	と 知 J L HNDLOGY				
	TEST REPORT				
FCC ID	2BCMG-BRAVE4SP				
Test Report No:	TCT250213E003				
Date of issue:	Feb. 19, 2025				
Testing laboratory: :	SHENZHEN TONGCE TESTING LAB				
Testing location/ address:	2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China				
Applicant's name: :	Shenzhen CNEST Electronic technology Co., Ltd.				
Address:	Room 701, Building 3, Shenzhen New Generation Industrial Park, No. 136, Zhongkang Road, Meidu Community, Meilin Street, Futian District, Shenzhen, China				
Manufacturer's name :	Shenzhen CNEST Electronic technology Co., Ltd.				
Address::	Room 701, Building 3, Shenzhen New Generation Industrial Park, No. 136, Zhongkang Road, Meidu Community, Meilin Street, Futian District, Shenzhen, China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020				
Product Name::	Action Camera				
Trade Mark:	AKASO				
Model/Type reference :	Brave 4 Pro, Brave 4 Pro Sport				
Rating(s):	Rechargeable Li-ion Battery DC 3.7V				
Date of receipt of test item	Feb. 13, 2025				
Date (s) of performance of test:	Feb. 13, 2025 ~ Feb. 19, 2025				
Tested by (+signature) :	Aaron MO				
Check by (+signature) :	Beryl ZHAO				
Approved by (+signature):	Tomsin				
General disclaimer:					

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

	General Pro 1.1. EUT desc							
	1.2. Model(s) I	ist						
	1.3. Operation							
2.	Test Result	Summary					$\langle \zeta \zeta \rangle$	
	General Info							
	3.1. Test envir	onment an	nd mode					6
	3.2. Descriptio	on of Supp	ort Units.					7
	Facilities an							
	4.1. Facilities.							8
,	4.2. Location .							8
	4.3. Measuren	nent Uncer	tainty					8
5.	Test Results	and Mea	asureme	ent Data .		<u>(G)</u>		9
	5.1. Antenna r	equiremen	it					9
	5.2. Conducte	d Emissior	٦					10
:	5.3. Maximum	Conducte	d (Averag	je) Output	Power		<u>(6</u>)	14
	5.4. Emission							
	5.5. Power Sp	ectral Dens	sity					16
	5.6. Conducte	d Band Ed	ge and Sp	ourious Er	nission M	easureme	nt	17
:	5.7. Radiated	Spurious E	mission I	Measurem	ent			19
Ар	pendix A: Te	est Resul	t of Con	ducted T	est			
Ар	pendix B: P	hotograp	hs of Te	st Setup				
Ар	pendix C: P	hotograp	hs of EL	JT				

1. General Product Information

1.1. EUT description

Product Name:	Action Camera
Model/Type reference:	Brave 4 Pro
Sample Number:	TCT250213E003-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing (OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna Gain:	-0.42dBi
Rating(s):	Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No	•	Test	ed with
1	Brave 4 Pr	0		\boxtimes
Other models	Brave 4 Pro S	Sport	S.	
	models are derivative names. So the test da			

Report No.: TCT250213E003

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

1.3. Operation Frequency

For 802.11b/g/n(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
N	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n(HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 73

3. General Information

3.1. Test environment and mode

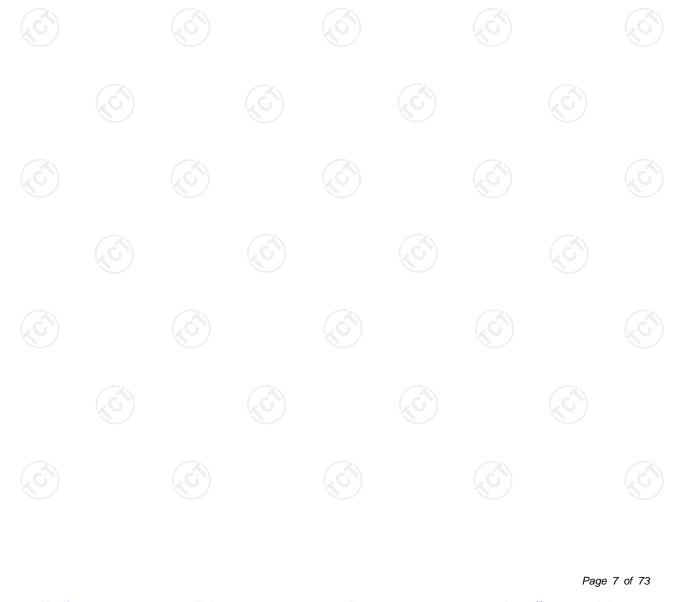
Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	23.2 °C	25.7 °C
Humidity:	52 % RH	51 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:	·	
Software Information:	ADB	
Power Level:	65	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel and modulations wi	•••
above the ground plane of 3 polarities were performed. I the EUT continuously work axis (X, Y & Z) and cor manipulating interconnectin from 1m to 4m in both horiz	8m & 1.5m for the measure 8m chamber. Measurements in During the test, each emissio ing, investigated all operating insidered typical configuration g cables, rotating the turnta ontal and vertical polarization esults of the following pages.	n both horizontal and vertica n was maximized by: having g modes, rotated about all 3 n to obtain worst position ble, varying antenna height s. The emissions worst-case

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(HT20)	6.5Mbps		

Page 6 of 73


3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is internal antenna which permanently attached, and the best case gain of the antenna is -0.42dBi.

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

5.2. Conducted Emission

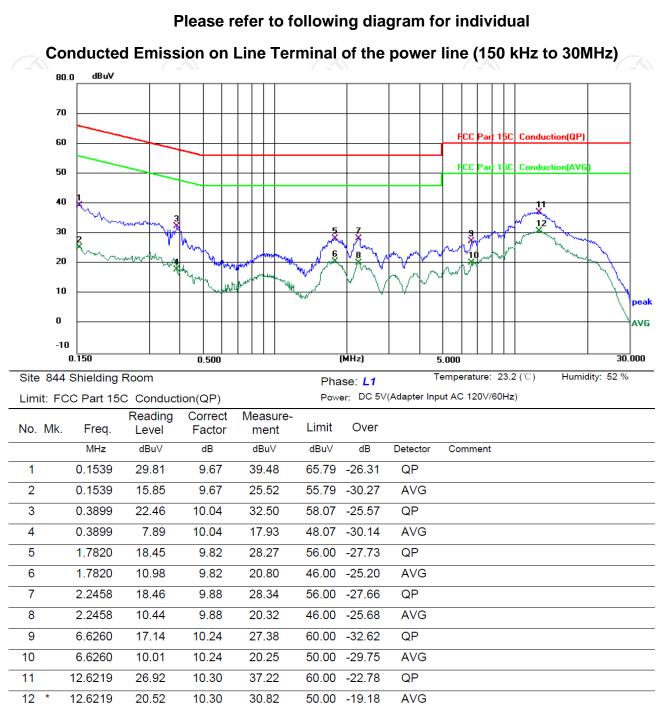
5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2020				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto		
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane			
Test Setup:	40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver	r]— AC power		
Test Mode:	Charging + Transmittir	ng Mode			
Test Procedure:	 The E.U.T is connelline impedance stal provides a 500hm/s measuring equipme The peripheral device power through a Ll coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2020 of 	bilization network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm tern diagram of the line are checkence. In order to fin e positions of equ s must be chang	k (L.I.S.N.). This pedance for the ected to the main a 50ohm/50uH nination. (Please test setup and ed for maximum nd the maximum ipment and all o jed according to		

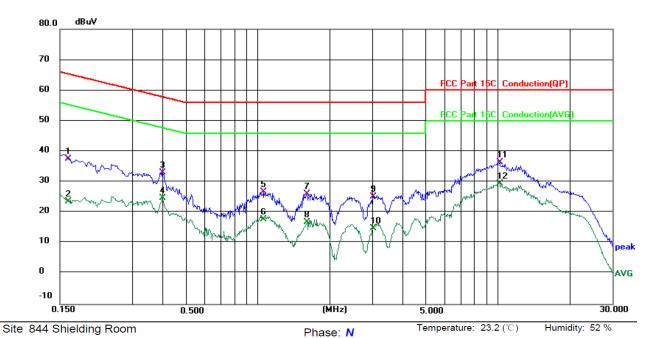
Page 10 of 73

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)						
Equipment	Manufacturer	Model	Serial Number	Calibration Due		
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025		
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 20, 2026		
Attenuator	N/A	10dB	164080	Jun. 26, 2025		
Line-5	тст	CE-05	/	Jun. 26, 2025		
EMI Test Software	Farad	EMEC-3A1	1.1.4.2	1		
9		No.				



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


5.2.3. Test data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Note:

Freq. = Emission frequency in MHz	
Reading level (dBµV) = Receiver reading	
Corr. Factor (dB) = LISN factor + Cable loss	
Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)	
Limit (dB μ V) = Limit stated in standard	
Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)	
Q.P. =Quasi-Peak	
AVG =average	
* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30	OMHz
	D

Power: DC 5V(Adapter Input AC 120V/60Hz)

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

TCT通测检测 TCT通测检测

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1620	27.85	9.65	37.50	65.36	-27.86	QP	
2		0.1620	14.06	9.65	23.71	55.36	-31.65	AVG	
3		0.4020	23.16	10.03	33.19	57.81	-24.62	QP	
4		0.4020	14.83	10.03	24.86	47.81	-22.95	AVG	
5		1.0620	17.18	9.70	26.88	56.00	-29.12	QP	
6		1.0620	8.12	9.70	17.82	46.00	-28.18	AVG	
7		1.6100	16.42	9.76	26.18	56.00	-29.82	QP	
8		1.6100	7.06	9.76	16.82	46.00	-29.18	AVG	
9		3.0379	15.41	9.90	25.31	56.00	-30.69	QP	
10		3.0379	5.03	9.90	14.93	46.00	-31.07	AVG	
11		10.2260	26.24	10.31	36.55	60.00	-23.45	QP	
12	*	10.2260	19.13	10.31	29.44	50.00	-20.56	AVG	

Note 1:

Freq. = Emission frequency in MHz

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note 2: Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Highest channel and 802.11b) was submitted only.

5.3. Maximum Conducted (Average) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	2
Test Method:	KDB 558074 D01 v05r02	6
Limit:	30dBm	
Test Setup:	Spectrum Analyzer	
Test Mode:	Transmitting mode with modulation	
Test Procedure:	 The RF output of EUT was connected to the spectru analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 	
Test Result:	PASS	

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2020
Limit:	>500kHz
Test Setup:	
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		/

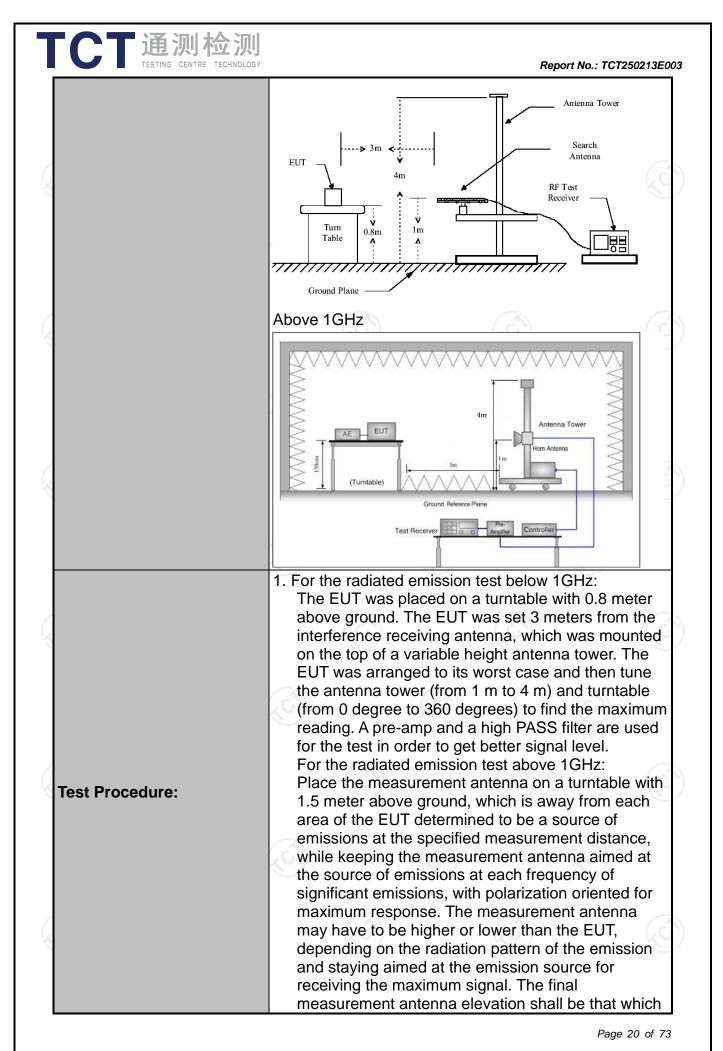
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2020
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this
	 paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1	1
				Page 18 of 2



5.7. Radiated Spurious Emission Measurement

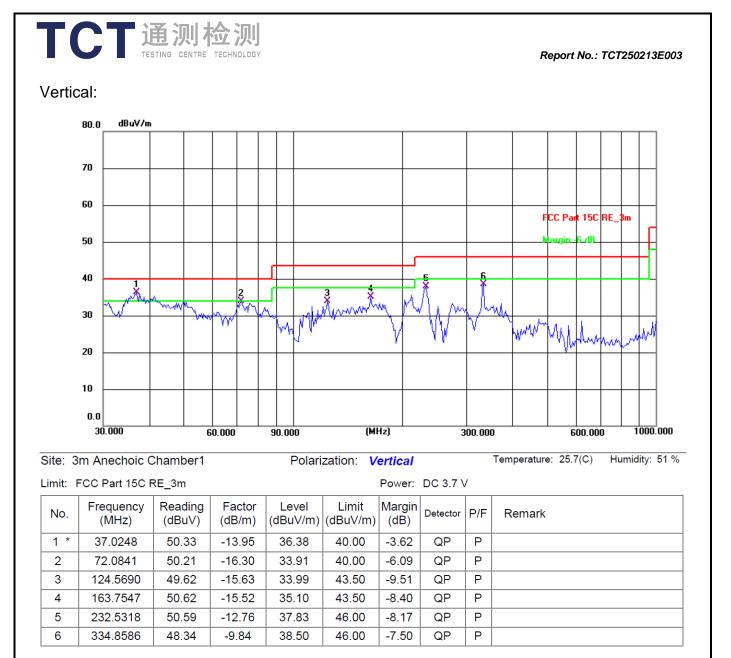
5.7.1. Test Specification

Test Requirement:	FCC Part15	C Sectior	n 15.209	$\langle G \rangle$		
Test Method:	ANSI C63.10	0:2020				
Frequency Range:	9 kHz to 25 (GHz				
Measurement Distance:	3 m		(\mathbf{G})		$\langle \mathcal{O} \rangle$	
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode wi	th modulat	ion		
-	Frequency	Detector	RBW	VBW	Remar	·k
	9kHz- 150kHz	Quasi-pea		1kHz	Quasi-peak	
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quasi-peak	Value
		Peak	1MHz	3MHz	Peak Va	
	Above 1GHz	Peak	1MHz	10Hz	Average V	
	Frequen	су	Field Stro (microvolts		Measuren Distance (m	
	0.009-0.490		2400/F(I	(Hz)	300	
	0.490-1.705		24000/F(KHz)		30	
	1.705-30		30		30	
Limit:	30-88		100		3	
	88-216		150		3	
	216-960		200		3	
	Above 960		500		3	
			ld Strength ovolts/meter)	Measurer Distand (meter	ce Dete	ector
			500	3	,	rage
	Above 1GHz	z	5000 3		Peak	
Test setup:	For radiated	Turn table	s below 30	Pre -A	Computer mplifier ecceiver	
	30MHz to 10					

Page 19 of 73

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


TESTING CENTRE TECHNOLOGY	Report No.: TCT250213E003
	 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T,
	when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS



5.7.2. Test Instruments

	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 20, 2026
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 20, 2026
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 20, 2026
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Jan. 22, 2026
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M	1	Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D	1	Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	KG)	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	1	
EMI Test Software	Farad	FA-03A2 RE+	1.1.4.2	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Highest channel and 802.11b) was submitted only.

3. Freq. = Emission frequency in MHz

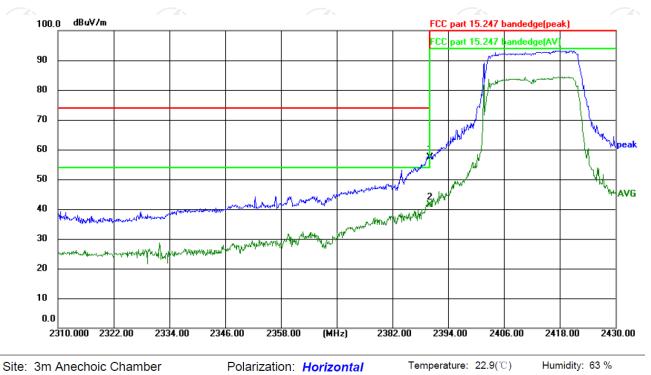
 $Measurement (dB\mu V/m) = Reading \ level (dB\mu V) + Corr. \ Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard

 $\textit{Margin} (\textit{dB}) = \textit{Measurement} (\textit{dB}\mu\textit{V/m}) - \textit{Limits} (\textit{dB}\mu\textit{V/m})$

 * is meaning the worst frequency has been tested in the test frequency range.



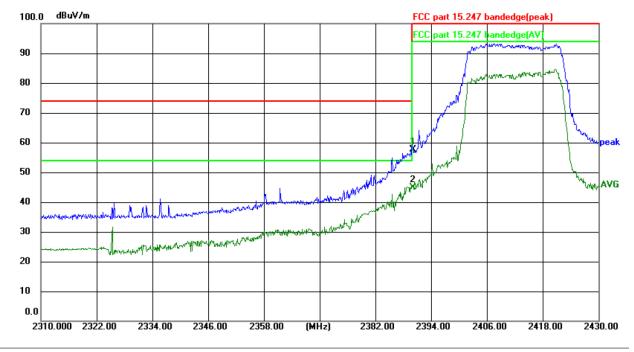
Test Result of Radiated Spurious at Band edges

Lowest channel 2412:

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Horizontal:

Limit: FCC part 15.247 bandedge(peak)

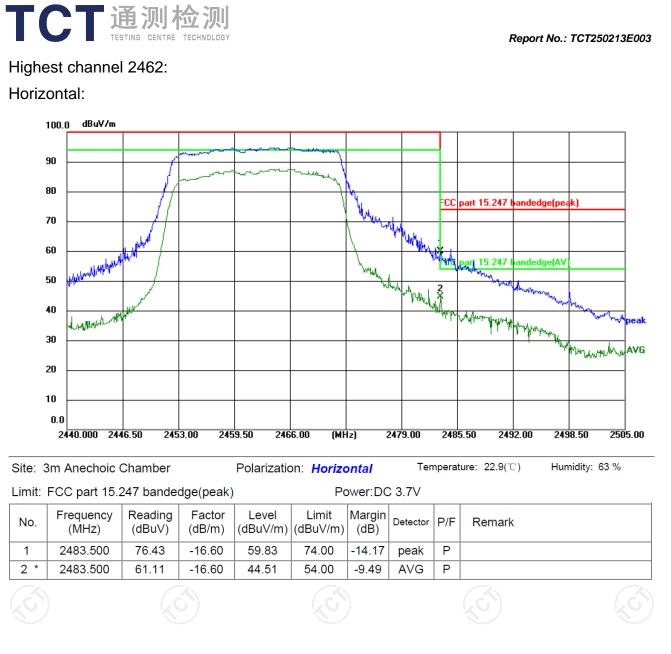

Power:DC 3.7V

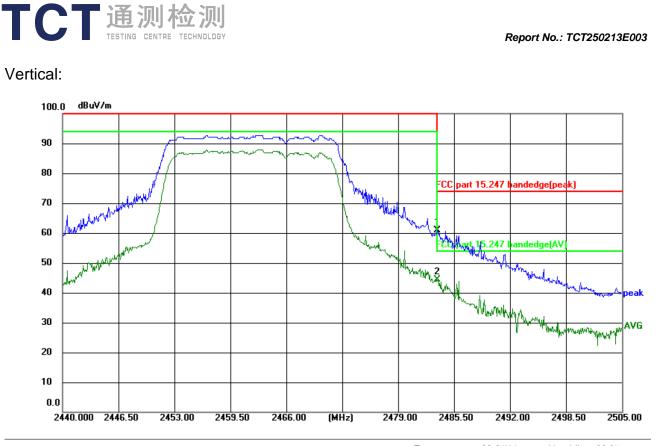
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2390.000	74.01	-16.64	57.37	74.00	-16.63	peak	Ρ	
2 *	2390.000	57.97	-16.64	41.33	54.00	-12.67	AVG	Ρ	
X	j.					1			

Page 25 of 73

Vertical:

TCT 通测检测 TESTING CENTRE TECHNOLOGY


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 22.9(°C) Humidity: 63 %


Limit: FCC part 15.247 bandedge(peak)

Power:DC 3.7V

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark			
1	2390.000	74.36	-16.64	57.72	74.00	-16.28	peak	Р				
2 *	2390.000	61.57	-16.64	44.93	54.00	-9.07	AVG	Ρ				

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 22.9(°C) Humidity: 63 %

Limit: FCC part 15.247 bandedge(peak)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	77.37	-16.60	60.77	74.00	-13.23	peak	Ρ	
2 *	2483.500	61.10	-16.60	44.50	54.00	-9.50	AVG	Ρ	

Power: DC 3.7V

Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation (802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode 802.11n(HT20) was submitted only.

Page 28 of 73

Above 1GHz Modulation Type: 802.11b

	Low channel: 2412 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4824	Н	55.54		-9.48	46.06		74	54	-7.94				
7236	Н	45.89		-1.34	44.55		74	54	-9.45				
	Н												
4824	V	56.23		-9.48	46.75		74	54	-7.25				
7236	V	46.45	(2G	-1.34	45.11	()	74	54	-8.89				
	V				2								

	Middle channel: 2437MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	54.51		-9.37	45.14		74	54	-8.86				
7311	Н	45.24		-1.17	44.07		74	54	-9.93				
	H				(
			KO.)	X	0							
4874	V	55.99		-9.37	46.62		74	54	-7.38				
7311	V	45.41		-1.17	44.24		74	54	-9.76				
	V												
				((

			H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	55.77		-9.26	46.51		74	54	-7.49
7386	Ŧ	46.05		-1.01	45.04		74	54	-8.96
	H								
4924	V	54.61		-9.26	45.35		74	54	-8.65
7386	V	45.59		-1.01	44.58		74	54	-9.42
	V			🤍					

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Rep	ort No.: TCT2	50213E003
			Μ	odulation T	ype: 802.11	lg			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	56.07		-9.48	46.59		74	54	-7.41
7236	Н	46.43		-1.34	45.09		74	54	-8.91
· · · · · ·	Н			X)		<u> </u>		
4824	V	55.89		-9.48	46.41		74	54	-7.59
7236	V	45.65	()	-1.34	44.31		74	54	-9.69
	V		(2G			G`)		(, G)	
					7				

	Middle channel: 2437MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4874	Н	55.78		-9.37	46.41		74	54	-7.59			
7311	Н	46.19		-1.17	45.02		74	54	-8.98			
	Н											
					(
4874	V	56.16		-9.37	46.79		74	54	-7.21			
7311	V	45.54		-1.17	44.37		74	54	-9.63			
	V											

			h F	ligh channe	el: 2462 MH	z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	56.03		-9.26	46.77		74	54	-7.23
7386	H	46.68		-1.01	45.67		74	54	-8.33
	H			/					
4924	V	55.89		-9.26	46.63		74	54	-7.37
7386	V	45.46		-1.01	44.45		74	54	-9.55
	V	U.		(, (
Matai									

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

ГСТ通测检测

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

	TESTI	NG CENTRE TEC	HNOLOGY				Rep	ort No.: TCT25	50213E003
			Modu	lation Type	: 802.11n(H	HT20)			
			L	ow channe	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	55.77		-9.48	46.29		74	54	-7.71
7236	Н	45.58		-1.34	44.24		74	54	-9.76
	Н			V)				
4824	V	55.81		-9.48	46.33		74	54	-7.67
7236	X	47.02	()	-1.34	45.68	×	74	54	-8.32
	V		- /20	•)		G`)		(, G)	
		-					•		

			М	iddle chann	nel: 2437MF	Ιz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	55.16		-9.37	45.79		74	54	-8.21
7311	Н	45.32		-1.17	44.15		74	54	-9.85
	Н								
				6	(
4874	V	56.03		-9.37	46.66		74	54	-7.34
7311	V	45.25		-1.17	44.08		74	54	-9.92
	V								

(c)		()	F	ligh channe	el: 2462 MH	Z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	56.11		-9.26	46.85		74	54	-7.15
7386	H	46.52		-1.01	45.51	<u> </u>	74	54	-8.49
	H			/	`	<u> </u>			
4924	V	55.61		-9.26	46.35		74	54	-7.65
7386	V	45.74		-1.01	44.73		74	54	-9.27
$(-\Theta)$	V	ί σ		(, (5)				
Mada			7						

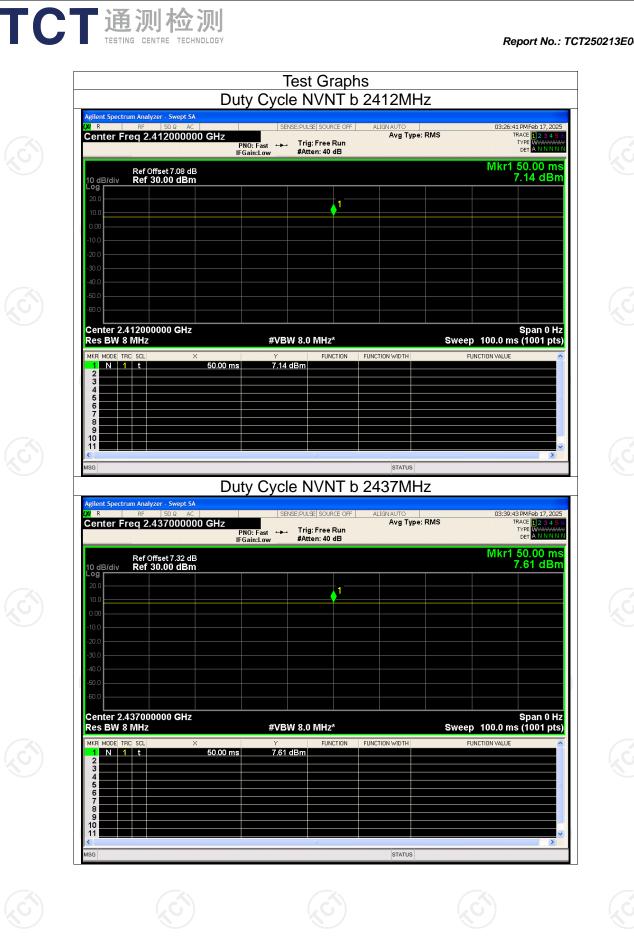
Note:

TCT通测检测

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.


4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Appendix A: Test Result of Conducted Test

		Condition	Mode	Duty Cycle Frequenc (MHz)	y D	uty Cycle (%)		
		NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	b b g g g n20 n20 n20	2412 2437 2462 2412 2437 2462 2412 2437 2462		(70) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100		
Hotlin	e: 400-661	1-140 Tel: 8	6-755-2767	3339 Fax: 80	6-755-2767	' <u>3332 http:</u>	Page // www.tct-la	32 of 73 <mark>b.com</mark>

Page 33 of 73

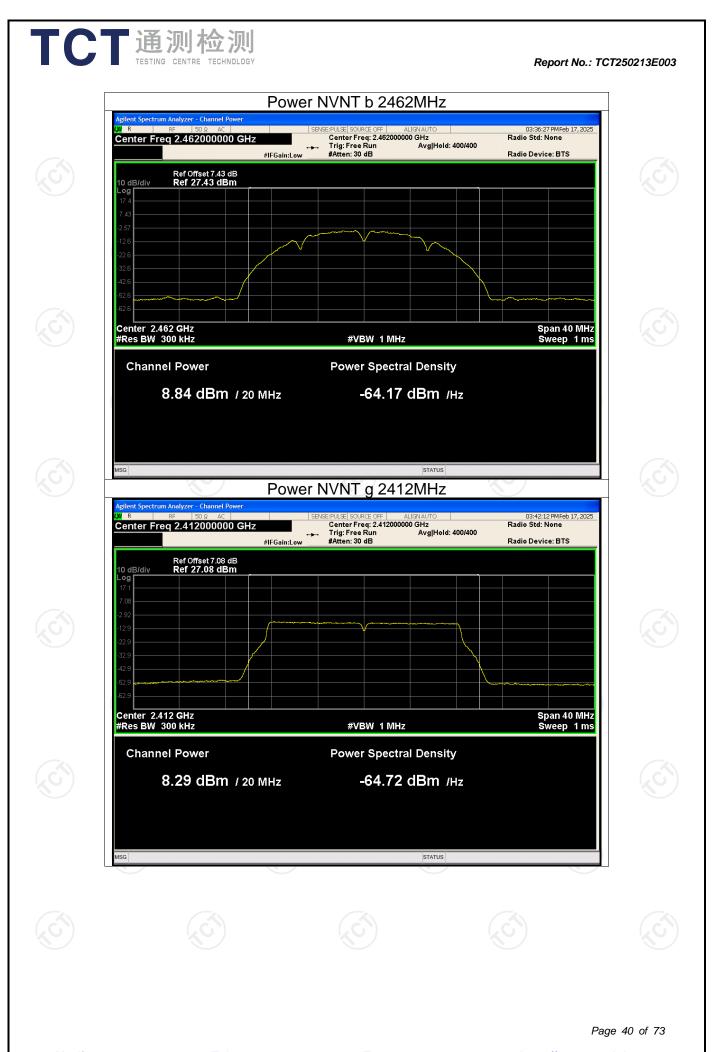
Agilent Spectrum Analyzer - Swept SA μx R RF 50 Ω AC Center Freq 2.462000000 C		LIGN AUTO 03:36:21 PM Feb 17, 202 Avg Type: RMS TRACE 23 4 E TYPE W	i 6 ***
Ref Offset 7.43 dB 10 dB/div Ref 30.00 dBm	IFbain:Low #Atten: 40 do	Mkr1 50.00 m 7.56 dBr	s
20.0 10.0	1		
-10.0			
-20.0			
-60.0			
Center 2.462000000 GHz Res BW 8 MHz	#VBW 8.0 MHz*	Span 0 H Sweep 100.0 ms (1001 pts	lz s)
MKR MODE TRC SCL X	Y FUNCTION FUNC 50.00 ms 7.56 dBm	TION WIDTH FUNCTION VALUE	
4 5 6 7			=
8 9 10 11			 ✓
MSG			
Agilent Spectrum Analyzer - Swept SA LXI R RF 50 Ω AC		LIGNAUTO 03:42:05 PM Feb 17, 202	25
Center Freq 2.412000000	GHZ PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 40 dB	Avg Type: RMS TYPE Det A NNNN Mkr1 50.00 m	
Ref Offset 7.08 dB 10 dB/div Ref 30.00 dBm		4.67 dBr	m
Log			
	∳ ¹		
200			
200		Image: second	
Log 2000 1000 -1000 -2000 -3000 -4000 -6000 -6000 		Span 0 H	
Log 200 100 -000 -100 -200 -200 -300 -400 -600 -700 -700 -700 -700 -700 -700 -70	#VBW 8.0 MHz*	Span 0 H Sweep 100.0 ms (1001 pts TION W/DTH FUNCTION VALUE	IZ S)
Log 200 100 -100 -200 -200 -300 -400 -500 	#VBW 8.0 MHz*	Sweep 100.0 ms (1001 pts	IZ 9)
Log 200 100 -100 -200 -300 -400 -50	#VBW 8.0 MHz*	Sweep 100.0 ms (1001 pts	Z S)
Log 200 100 000 -100 -200 -200 -300 -400 -500 	#VBW 8.0 MHz*	Sweep 100.0 ms (1001 pts	
Log 200 100 -000 -100 -200 -200 -300 -400 -600 -70	#VBW 8.0 MHz*	Sweep 100.0 ms (1001 pts	Z S)
Log 200 100 -100 -200 -300 -400 -50	#VBW 8.0 MHz* 50.00 ms 4.67 dBm 4.67 dBm 4.67 dBm 4.67 dBm 4.67 dBm 4.67 dBm 4.67 dBm	Sweep 100.0 ms (1001 pts	

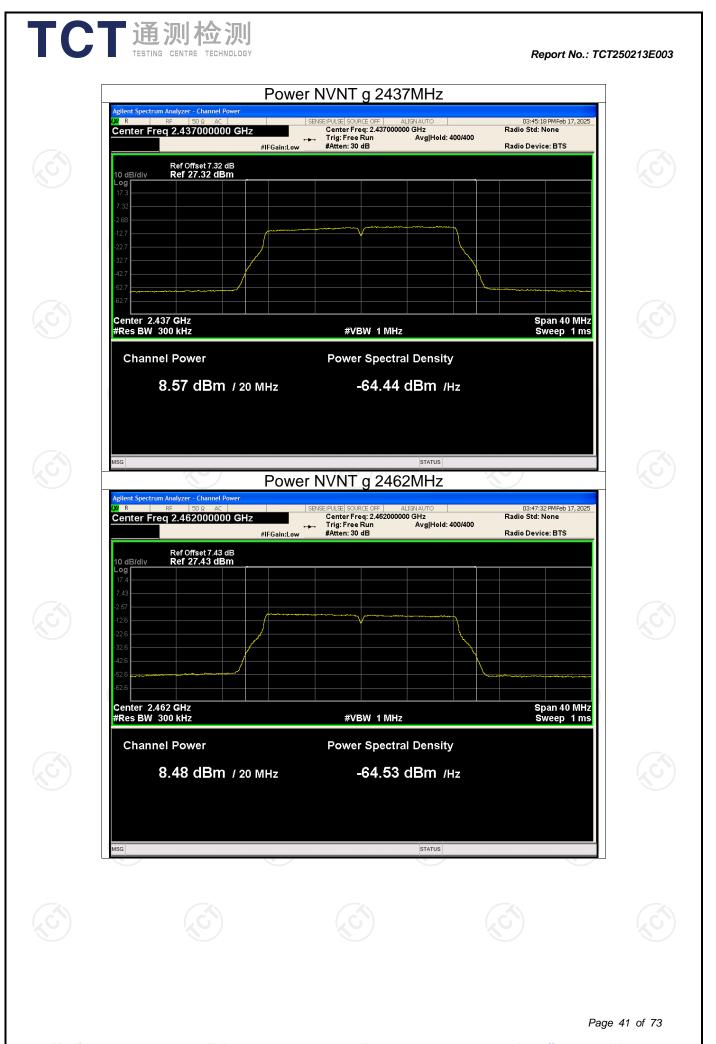
	通测检测 TESTING CENTRE TECHNOLOG			-	.: TCT250213E
	lent Spectrum Analyzer - Swept SA R RF 50 Ω AC		VNT g 2437MH		775
	enter Freq 2.437000000 GH	Z PNO:Fast ⊶⊷ Trig:	Avg Type Free Run en: 40 dB		5 6 MM
10	Ref Offset 7.32 dB dB/div Ref 30.00 dBm			Mkr1 50.00 n 5.40 dB	ns m
20	9 9 0.0 0.0		1		
0.	00				
	0.0				
-4(0.0				
R	enter 2.437000000 GHz es BW 8 MHz	#VBW 8.0	MHz*	Span 0 Sweep 100.0 ms (1001 p	ts)
		00 ms 5.40 dBm		PONCHOIL VALUE	
	5				=
			STATUS	2	
		Duty Cycle N	VNT g 2462M⊦	Hz	
LXI	lent Spectrum Analyzer - Swept SA R RF 50 Ω AC enter Freq 2.462000000 GH	7	E SOURCE OFF ALIGN AUTO Avg Type Free Run	03:47:25 PMFeb 17, 2 e: RMS TRACE 12 2 TYPE VIEW DET A NIN	525 56
	Ref Offset 7.43 dB	IFGain:Low #Atte	en: 40 dB	Mkr1 50.00 n	ns
	dB/div Ref 30.00 dBm			4.93 dB	
	0.0		1		
	0.0 0.0				
	0.0 0.0				
	0.0 0.0				
	enter 2.462000000 GHz es BW 8 MHz	#VBW 8.0	MHz*	Span 0 Sweep 100.0 ms (1001 p	Hz ts)
R		00 ms 4.93 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
3	3 4 5 5 5				
				3	>
2			STATUS		
			STATUS		
			STATUS		

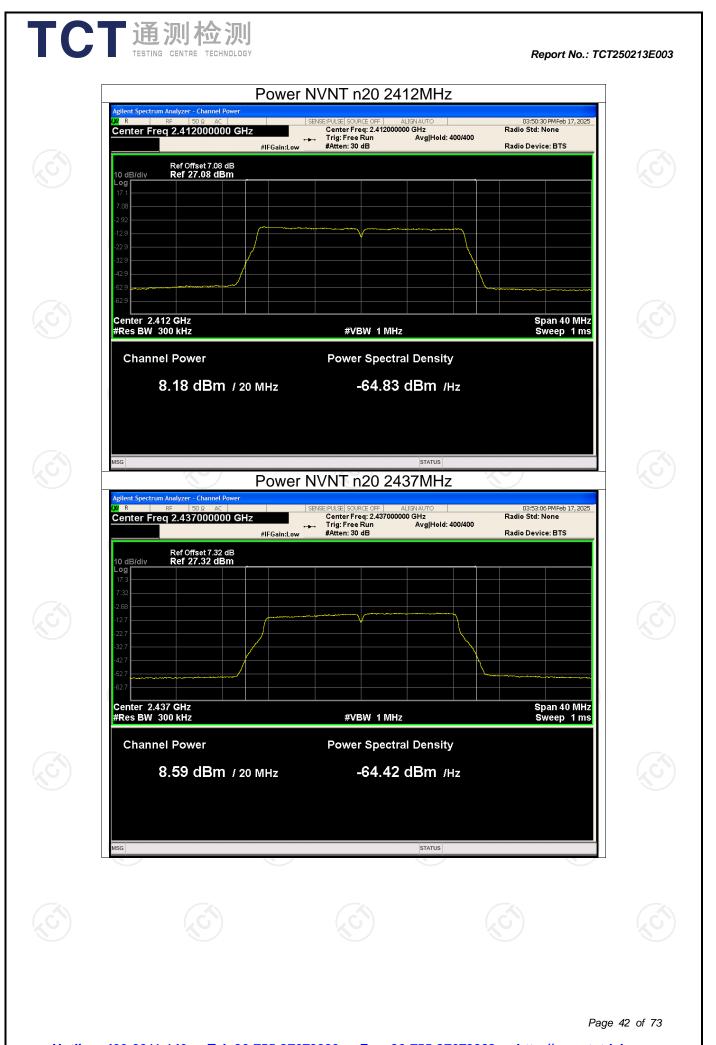
Agilent Spectrum Analyzer - Swep 201 R RF 50 Ω Center Freq 2.412000	AC SENSE:PULSE SOURCE OF	Avg Type: RMS TRACE TYPE	eb 17, 2025 1 2 3 4 5 6 MMMMMMM A N N N N N
Ref Offset 7.0 10 dB/div Ref 30.00 d	3 dB Bm	Mkr1 50. 4.20	00 ms) dBm
20.0	1 _		
-10.0 -20.0			
-30.0			
-50.0 -60.0 Center 2.412000000 G			an 0 Hz
Res BW 8 MHz	#VBW 8.0 MHz*	Sweep 100.0 ms (10	01 pts)
1 N 1 t 2 3	50.00 ms 4.20 dBm		
4			
7 8 9 10			
11 MSG		STATUS	
	Duty Cycle NVNT r	1254.1	
Agilent Spectrum Analyzer - Swep μχ RF 50 Ω Center Freq 2.437000	AC SENSE:PULSE SOURCE OF	FF ALIGNAUTO 03:52:59 PMF- Avg Type: RMS TRACE	eb 17, 2025 1 2 3 4 5 6
	PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 40 dB	TYPE Det Mkr1 50.	ANNNNN
Ref Offset 7.3: 10 dB/div Ref 30.00 d	Bm	5.94	dBm
20.0	1		
-10.0			
-30.0			
-50.0			
Center 2.437000000 G Res BW 8 MHz	Hz #VBW 8.0 MHz*	Sp: Sweep 100.0 ms (10	an 0 Hz 101 pts)
MKR MODE TRC SCL	Y DW 0.0 INIT2 X Y FUNCTION 50.00 ms 5.94 dBm		<u>^</u>
2 3 4 5			
6 7 8			
9 10 11			
MSG		STATUS	

eport No.: TCT2		2462MHz	NVNT n20			_	
3 PMFeb 17, 2025 RACE 12 3 4 5 6 TYPE TO THE THINKINN DET ATTINISTIC 50.00 mS 4.52 dBm	Mkr1	ALIGNAUTO Avg Type: RMS	vse:Pulse source off Trig: Free Run #Atten: 40 dB	HZ PNO: Fast → IFGain:Low	Analyzer - Swept SA RF 50 Q AC Q 2.4620000000 G tef Offset 7.43 dB tef 30.00 dBm	001 R Center Fred	
Span 0 Hz s (1001 pts)	Sweep 100.0 ms	UNCTION WIDTH		#VB\ 0.00 ms 4.52	SCL X	Res BW 8 M MKR MODE TRC S 1 N 1 2 3 3 4 4 5 6 6 7 7 7 7	
~	Ø	STATUS				8 9 10 11 MSS	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


TCT通测检测 TESTING CENTRE TECHNOLOGY


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict		
NVNT	b	2412	8.45	30	Pass		
NVNT	bG	2437	8.76	30	Pass		
NVNT	b	2462	8.84	30	Pass		
NVNT	g	2412	8.29	30	Pass		
NVNT	g	2437	8.57	30	Pass		
NVNTG	g	2462	8.48	30	Pass		
NVNT	n20	2412	8.18	30	Pass		
NVNT	n20	2437	8.59	30	Pass		
NVNT	n20	2462	8.47	30	Pass		
(C)	(\mathbf{S})		(C)	S	K		



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 39 of 73

TC	通初 TESTING CE	则检须 ENTRE TECHNOLO	UJ DGY			Re	eport No.: TCT2	250213E003
	Agilent Spectrum Ana IXI R RF Center Freq 2	50 Ω AC	i Hz	IVNT n20 2	ALIGNAUTO	Radio Std:	1 PMFeb 17, 2025 None	
	10 dB/div R Log 17.4 7.43 -2.57 -12.6 -22.6	ef Offset 7.43 dB ef 27.43 dBm	#IFGain:Low	. Trig: Free Run #Atten: 30 dB	Avg Hold: 400/40	Radio Devi	ce: BTS	
	-32.6 -42.6 -52.6 	kHz		#VBW 1 M Power Spec		S S S	pan 40 MHz weep 1 ms	
		47 dBm /∶	20 MHz		4 dBm /Hz			
	MSG	× ×			STATUS	<i>S</i>		
<u>Hotline</u>	: 400-6611-14	10 Tel: 8	6-755-27673	3339 Fax:	86-755-27673	3332 http:	Page ://www.tct-la	43 of 73 ab.com

Fr Limit -6 dB Mode Condition Verdict **Bandwidth (MHz)** (MHz) (MHZ) NVNT b 2412 9.623 0.5 Pass NVNT b 2437 9.581 0.5 Pass NVNT b 2462 9.616 0.5 Pass **NVNT** 2412 16.588 0.5 Pass g **NVNT** 2437 16.463 Pass 0.5 g **NVNT** 2462 16.553 0.5 Pass g n20 **NVNT** 2412 17.809 0.5 Pass NVNT n20 2437 17.204 0.5 Pass

17.751

	-6dB Bandwidth
requency	-6 dB Bandwidth
(MU-)	

СТ	通测检测
	TESTING CENTRE TECHNOLOGY

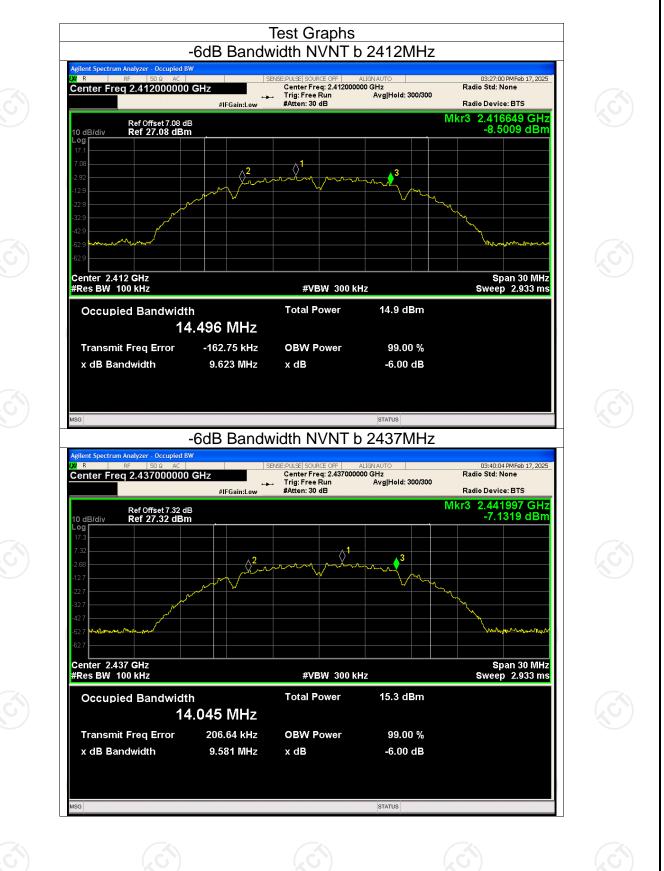
n20

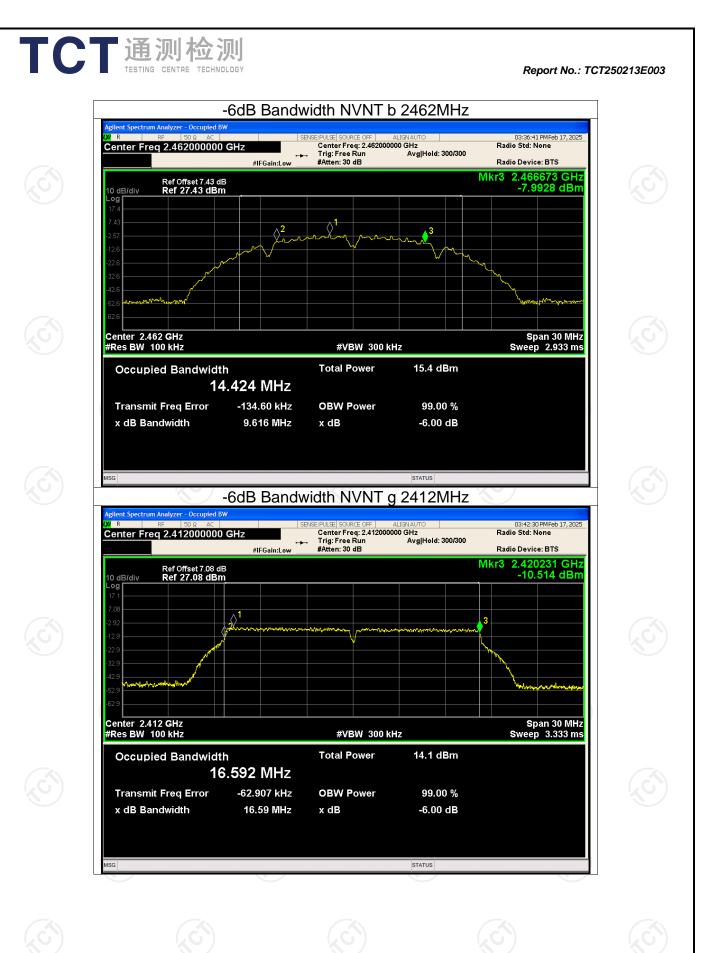
NVNT

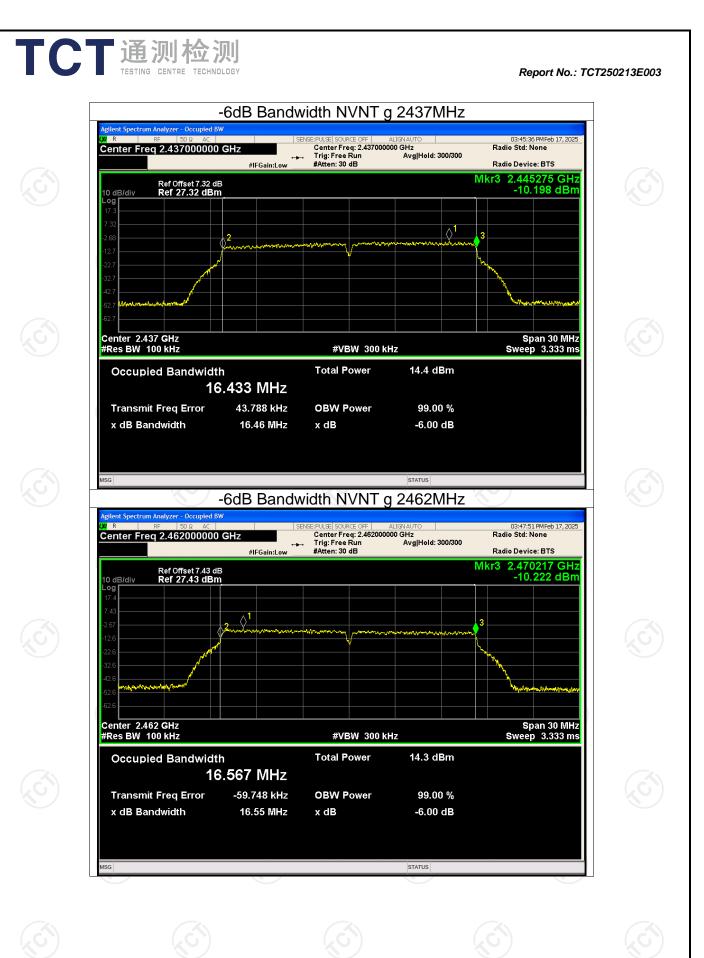
2462

Report No.: TCT250213E003

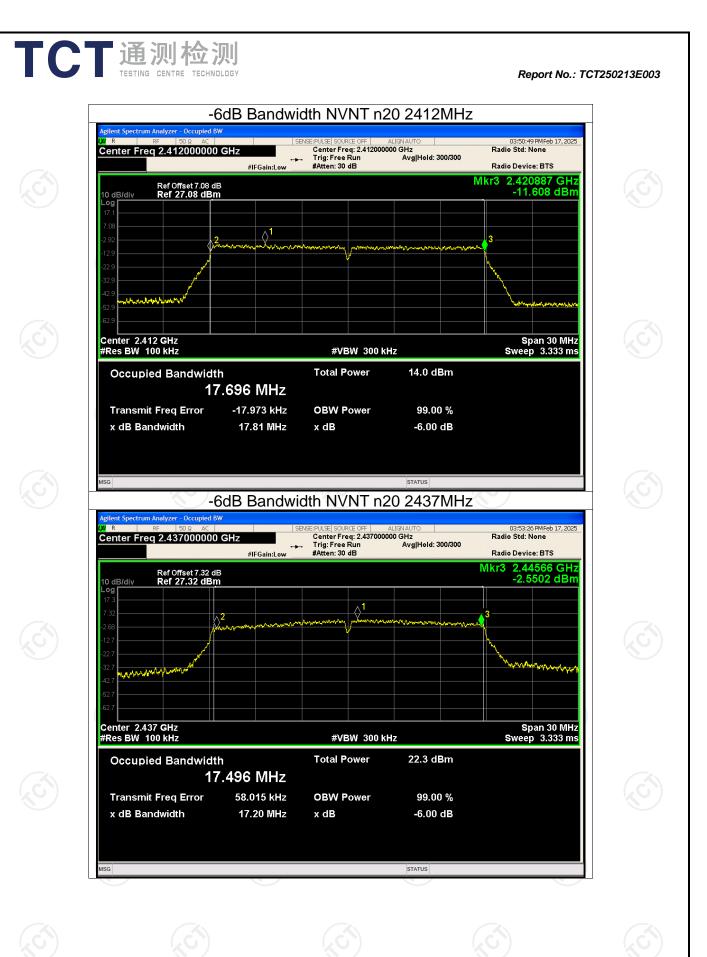
Pass

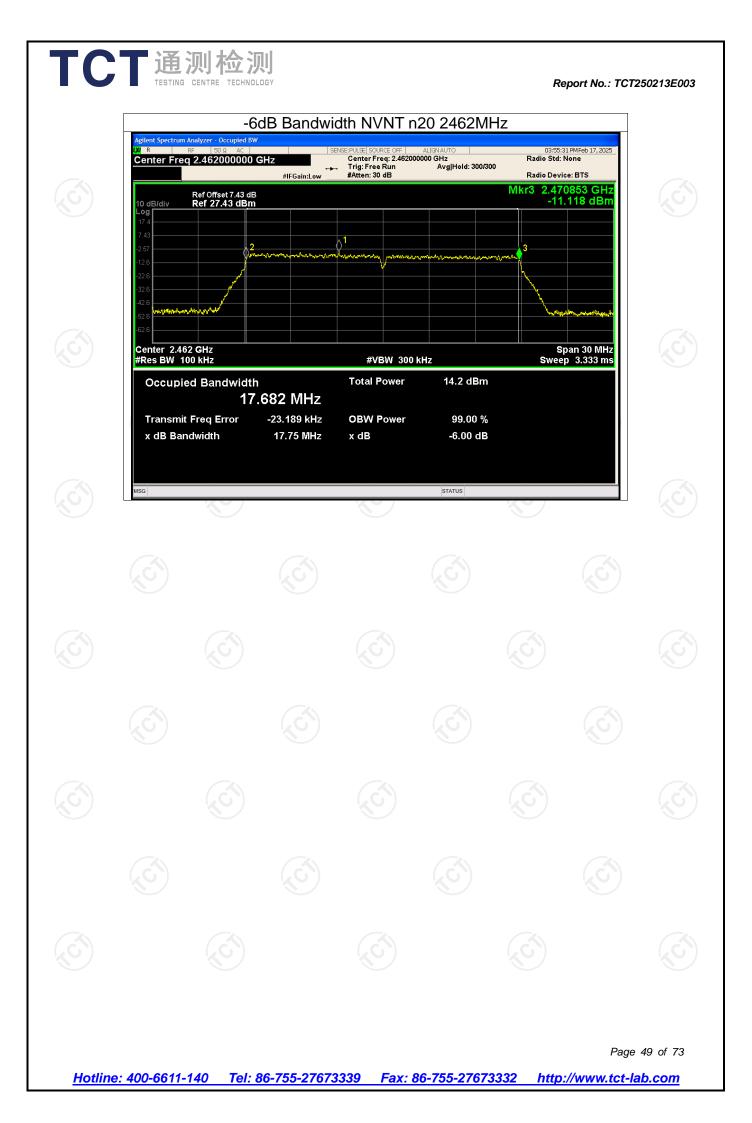





0.5

Page 44 of 73


Page 45 of 73

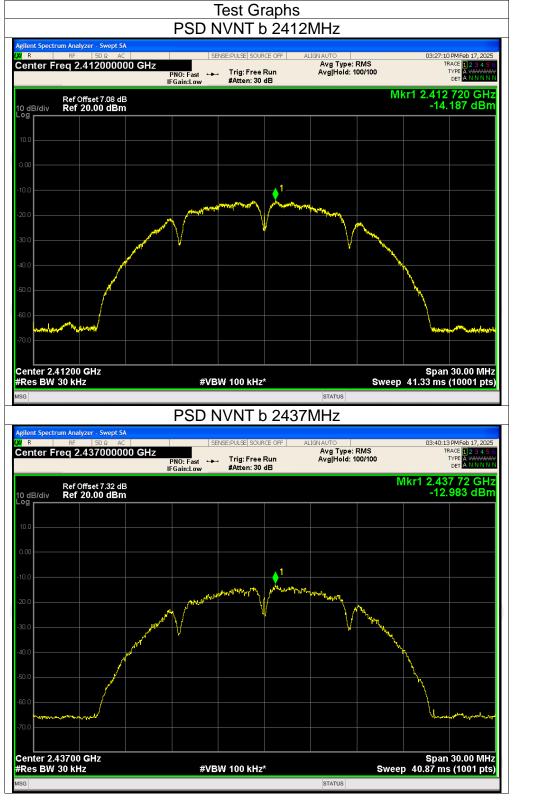


Page 47 of 73

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 48 of 73

Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict		
b	2412	-14.19	-24.19	6 8	Pass		
b	2437	-12.98	-22.98	8	Pass		
b	2462	-13.85	-23.85	8	Pass		
g	2412	-15.99	-25.99	8	Pass		
g	2437	-15.84	-25.84	8 ()	Pass		
g	2462	-15.69	-25.69	8	Pass		
n20	2412	-16.07	-26.07	8	Pass		
n20	2437	-15.43	-25.43	8	Pass		
n20	2462	-16.07	-26.07	6 8	Pass		
	b b g g g n20 n20	ModeFrequency (MHz)b2412b2437b2462g2412g2437g2462n202412n202437	ModeFrequency (MHz)Conducted PSD (dBm/30kHz)b2412-14.19b2437-12.98b2462-13.85g2412-15.99g2437-15.84g2462-15.69n202437-16.07n202437-15.43	ModeFrequency (MHz)Conducted PSD (dBm/30kHz)Conducted PSD (dBm/3kHz)b2412-14.19-24.19b2437-12.98-22.98b2462-13.85-23.85g2412-15.99-25.99g2462-15.69-25.84g2462-15.69-25.69n202437-15.43-25.43	ModeFrequency (MHz)Conducted PSD (dBm/30kHz)Conducted PSD (dBm/3kHz)Limit (dBm/3kHz)b2412-14.19-24.198b2437-12.98-22.988b2462-13.85-23.858g2412-15.99-25.998g2437-15.84-25.848g2462-15.69-25.698n202437-15.43-25.438		


Maximum Power Spectral Density Level

Note: Conducted PSD (dBm/3kHz) = Conducted PSD (dBm/30kHz) +10log(3kHz/30kHz)

Page 50 of 73

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page 51 of 73

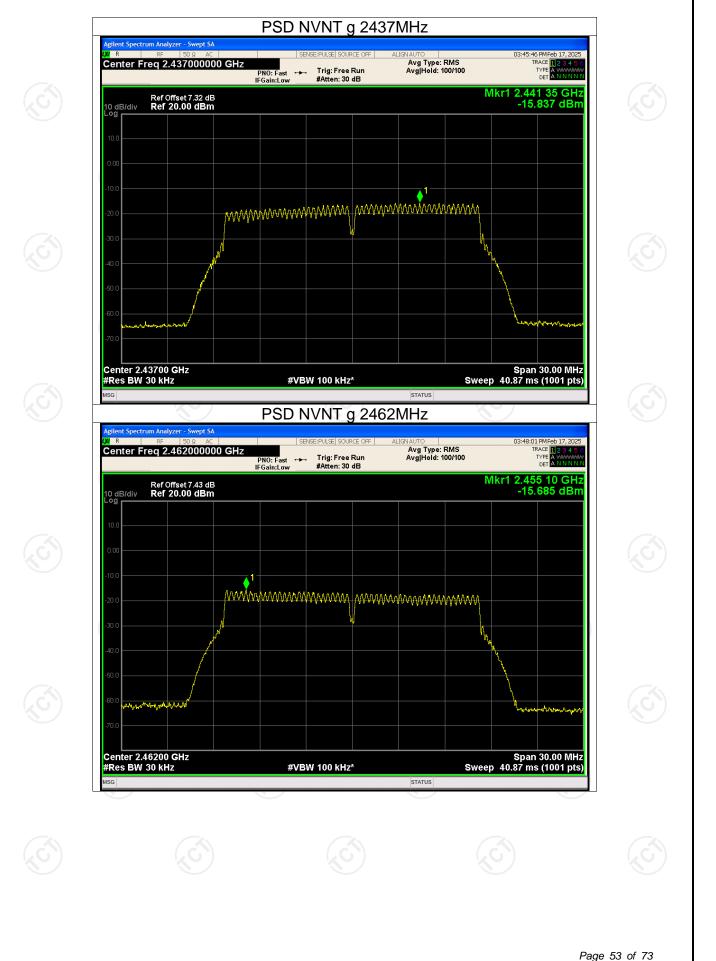
PSD NVNT b 2462MHz

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

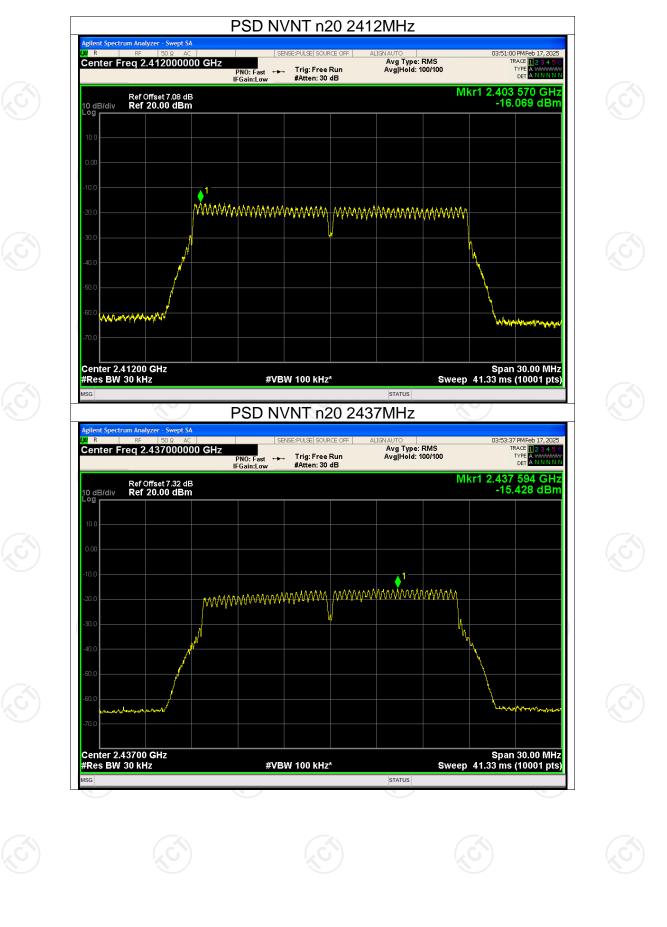
SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: RMS Triq: Free Run Avg|Hold: 100/100

TCT通测检测 TESTING CENTRE TECHNOLOGY

R


gilent Spectrum Analyzer - Swept SA

Center Freq 2.462000000 GHz

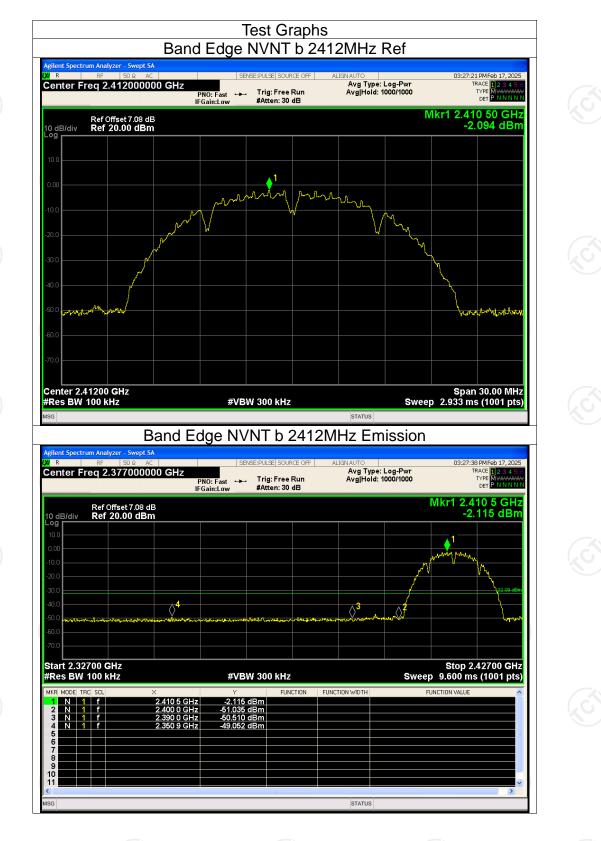

Report No.: TCT250213E003

03:36:51 PMFeb 17, 20 TRACE 1 2 3 4

TYPE DET

TCT通测检测 TESTING CENTRE TECHNOLOGY

LXI R	Analyzer Swept SA RF 50 Ω AC q 2.462000000 0	GHz PNO: Fast ↔ IFGain:Low	ENSE:PULSE SOURCE OFF	ALIGNAUTO Avg Type: RMS Avg Hold: 100/100	03:5	5:42 PM Feb 17, 2025 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	
10 dB/div R	tef Offset 7.43 dB tef 20.00 dBm				Mkr1 2.4 -1	454 80 GHz 6.065 dBm	
0.00							
-10.0				VWWWWWWWWW	www		
-30.0			↓				
-50.0							
-60.0 <mark>/~~~~</mark>	www					hand hard a representation	
Center 2.462 #Res BW 30	200 GHz kHz	#VE	3W 100 kHz*		Sp Sweep 40.87	an 30.00 MHz ms (1001 pts)	
MSG	Ø		S	STATUS	N.		


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Band Edge						
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	b	2412	-46.96	-30	Pass	
NVNT	b	2462	-47.39	-30	Pass	
NVNT	g	G 2412	-43.19	-30	Pass	
NVNT	g	2462	-42.87	-30	Pass	
NVNT	n20	2412	-47.83	-30	Pass	
NVNT	n20	2462	-42.95	-30	Pass	

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Page	56	of	73
------	----	----	----

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 57 of 73

Band Edge NVNT b 2462MHz Ref gilent Spectrum Analyze ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 SENSE:PULSE SOURCE OFF 03:37:03 PMFe TRACE TYPE DET Center Freq 2.462000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.460 50 GHz -1.431 dBm Ref Offset 7.43 dB Ref 20.00 dBm 10 dB/div 1 Man Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT b 2462MHz Emission

Avg Type: Log-Pwr Avg|Hold: 1000/1000

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Report No.: TCT250213E003

eh 17, 2 TRACE TYPE

TYPE DET Mkr1 2.460 5 GHz -1.421 dBm

TCT通测检测 TESTING CENTRE TECHNOLOGY

U F

10 dB/di Log **[**

Center Freq 2.497000000 GHz

Ref Offset 7.43 dB Ref 20.00 dBm

03:48:14 PMFe TRACE ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.462000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.455 13 GHz -5.160 dBm Ref Offset 7.43 dB Ref 20.00 dBm 10 dB/div 1 Mon ለስሌ Aronal Preling Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2462MHz Emission 3:31 PMFeL TRACE U F SENSE:PULSE SOURCE OFF eh 17, 20 Center Freq 2.497000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.455 1 GHz -5.162 dBm Ref Offset 7.43 dB Ref 20.00 dBm 10 dB/di Log \∂²\} \Diamond^3 Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -5.162 dBm -50.238 dBm -50.861 dBm -48.036 dBm N 1 f N 1 f N 1 f GHz GHz 2 48 3 GH 10 11 STATUS ISG

Band Edge NVNT g 2462MHz Ref

SENSE:PULSE SOURCE OFF

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyze

Band Edge NVNT n20 2462MHz Ref gilent Spectr R SENSE:PULSE SOURCE OFF ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.462000000 GHz TRACE 1234 TYPE MWWW DET PNNN PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.456 63 GHz -5.010 dBm Ref Offset 7.43 dB Ref 20.00 dBm 10 dB/div Ø maria Amy Marria Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT n20 2462MHz Emission SENSE:PULSE SOURCE OFF U F eh 17, 2 Center Freq 2.497000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 TRACE TYPE TYPE DET

PN0: Fast IFGain:Low Trig: Free Run #Atten: 30 dB Avg type: Log H wit Avg|Hold: 1000/1000 Trig: Tree Run Det PNNNN Ref Offset 7.43 dB Ref 20.00 dBm Mkr1 2.459 1 GHz -4.962 dBm

 \Diamond^3

⊘²()

FCT通测检测 TESTING CENTRE TECHNOLOGY

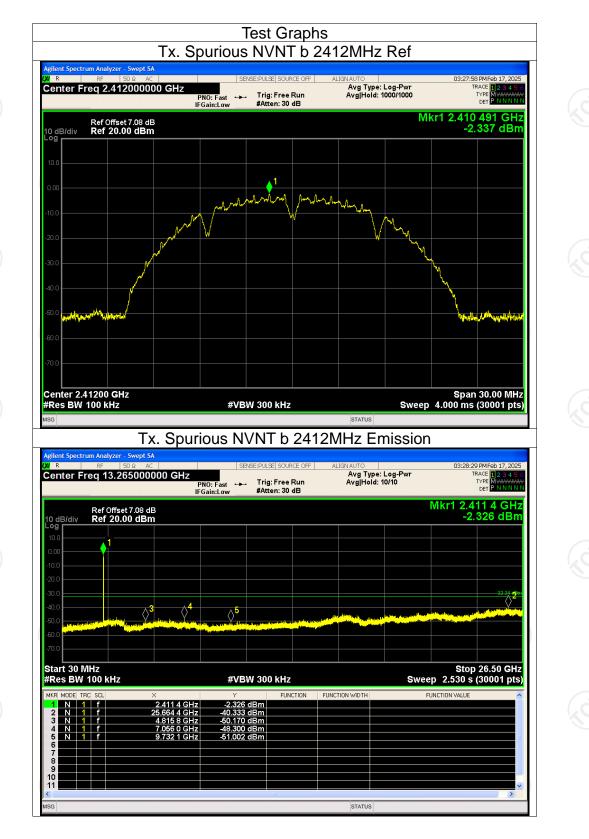
> 10 dB/di Log **[**

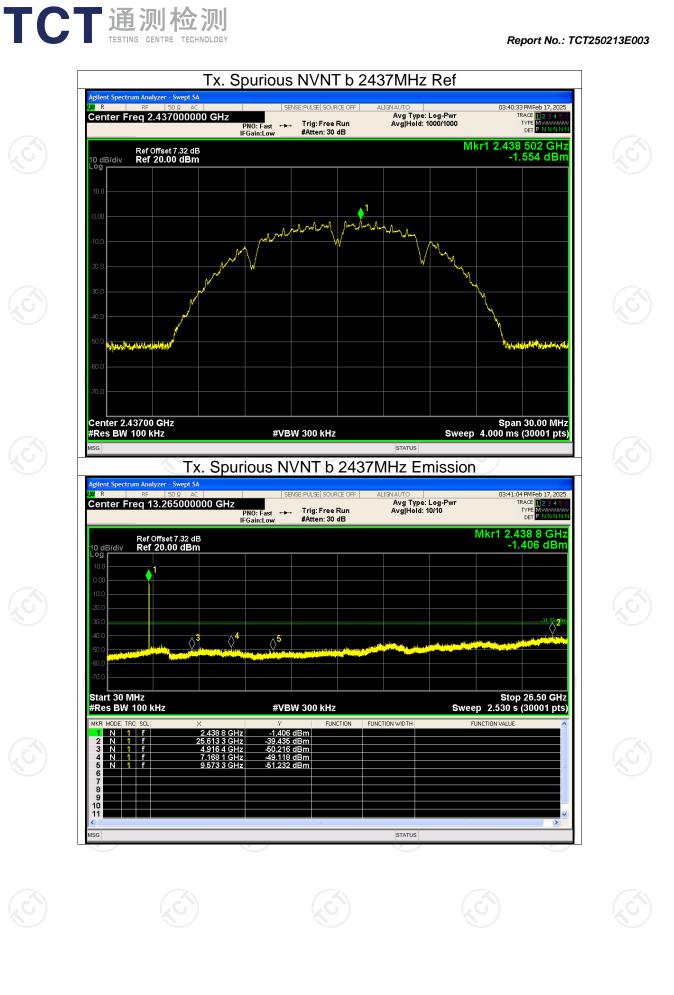
> > 1

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	-37.99	-30	Pass
NVNT	b	2437	-37.88	-30	Pass
ONVNT	b	2462	-38.74	G -30	Pass
NVNT	g	2412	-44.58	-30	Pass
NVNT	g	2437	-44.18	-30	Pass
NVNT	g	2462	-43.50	-30	Pass
NVNT 🖉	n20	2412	-44.41	-30	Pass
NVNT 🔍	n20	2437	-44.17	-30	Pass
NVNT	n20	2462	-44.99	-30	Pass





Page 63 of 73

Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com Hotline: 400-6611-140

Page 64 of 73

Page 65 of 73

Page 66 of 73

 Ref
 Ref
 Several Addition
 Autorial Spectrum Addition
 Called Autorial Spectrum Additin Autorial Spectrum Additin Autorial

Tx. Spurious NVNT g 2412MHz Ref

TCT通测检测 TESTING CENTRE TECHNOLOGY

Tx. Spurious NVNT g 2437MHz Ref

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectr

10 dB/div

Center Freq 2.437000000 GHz

Ref Offset 7.32 dB Ref 10.00 dBm Report No.: TCT250213E003

03:46:06 PMFeb 17, 2 TRACE 1 2 3 4 TYPE MWWM DET P N N N

Mkr1 2.443 498 GHz -5.015 dBm

Page 68 of 73

Tx. Spurious NVNT g 2462MHz Ref

SENSE:PULSE SOURCE OFF

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB

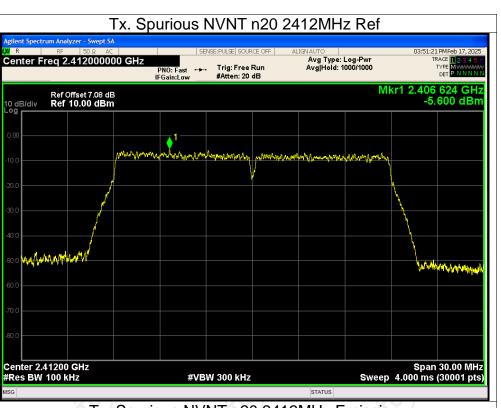
MANA

ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

monound

Mini

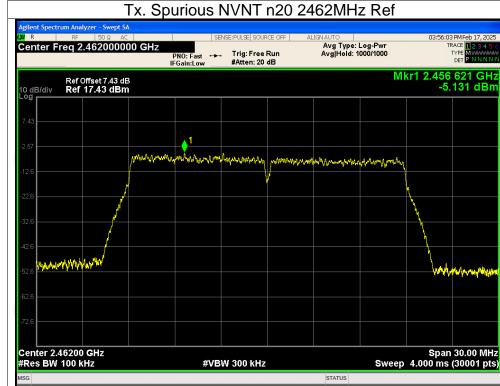
TCT通测检测 TESTING CENTRE TECHNOLOGY


10 dB/div

Ref Offset 7.43 dB Ref 17.43 dBm Report No.: TCT250213E003

TYPE DET

Mkr1 2.455 131 GHz -5.330 dBm


Page 69 of 73

Tx. Spurious NVNT n20 2412MHz Emission

Page 71 of 73

U F

Center Freq 13.265000000 GHz

Tx. Spurious NVNT n20 2462MHz Emission

SENSE: PULSE | SOURCE OFF |

Avg Type: Log-Pwr Avg|Hold: 10/10

Report No.: TCT250213E003

eh 17, 20 TRACE

TYPE DET

Appendix B: Photographs of Test Setup

Please refer to document Appendix No.: TCT250213E003-A

Appendix C: Photographs of EUT

Please refer to document Appendix No.: TCT250213E003-B & TCT250213E003-C

*****END OF REPORT*****