FCC TEST REPORT				
F	CC ID: 2AAVD-KD9127B3			
Report No. :	SSP24080225-2E			
Applicant :	Shenzhen Loyal Electronics Co., Ltd.			
Product Name :	WIRELESS KEYBOARD			
Model Name :	KD9127C3B			
Test Standard :	FCC Part 15.249			
Date of Issue :	2024-09-09			
	CCUT			
Shenzhen CCUT Quality Technology Co., Ltd.				
1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)				
-	ove client company and the product model only. It may not be duplicated mitted by Shenzhen CCUT Quality Technology Co., Ltd.			

Г

Test Report Basic Information

Applicant	Shenzhen Loyal Electronics Co., Ltd.			
	No.5, First Industry Park, Shanmen Songgang, Baoan, Shenzhen, Guangdong,			
Address of Applicant	China			
Manufacturer	Shenzhen Loyal Electronics Co., Ltd.			
	No.5, First Industry Park, Shanmen Songgang, Baoan, Shenzhen, Guangdong,			
Address of Manufacturer:	China			
Product Name:	WIRELESS KEYBOARD			
Brand Name	-			
Main Model	KD9127C3B			
Series Models	-			
	FCC Part 15 Subpart C			
	ANSI C63.4-2014			
Test Standard	ANSI C63.10-2013			
Date of Test	2024-08-23 to 2024-09-09			
Test Result	PASS			
Tested By:	Walker Wu (Walker Wu)			
Reviewed By	Lieber Ouyang (Lieber Ouyang)			
	Lahn Peng (Lahn Peng)			
Authorized Signatory	Lahm Peng (Lahm Peng)			
Note : This test report is limited	to the above client company and the product model only. It may not be			
duplicated without prior permit	ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in			
this test report is only applicabl	e to presented test sample.			

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	11
3.1 Standard and Limit	11
3.2 Test Result	11
4. Conducted Emissions	12
4.1 Standard and Limit	12
4.2 Test Procedure	12
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions	23
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	23
7. Occupied Bandwidth	25
7.1 Standard and Limit	25
7.2 Test Procedure	25
7.3 Test Data and Results	25

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-09-09	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	WIRELESS KEYBOARD		
Trade Name:	-		
Main Model:	KD9127C3B		
Series Models:	-		
Rated Voltage:	DC 3.7V by battery, USB 5V charging		
Battery:	DC 3.7V, 800mAh		
Test Sample No:	SSP24080225-1		
Hardware Version:	1.0		
Software Version:	1.0		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			

Wireless Specification	
Wireless Standard:	2.4GHz RF
Operating Frequency:	2402MHz ~2480MHz
Max. Field Strength:	91.53dBuV/m
Quantity of Channel:	40
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	-0.61dBi
Type of Antenna:	PCB Antenna
Type of Device:	Portable Device Device Mobile Device

1.2 Test Setup Information

List of Test Mo	odes						
Test Mode	De	Description		Remark			
TM1	Tra	ansmitting		2402/2440/24	80MHz		
TM2	C	Charging		AC 120V/6	0Hz		
-		-		-			
List and Detai	ls of Auxiliary	Cable					
Descrij	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
-				-	-		
List and Detai	List and Details of Auxiliary Equipment						
Descrij	scription Manufacture		cription Manufacturer Model		Model	Serial Number	
Adap	ter	Xiaomi		MDY-12-EF	HC78E2N6A23645		
-					-		

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	21	2422	41	2442	61	2462
02	2403	22	2423	42	2443	62	2463
03	2404	23	2424	43	2444	63	2464
04	2405	24	2425	44	2445	64	2465
05	2406	25	2426	45	2446	65	2466
~	~	~	~	~	~	~	~
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461		

1.3 Compliance Standards

Compliance Standards			
ECC Dout 15 Submout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test n	nethodology		
ECC Dort 15 Submort C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63:4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C63:10-2013	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.		
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,		
	Guangming District, Shenzhen, Guangdong, China		
CNAS Laboratory No.:	L18863		
A2LA Certificate No.:	6893.01		
FCC Registration No:	583813		
ISED Registration No.:	CN0164		
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing			
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.			

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date		
Conducted Emissions							
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A		
		Radiated Emission	IS				
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06		
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06		
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06		
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06		
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02		
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02		
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02		
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02		
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06		
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06		
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A		
	Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06		
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06		
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A		
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A		
DUT Test Software	Cyrix Software	662x_FCC_Rev1.9	N/A	N/A	N/A		

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB
	30MHz ~ 1GHz	±3.32 dB
	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %

2. Summary of Test Results

FCC Rule	Description of Test Item	Result					
FCC Part 15.203	Antenna Requirement	Passed					
FCC Part 15.207	Conducted Emissions	Passed					
FCC Part 15.209, 15.249(a)&(d)	Radiated Emissions	Passed					
FCC Part 15.249(d)	Band-edge Emissions	Passed					
FCC Part 15.215(c)	Occupied Bandwidth	Passed					
Passed: The EUT complies with the essential requirements in the standard							
Failed: The EUT does not comply with the essential requirements in the standard							
N/A: Not applicable							

3. Antenna Requirement

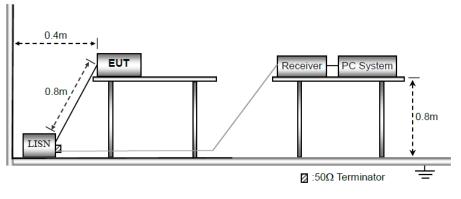
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)						
(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56	56 to 46					
0.5-5	56	46					
5-30	5-30 60 50						
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz							
Note 2: The lower limit applies at the band edges							

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

Because the product power is supply through DC 3V by AAA*2 battery, so not applicable.

All of the modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test P	lots and I	Data d	of Coi	nduc	ted	Emi	ssio	ons																	
Testeo	d Mode:			ΤМ	°M2																				
Test V	oltage:			AC	C 120V/60Hz																				
Test P	ower Lin	e:		Neı	ıtral																				
Rema	rk:																								
90.0	dBuV																								
80						+	+												+						
70							_								_										
60																		FCC	Par	t15 CI	E-Clas	:s B_(QP		
50		_																FCC	Par	115 C	E-Clas	:s B_/	Ve		
				_			-																		
40			1			1	X		5																1
30	hm	m	MA TH		nhn	****		Hlvo,	<u>Alpa</u>	un wind	***	MMMM,	N.	7					+						
20	<u> </u>	~~~	~~*	ллл	ssaa	unfl	ЩŴ	hint				Ľ.	"May M	<u>^</u>	\mathbb{V}	*	M	Δ,	*	and working the	rep ^{re} ter ^{and}	Y		through	peak
10											to other	11 11 11 11 11 11 11 11 11 11 11 11 11	m for	profession and the second	١Z	$\overline{\mathbf{A}}$	$\overline{\Delta}$	m				w-5 0	12		[
															ľ	Ĩ		ſ	Ĩ		~~~	~ V	14 Y. 1	hhaven a shirt	AVG
0																									
-10 0.1	150			0.	.500						0	dHz)			5.	.000								30.00	 00
No.	Freque (MH:			ading BuV)		⁻ act (dB)			₋evel IBuV		Lin (dBu		Marg (dB	jin)	Detecto	r P	/F	Re	ema	ırk					
1	0.366	60	22	2.76		9.39)	3	2.15		58.	59	-26.4	4	QP	F	>								
2	0.366	50		.60	_	9.39			20.99	-	48.		-27.6	_	AVG		2								
3	0.86	10	28	3.12		9.39)	3	57.51	\downarrow	56.0	00	-18.4	19	QP	F	2								
4 *	0.86			2.50	_	9.39			1.89	-	46.0		-14.1	\rightarrow	AVG		2								
5	1.22			8.00	_	9.44			32.44	_	56.0		-23.5	_	QP		2								
6	1.22			.20		9.44			20.64	_	46.0		-25.3	\rightarrow	AVG	_	2								
7	3.493			8.71	_	9.51			8.22	_	56.0		-27.7	\rightarrow	QP		2								
8	3.493			.18	_	9.51			6.69		46.0		-29.3	_	AVG	_	<u> </u>								
9	8.929	95	11	.49		9.56	6	2	21.05		60.0	00	-38.9	95	QP	F	2								
10	8.929	95	2.	.04		9.56	3	1	1.60		50.0	00	-38.4	10	AVG	F	>								
11	23.13	60	11	.06	-	10.0	3	2	1.09		60.0	00	-38.9	-	QP	F	>								
12	23.13	60	1.	.59	-	10.0	3	1	1.62		50.0	00	-38.3	88	AVG	F	⊃ Ì								

Test P	lots and Data o	of Conducte	ed Emissic	ons						
Testeo	d Mode:	TM2	TM2							
Test V	oltage:	AC 1	AC 120V/60Hz							
Test P	ower Line:	Live	ive							
Rema	rk:									
90.0	dBuV									
[7
80								_		-
70										_
CO									FCC Part15 CE-Class B_QP	
60										1
50									FCC Part15 CE-Class B_AVe	-
40			3							_
	Monto and			1 million	7					
30	2 40 40	- and the second s	1.1.1	Man Hill whether with	7 //www.ekiny/Yully 8	NL and	9		11	1
20		mary	son water	Umpungton Stra	8	"Way of Marine	Mary Mary	howhy	White warder - the work the work of the state of the stat	×
10					Alterie .	manna				peak
									have a second and the second	AVG
0										-
-10 0.1	50	0.5			(MHz)		5.0	00	30	000
,		0.5			(5.0	00		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.2940	22.66	9.58	32.24	60.41	-28.17	QP	Р		
2	0.2940	12.58	9.58	22.16	50.41	-28.25	AVG	Р		
3	0.8610	27.54	9.58	37.12	56.00	-18.88	QP	P		
4 *	0.8610	18.51 23.32	9.58 9.64	28.09 32.96	46.00 56.00	-17.91 -23.04	AVG QP	P P		
6	1.3920	10.56	9.64	20.20	46.00	-25.80		P		
7	1.8420	19.08	9.65	28.73	56.00	-27.27	QP	P		
8	1.8420	8.42	9.65	18.07	46.00	-27.93	AVG	Р		
9	3.7185	16.55	9.72	26.27	56.00	-29.73	QP	Р		
10	3.7185	3.11	9.72	12.83	46.00	-33.17	AVG	Р		
11	23.1360	11.91	10.14	22.05	60.00	-37.95	QP	Ρ		
12	23.1360	4.40	10.14	14.54	50.00	-35.46	AVG	P		

5. Radiated Emissions

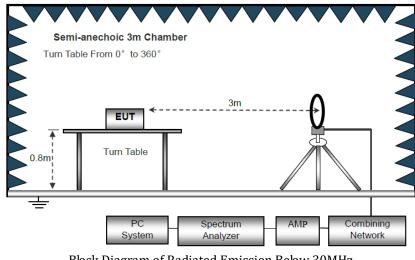
5.1 Standard and Limit

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

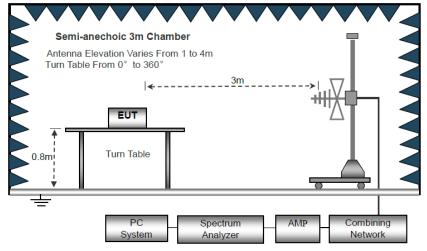
	Field strength of fundamental	Field strength of Harmonics		
Fundamental frequency	(milli-volts/meter)	(micro-volts/meter)		
902-928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725-5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

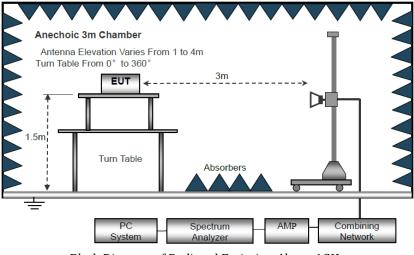
According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:


Frequency of emission (MHz)	Radiated emissions (3m)					
Frequency of emission (MHZ)	Quasi-peak (dBuV/m)					
30-88	40					
88-216	43.5					
216-960	46					
Above 960	54					
Note: The more stringent limit applies at transition frequencies.						

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

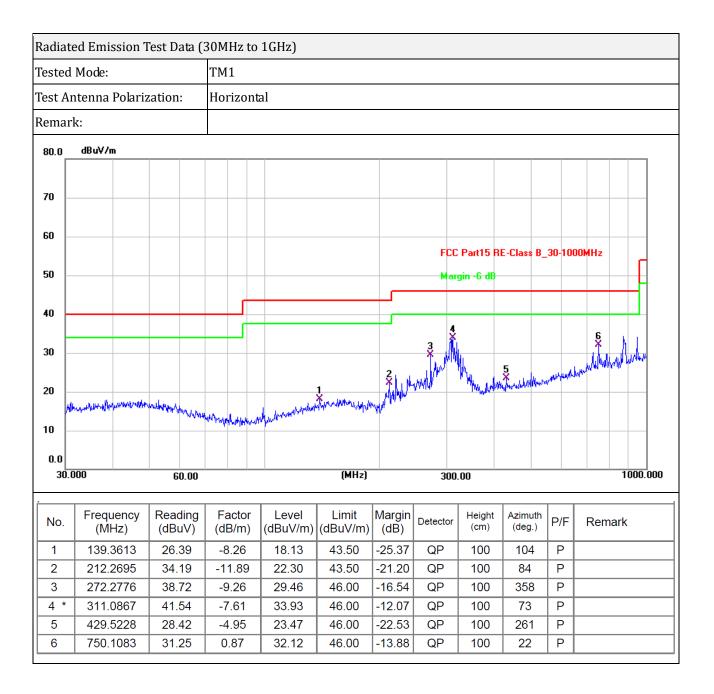
Block Diagram of Radiated Emission Above 1GHz

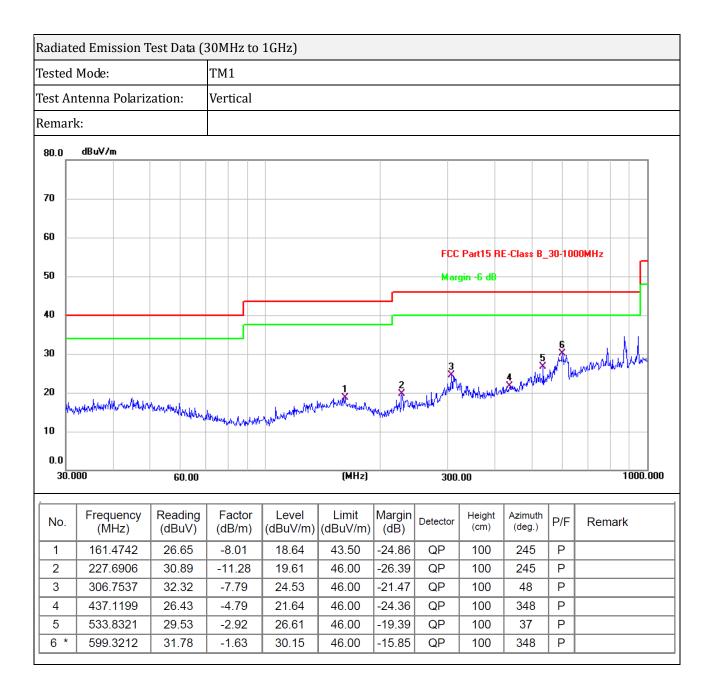
a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.


e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit for a wireless device, and with the worst case GFSK_2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

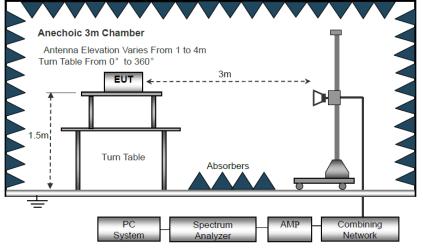
Radiated Em	ission Test Dat	a (Above 1GH	z)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
			Lowest Chann	el (2402MHz)			
2402	112.42	-20.89	91.53	114	-22.47	Н	РК
2402	97.33	-20.89	76.44	94	-17.56	Н	AV
4804	75.97	-14.72	61.25	74	-12.75	Н	РК
4804	61.99	-14.72	47.27	54	-6.73	Н	AV
7206	63.45	-8.41	55.04	74	-18.96	Н	РК
7206	50.86	-8.41	42.45	54	-11.55	Н	AV
2402	111.3	-20.89	90.41	114	-23.59	V	РК
2402	96.95	-20.89	76.06	94	-17.94	V	AV
4804	76.06	-14.72	61.34	74	-12.66	V	РК
4804	57.65	-14.72	42.93	54	-11.07	V	AV
7206	65.76	-8.41	57.35	74	-16.65	V	РК
7206	76.06	-14.72	61.34	74	-12.66	V	AV
			Middle Chann	el (2440MHz)			
2440	100.87	-20.7	80.17	114	-33.83	Н	РК
2440	94.78	-20.7	74.08	94	-19.92	Н	AV
4880	79.69	-14.64	65.05	74	-8.95	Н	РК
4880	62.39	-14.64	47.75	54	-6.25	Н	AV
7320	64.13	-8.28	55.85	74	-18.15	Н	РК
7320	49.52	-8.28	41.24	54	-12.76	Н	AV
2440	106.42	-20.7	85.72	114	-28.28	V	РК
2440	90.9	-20.7	70.2	94	-23.8	V	AV
4880	74.84	-14.64	60.2	74	-13.8	V	РК
4880	59.43	-14.64	44.79	54	-9.21	V	AV
7320	63.83	-8.28	55.55	74	-18.45	V	РК
7320	47.36	-8.28	39.08	54	-14.92	V	AV

Radiated Emission Test Data (Above 1GHz)									
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV		
	Highest Channel (2480MHz)								
2480	106.72	-20.55	86.17	114	-27.83	Н	РК		
2480	90.05	-20.55	69.5	94	-24.5	Н	AV		
4960	76.22	-14.53	61.69	74	-12.31	Н	РК		
4960	60.84	-14.53	46.31	54	-7.69	Н	AV		
7440	63.12	-8.13	54.99	74	-19.01	Н	РК		
7440	45.08	-8.13	36.95	54	-17.05	Н	AV		
2480	101.85	-20.55	81.3	114	-32.7	V	РК		
2480	92.78	-20.55	72.23	94	-21.77	V	AV		
4960	73.63	-14.53	59.1	74	-14.9	V	РК		
4960	60.61	-14.53	46.08	54	-7.92	V	AV		
7440	64.41	-8.13	56.28	74	-17.72	V	РК		
7440	47.89	-8.13	39.76	54	-14.24	V	AV		

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions

6.1 Standard and Limit

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result	
Test Mode	MHz	dBuV/dBc	resuit	
	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
	2400.00	>50 dBc	Pass	
Uighost	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Em	ission Test Dat	ta (Band edge e	emissions)					
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector	
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV	
Lowest Channel (2402MHz)								
2310	64.81	-21.34	43.47	74	-30.53	Н	РК	
2310	50.56	-21.34	29.22	54	-24.78	Н	AV	
2390	68.25	-20.96	47.29	74	-26.71	Н	РК	
2390	51.71	-20.96	30.75	54	-23.25	Н	AV	
2400	68.64	-20.91	47.73	74	-26.27	Н	РК	
2400	53.71	-20.91	32.8	54	-21.2	Н	AV	
2310	69.14	-21.34	47.8	74	-26.2	V	РК	
2310	52.31	-21.34	30.97	54	-23.03	V	AV	
2390	66.75	-20.96	45.79	74	-28.21	V	РК	
2390	52	-20.96	31.04	54	-22.96	V	AV	
2400	68.55	-20.91	47.64	74	-26.36	V	РК	
2400	55.48	-20.91	34.57	54	-19.43	V	AV	
			Highest Chanr	nel (2480MHz)				
2483.50	69.42	-20.51	48.91	74	-25.09	Н	РК	
2483.50	55.7	-20.51	35.19	54	-18.81	Н	AV	
2500	64.69	-20.43	44.26	74	-29.74	Н	РК	
2500	51.8	-20.43	31.37	54	-22.63	Н	AV	
2483.50	70.71	-20.51	50.2	74	-23.8	V	РК	
2483.50	53.98	-20.51	33.47	54	-20.53	V	AV	
2500	68.91	-20.43	48.48	74	-25.52	V	РК	
2500	49.28	-20.43	28.85	54	-25.15	V	AV	

Remark: Level = Reading + Factor, Margin = Level - Limit

7. Occupied Bandwidth

7.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

7.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

Test Setup Block Diagram

7.3 Test Data and Results

Test Channel	Test Frequency	20dB Bandwidth(MHz)	99% Bandwidth(MHz)		
Lowest Channel	2402MHz	1.115	1.023		
Middle Channel	2440MHz	1.122	1.037		
Highest Channel	2480MHz	1.114	1.026		

***** END OF REPORT *****