19480	-3.746154	20	PASS
			NV	40	-19480	-3.746154	20	PASS
			NV	-10	-19480	-3.746154	20	PASS
			NV	0	-19480	-3.746154	20	PASS
	Ant2	5200	NV	10	-19480	-3.746154	20	PASS
	Antz	3200	NV	20	-19480	-3.746154	20	PASS
			NV	30	-19480	-3.746154	20	PASS
11AC20MIM			NV	40	-19480	-3.746154	20	PASS
0			NV	-10	-19480	-3.717557	20	PASS
			NV	0	-19980	-3.812977	20	PASS
	Ant1	5240	NV	10	-19480	-3.717557	20	PASS
			NV	20	-19480	-3.717557	20	PASS
			NV	30	-19980	-3.812977	20	PASS
			NV	40	-19480	-3.717557	20	PASS
			NV	-10	-19480	-3.717557	20	PASS
			NV NV	0	-19480 -19480	-3.717557	20	PASS
	Ant2	5240	NV NV	10 20		-3.717557	20	PASS PASS
					-19480	-3.717557 -3.812977	20	PASS
			NV NV	30 40	-19980		20	
			NV NV	-10	-19480 -21480	-3.717557 -3.738903	20 20	PASS PASS
			NV	-10	-21480	-3.738903	20	PASS
			NV	10	-21480	-3.738903	20	PASS
	Ant1	5745	NV	20	-21480	-3.738903	20	PASS
			NV	30	-21480	-3.738903	20	PASS
			NV	40	-21480	-3.738903	20	PASS
			NV	-10	-21480	-3.738903	20	PASS
			NV	0	-21480	-3.738903	20	PASS
			NV	10	-21480	-3.738903	20	PASS
	Ant2	5745	NV	20	-21480	-3.738903	20	PASS
			NV	30	-21480	-3.738903	20	PASS
			NV	40	-21480	-3.738903	20	PASS

EN

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the Boople's Bopublic of China was a second strain of the Bopublic of China was a second strain of the Bopublic of China was a second strain of the Bopublic of China was a second strain of the Bopublic of China was a second strain of the Bopublic of China was a second strain of the Bopublic

Accreditation Administration of the People's Republic of China : yz.cnca.cn

Page 174 of 182

			NV	-10	-21480	-3.713051	20	PASS
			NV	0	-21480	-3.713051	20	PASS
	Ant1 5785	NV	10	-21480	-3.713051	20	PASS	
		NV	20	-21480	-3.713051	20	PASS	
		NV	30	-21980	-3.799481	20	PASS	
		NV	40	-21480	-3.713051	20	PASS	
			NV	-10	-21480	-3.713051	20	PASS
			NV	0	-21480	-3.713051	20	PASS
	A :=+0	5705	NV	10	-21480	-3.713051	20	PASS
	Ant2	5785	NV	20	-21480	-3.713051	20	PASS
			NV	30	-21480	-3.713051	20	PASS
			NV	40	-21480	-3.713051	20	PASS
			NV	-10	-21480	-3.687554	20	PASS
			NV	0	-21480	-3.687554	20	PASS
	A nt1	5025	NV	10	-21480	-3.687554	20	PASS
	Ant1	5825	NV	20	-21480	-3.687554	20	PASS
			NV	30	-21480	-3.687554	20	PASS
			NV	40	-21480	-3.687554	20	PASS
			NV	-10	-21480	-3.687554	20	PASS
			NV	0	-21480	-3.687554	20	PASS
	A mtO	5005	NV	10	-21480	-3.687554	20	PASS
	Ant2	5825	NV	20	-21480	-3.687554	20	PASS
			NV	30	-21480	-3.687554	20	PASS
			NV	40	-21480	-3.687554	20	PASS
			NV	-10	-19480	-3.753372	20	PASS
			NV	0	-19480	-3.753372	20	PASS
	A	5100	NV	10	-18980	-3.657033	20	PASS
	Ant1	5190	NV	20	-19480	-3.753372	20	PASS
			NV	30	-18980	-3.657033	20	PASS
			NV	40	-18980	-3.657033	20	PASS
		5190	NV	-10	-18980	-3.657033	20	PASS
			NV	0	-18980	-3.657033	20	PASS
	A mtO		NV	10	-18980	-3.657033	20	PASS
	Ant2		NV	20	-18980	-3.657033	20	PASS
			NV	30	-18980	-3.657033	20	PASS
			NV	40	-18980	-3.657033	20	PASS
			NV	-10	-19480	-3.724665	20	PASS
			NV	0	-19480	-3.724665	20	PASS
	Ant1	5230	NV	10	-19480	-3.724665	20	PASS
		5250	NV	20	-19480	-3.724665	20	PASS
			NV	30	-19480	-3.724665	20	PASS
			NV	40	-19480	-3.724665	20	PASS
			NV	-10	-19480	-3.724665	20	PASS
			NV	0	-18980	-3.629063	20	PASS
11AC40MIM	Ant2	5230	NV	10	-19480	-3.724665	20	PASS
0	7.112	0200	NV	20	-18980	-3.629063	20	PASS
			NV	30	-19480	-3.724665	20	PASS
			NV	40	-19480	-3.724665	20	PASS
		1	NV	-10	-20980	-3.645526	20	PASS
		1	NV	0	-21480	-3.732407	20	PASS
	Ant1	5755	NV	10	-20980	-3.645526	20	PASS
	,		NV	20	-20980	-3.645526	20	PASS
			NV	30	-20980	-3.645526	20	PASS
			NV	40	-21480	-3.732407	20	PASS
		1	NV	-10	-21480	-3.732407	20	PASS
		1	NV	0	-20980	-3.645526	20	PASS
	Ant2	5755	NV	10	-21480	-3.732407	20	PASS
	, u itz		NV	20	-20980	-3.645526	20	PASS
		1	NV	30	-21480	-3.732407	20	PASS
			NV	40	-20980	-3.645526	20	PASS
		1	NV	-10	-21480	-3.706644	20	PASS
		1	NV	0	-21480	-3.706644	20	PASS
	Ant1	5795	NV	10	-21480	-3.706644	20	PASS
		5195	NV	20	-21480	-3.706644	20	PASS
		1	NV	30	-21480	-3.706644	20	PASS
		1	NV	40	-21480	-3.706644	20	PASS

CTC Laboratories, Inc.

EN

Laboratories, Inc.
 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059
 中国国家认证认可监督管理委员会

Accreditation Administration of the People's Republic of China : yz.cnca.cn

			NV	-10	-20980	-3.620362	20	PASS
	Ant2		NV	0	-21480	-3.706644	20	PASS
		5705	NV	10	-21480	-3.706644	20	PASS
	Ant2	5795	NV	20	-20980	-3.620362	20	PASS
			NV	30	-21480	-3.706644	20	PASS
			NV	40	-21480	-3.706644	20	PASS
			NV	-10	-18980	-3.642994	20	PASS
			NV	0	-18980	-3.642994	20	PASS
	A	5040	NV	10	-18980	-3.642994	20	PASS
	Ant1	5210	NV	20	-18980	-3.642994	20	PASS
			NV	30	-18980	-3.642994	20	PASS
			NV	40	-18980	-3.642994	20	PASS
		-+2 5240	NV	-10	-18980	-3.642994	20	PASS
			NV	0	-18980	-3.642994	20	PASS
	A := 10		NV	10	-19480	-3.738964	20	PASS
	Ant2	5210	NV	20	-18980	-3.642994	20	PASS
			NV	30	-18980	-3.642994	20	PASS
11AC80MIM			NV	40	-18980	-3.642994	20	PASS
0			NV	-10	-20980	-3.6329	20	PASS
		5775	NV	0	-20980	-3.6329	20	PASS
	Ant1		NV	10	-20980	-3.6329	20	PASS
	Anti	5775	NV	20	-20980	-3.6329	20	PASS
			NV	30	-20980	-3.6329	20	PASS
			NV	40	-20980	-3.6329	20	PASS
			NV	-10	-20480	-3.54632	20	PASS
			NV	0	-20980	-3.6329	20	PASS
	Ant2	5775	NV	10	-20480	-3.54632	20	PASS
	AIIIZ	5775	NV	20	-20980	-3.6329	20	PASS
			NV	30	-20480	-3.54632	20	PASS
			NV	40	-20980	-3.6329	20	PASS

3.8. Antenna Requirement

Standard Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result

Complies

3.9. Dynamic Frequency Selection(DFS)

Requirement

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode				
Requirement	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies colocted for	atatistical parformance shook (Soot	tion 7.9.4) should include asymptot

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

1. DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

2. DFS Response Requirements

Parameter	Value			
Non-occupancy period	Minimum 30 minutes			
Channel Availability Check Time	60 seconds			
Channel Move Time	10 seconds See Note 1.			
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.			
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.			
 Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. 				
Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed				

with no data traffic.

RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Table 5 Short Pulse Radar Test Waveform	s
---	---

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials			
0	1	1428 18		See Note 1	See Note 1			
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\operatorname{Roundup} \left\{ \begin{matrix} \left(\frac{1}{360} \right) \\ \left(\frac{19 \cdot 10^6}{\operatorname{PRI}_{\mu \operatorname{sec}}} \right) \end{matrix} \right\}$					
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30			
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
Aggregate (Radar Types 1-4) 80% 120								
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time,								
and channel closing time tests.								

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses

$$\left\{ \left(\frac{1}{360}\right) \cdot \left(\frac{19 \cdot 10^6}{3066}\right) \right\}$$

would be Round up

= Round up {17.2} = 18.

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)	
1	1930.5	518	
2	1858.7	538	
3	1792.1	558	
4	1730.1	578	
5	1672.2	598	
6	1618.1	618	
7	1567.4	638	
8	1519.8	658	
9	1474.9	678	
10	1432.7	698	

CTC Laboratories, Inc.

可监督管理委员会

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 6 – Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type wave forms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 – Fred	quency Hopping	Radar Test	Waveform
----------------	----------------	------------	----------

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

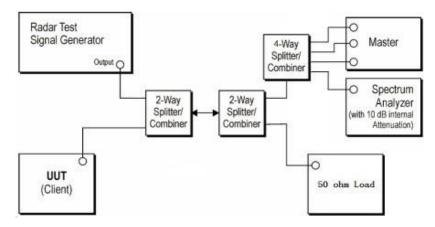
For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Calibration of Radar Waveform

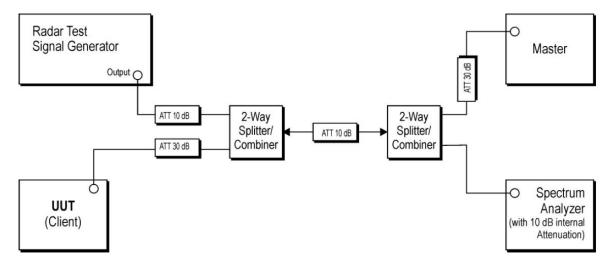
Radar Waveform Calibration Procedure

- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- 2) The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was



used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3

MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.


4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was - -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

Conducted Calibration Setup

Test Configuration

Setup for Client with injection at the Master

Radar Waveform Calibration Result

Not Applicable

Test Procedure

- 1. The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type
- 7. Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) = S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin. S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8. Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Test Mode

Please refer to the clause 2.4.

Test Results

Passed

Not Applicable