

FCC Part15, Subpart B ICES-003

TEST REPORT

For

3000 Series, 4000 Series

MODEL NUMBER: HX369SR, HX369W1, HX369BK, HX369DP, HX369AB, HX369FG, HX368W1, HX368DP, HX368BK, HX369LB

FCC ID: 2ADZNHX36

REPORT NUMBER: 4790458026-2

ISSUE DATE: September 21, 2022

Prepared for

Philips Oral Healthcare, Inc. (FCC)

22100 Bothell-Everett Highway Bothell Washington 98021 United States

Philips Oral Healthcare (ISED)

22100 Bothell-Everett Highway Bothell US 98021 United States Of America

(Excluding The States Of Alaska)

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Page 2 of 24

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	9/21/2022	Initial Issue	

Page 3 of 24

Summary of Test Results						
Standard Test Item Limit Result Re						
FCC Part15, Subpart B	Conducted Disturbance	Class B	PASS	NOTE (2)		
ANSI C63.4-2014	Radiated Disturbance below 1 GHz	Class B	PASS			
ICES-003 Issue 7	Radiated Disturbance above 1 GHz	Class B	N/A	NOTE (1) NOTE (3)		

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) This test is only applicable for devices which can be charged or powered by AC power cable.
- (3) If the highest frequency of the internal sources of the EUT is less than 108 MHz, the measurement shall only be made up to 1 GHz. If the highest frequency of the internal sources of the EUT is between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz. If the highest frequency of the internal sources of the EUT is between 500 MHz and 1 GHz, measurement shall only be made up to 5 GHz. If the highest frequency of the internal sources of the EUT is above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 40 GHz, whichever is less.
- (4) This test report is only published to and used by the applicant, and it is not for evidence purpose in China.
- (5) The measurement result for the sample received is <Pass> according to < FCC Part15, Subpart B and ICES-003 Issue 7 > when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	5
2.	TEST N	METHODOLOGY	7
3.	FACILI	TIES AND ACCREDITATION	7
4.	CALIB	RATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQUIP	MENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	TEST MODE	9
	5.3.	EUT ACCESSORY	10
	5.4.	SUPPORT UNITS FOR SYSTEM TEST	10
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	11
7.	EMISS	ION TEST	12
	7.1.	CONDUCTED EMISSIONS MEASUREMENT	12
	72	RADIATED EMISSIONS MEASUREMENT	16

Page 5 of 24

1. ATTESTATION OF TEST RESULTS

FCC

Applicant Information

Company Name: Philips Oral Healthcare, Inc.

Address: 22100 Bothell-Everett Highway Bothell Washington 98021 United

States

ISED

Applicant Information

Company Name: Philips Oral Healthcare

Address: 22100 Bothell-Everett Highway Bothell US 98021 United

States Of America (Excluding The States Of Alaska)

FCC

Manufacturer Information

Company Name: Philips Oral Healthcare, Inc.

Address: 22100 Bothell-Everett Highway Bothell Washington 98021 United

States

ISED

Manufacturer Information

Company Name: Philips Oral Healthcare

Address: 22100 Bothell-Everett Highway Bothell US 98021 United

States Of America (Excluding The States Of Alaska)

EUT Information

EUT Name: 3000 Series, 4000 Series

Model: HX369SR

Series Model: HX369W1, HX369BK, HX369DP, HX369AB, HX369FG,

HX368W1, HX368DP, HX368BK, HX369LB

Model Difference: Please refer to clause 5.1. Description of EUT

Brand: Sonicare Sample Received Date: June 23, 2022

Sample Status: Normal Sample ID: 5086977

Date of Tested: June 27, 2022 ~ September 21, 2022

APPLICABLE STANDARDS				
STANDARD TEST RESULTS				
FCC Part15, Subpart B	PASS			
ICES-003 Issue 7	PASS			

REPORT NO.: 4790458026-2 Page 6 of 24

Prepared By:

Kebo Zhang
Project Engineer

Denny Huang
Senior Project Engineer

Approved By:

Stephen Guo Laboratory Manager

Page 7 of 24

2. TEST METHODOLOGY

All tests were performed in accordance with the standard FCC Part15 Subpart B & ICES-003 Issue 7 & ANSI C63.4-2014.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject to
	the Commission's Delcaration of Conformity (DoC) and Certification rules
	ISED (Company No.: 21320)
A - +	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Accreditation	has been registered and fully described in a report filed with ISED.
Certificate	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note: All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

Page 8 of 24

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports	0.009 MHz ~ 0.15 MHz	2	4.00
Conducted emissions from the AC mains power ports	0.15 MHz ~ 30 MHz	2	3.62
Radiated emissions	30 MHz ~ 1 GHz	2	4.00
Radiated emissions	1 GHz ~ 18 GHz	2	5.78

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Page 9 of 24

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	3000 Series, 4000 Series
Model	HX369SR
Series Model:	HX369W1, HX369BK, HX369DP, HX369AB, HX369FG, HX368W1, HX368DP, HX368BK, HX369LB
Model difference:	HX369W1, HX369BK, HX369DP, HX369AB, HX369FG, HX368W1, HX368DP, HX368BK, HX369LB have the same technical construction including circuit diagram, PCB Layout, components and component layout, all electrical construction and mechanical construction with HX369SR. The difference lies only the color and toothbrush head. The EUT will have two PCB version, one use IC CS32L010 chip, the other use MM32F0010 IC chip. CS32L010 & MM32F0010 have the same technical construction including radio frequency part, electrical construction and mechanical construction, the difference lies only the main IC part, main IC Layout and component layout is different. Otherwise, MM32F0010 PCB layout has touch wake up function, but it is not related components, in fact do not have this function; CS32L010 PCB layout have removed the function of touch wake up, so PCB layout don't have the components.
Note:	Two PCB version has been considered, only the worst case PCB version (CS32L010) was recorded in this report.
Rating	Charging Dock: DC 4.75-5.25V, 0.3A 1.5W Tooth Brush: DC 3.6V/2.5W

Model list

EUT Name	Model
3000 Series	HX368W1
3000 Series	HX368DP
3000 Series	HX368BK
4000 Series	HX369SR
4000 Series	HX369W1
4000 Series	HX369BK
4000 Series	HX369DP
4000 Series	HX369AB
4000 Series	HX369FG
4000 Series	HX369LB

5.2. TEST MODE

Test Mode	Description
Mode 1	Charging
Mode 2	Running

Page 10 of 24

5.3. EUT ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	Charging Dock	Philips	HX6110 ABA3	DC 4.75-5.25V === 0.3A 1.5W

5.4. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Series No.
1	Class 2 Power Supply	PHILIPS	WAA2001	Input:100-240V~ 50/60Hz, 3.5W Output:5V=== 2.5W	N/A

The following cables were used to form a representative test configuration during the tests.

Item	Type of cable	Shielded Type	Ferrite Core	Specification
/	/	/	/	/

Page 11 of 24

6. MEASURING EQUIPMENT AND SOFTWARE USED

Conducted Emissions							
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
EMI Test Receiver	R&S	ESR3	101961	Oct. 30, 2021	Oct. 29, 2022		
Two-Line V- Network	R&S	ENV216	101983	Oct. 30, 2021	Oct. 29, 2022		
Software							
I	Description Manufacturer Name Version						
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1		
	Radiated Emissions						
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date		
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct. 30, 2021	Oct. 29, 2022		
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Apr. 24, 2020	Apr. 23, 2023		
Preamplifier HP 8447D		8447D	2944A09099	Oct. 30, 2021	Oct. 29, 2022		
Software							
	Description		Manufacturer	Name	Version		
Test Software	for Radiated E	missions	Farad	EZ-EMC	Ver. UL-3A1		

Page 12 of 24

7. EMISSION TEST

7.1. CONDUCTED EMISSIONS MEASUREMENT

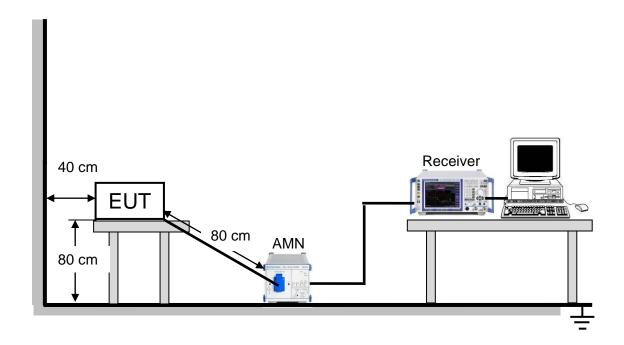
LIMITS

CFR 47 FCC Part15 Subpart B ICES-003 Issue 7						
FREQUENCY	Class A	Class A (dBµV) Class B (dBµV)				
(MHz)	Quasi-peak	Average	Quasi-peak	Average		
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46*		
0.50 -5.0	73.00	60.00	56.00	46.00		
5.0 -30.0	73.00	60.00	60.00	50.00		

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

TEST PROCEDURE

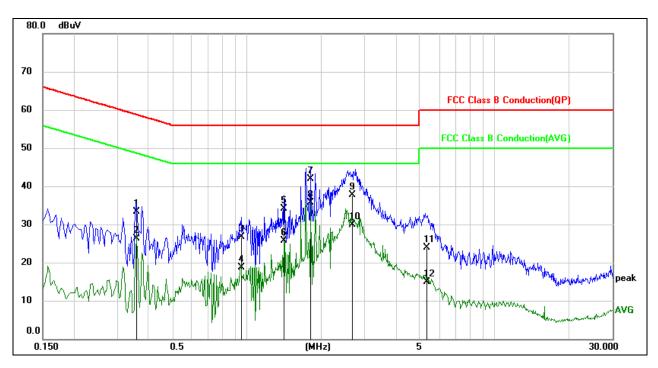
- 1. The testing follows the guidelines in ANSI C63.4-2014.
- 2. The EUT was placed on the top of a rotating table 0.8 meters above the horizontal ground plane and being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 ohm/50uH of coupling impedance for the measuring instrument.
- 3. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 4. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 5. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and average detector mode.

TEST SETUP

For the actual test configuration, please refer to Appendix I: Photographs of Test Configuration.

TEST ENVIRONMENT

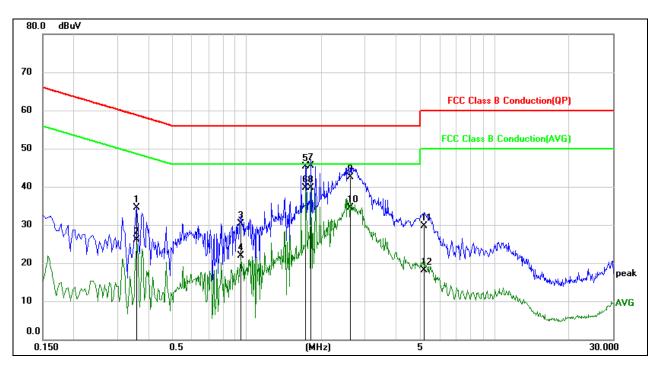
Temperature	25.7 °C	Relative Humidity	67.6 %
Atmosphere Pressure	101 kPa		


TEST MODE

Pre-test Mode:	Mode 1
Final Test Mode:	Mode 1

TEST RESULTS

Conducted Emissions					
Test Mode: Mode 1 Phase: Line					
Test Voltage	AC 120 V/60 Hz				



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.3584	23.89	9.43	33.32	58.77	-25.45	QP
2	0.3584	16.80	9.43	26.23	48.77	-22.54	AVG
3	0.9472	17.16	9.61	26.77	56.00	-29.23	QP
4	0.9472	9.04	9.61	18.65	46.00	-27.35	AVG
5	1.4200	24.45	9.62	34.07	56.00	-21.93	QP
6	1.4200	16.16	9.62	25.78	46.00	-20.22	AVG
7	1.8146	32.25	9.62	41.87	56.00	-14.13	QP
8	1.8146	26.01	9.62	35.63	46.00	-10.37	AVG
9	2.6869	28.08	9.62	37.70	56.00	-18.30	QP
10	2.6869	20.33	9.62	29.95	46.00	-16.05	AVG
11	5.3368	14.19	9.62	23.81	60.00	-36.19	QP
12	5.3368	5.26	9.62	14.88	50.00	-35.12	AVG

Note: 1. Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)

Conducted Emissions					
Test Mode: Mode 1 Phase: Neutral					
Test Voltage	AC 120 V/60 Hz				

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.3583	25.02	9.43	34.45	58.77	-24.32	QP
2	0.3583	16.70	9.43	26.13	48.77	-22.64	AVG
3	0.9471	20.77	9.61	30.38	56.00	-25.62	QP
4	0.9471	12.29	9.61	21.90	46.00	-24.10	AVG
5	1.7359	35.63	9.62	45.25	56.00	-10.75	QP
6	1.7359	30.04	9.62	39.66	46.00	-6.34	AVG
7	1.8148	35.97	9.62	45.59	56.00	-10.41	QP
8	1.8148	30.06	9.62	39.68	46.00	-6.32	AVG
9	2.6317	32.80	9.62	42.42	56.00	-13.58	QP
10	2.6317	24.95	9.62	34.57	46.00	-11.43	AVG
11	5.1621	20.05	9.62	29.67	60.00	-30.33	QP
12	5.1621	8.44	9.62	18.06	50.00	-31.94	AVG

Note: 1. Result = Reading +Correct (Insertion Loss + Cable Loss + Attenuator Factor)

Page 16 of 24

7.2. RADIATED EMISSIONS MEASUREMENT

LIMITS

Below 1 GHz

CFR 47 FCC Part 15 Subpart B					
Frequency	Class A	Class B			
(MHz)	Field strength (dBuV/m) (at 3 m)	Field strength (dBuV/m) (at 3 m)			
30 - 88	49.5	40			
88 - 216	53.9	43.5			
216 - 960	56.9	46			
Above 960	60	54			

ICES-003 Issue 7					
Frequency	Class A	Class B			
(MHz) Field	Field strength (dBuV/m) (at 3 m)	Field strength (dBuV/m) (at 3 m)			
30 - 88	50	40			
88 - 216	54	43.5			
216 - 230	56.9	46			
230 - 960	57	47			
Above 960	60	54			

Note: The different between FCC Part 15 Subpart B limit and ICES-003 Issue 7 limit is only in frequency band 230 MHz to 960 MHz, the limit of FCC Part 15 Subpart B is 1 dB smaller than the limit of ICES-003 Issue 7, if the test result complies with FCC Part 15 Subpart B limit, it deemed to comply with ICES-003 Issue 7 limit.

Above 1 GHz

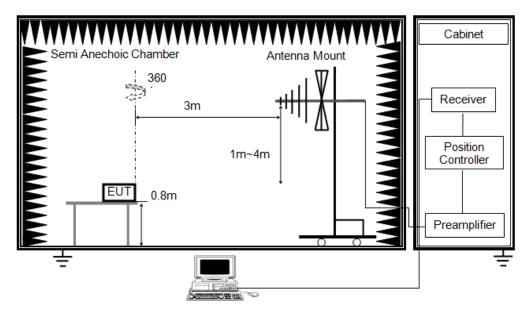
CFR 47 FCC Part 15 Subpart B					
ICES-003 Issue 7					
Class A Class B					
Frequency (MHz)	(dBuV/m) (at 3 m)	(dBuV/m) (at 3 m)		
(IVII 12)	Peak	Average	Peak	Average	
Above 1000	80	60	74	54	

Page 17 of 24

Test Frequency Range of Radiated Disturbance Measurement

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 - 108	1000
108 - 500	2000
500 - 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

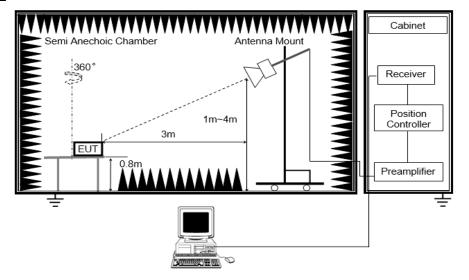
NOTE:


- (1) The limit for radiated test was performed according to FCC Part 15, Subpart B;
- (2) The tighter limit applies at the band edges;
- (3) Emission level (dBuV/m) = 20log Emission level (uV/m), 3m Emission level = 10 m Emission level + 20log(10 m/3 m);

Page 18 of 24

TEST SETUP AND PROCEDURE

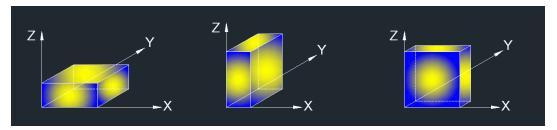
Below 1 GHz and above 30 MHz


The setting of the spectrum analyser

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak and QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.4-2014.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp was used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal
- 7. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 8. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

Above 1 GHz


The setting of the spectrum analyser

RBW	1 MHz
VBW	3 MHz
Sweep	Auto
II IOTOCTOR	Peak: Peak AVG: RMS
Trace	Max hold

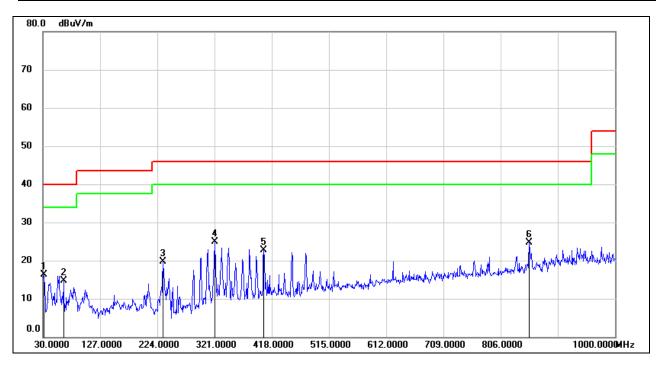
- 1. The testing follows the guidelines in ANSI C63.4-2014.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. Cables of hand-operated devices, such as keyboards and mice, shall be placed as for normal used.
- 7. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 8. For measurement above 1 GHz, the peak emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the peak limit specified in Section 15.109. If peak result complies with average limit, average result is deemed to comply with average limit.
- 9. The average emission measurement will be measured by the RMS detector and must comply with the average limit specified in Section 15.109.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis for running, Y axis for charging) data recorded in the report.

TEST ENVIRONMENT

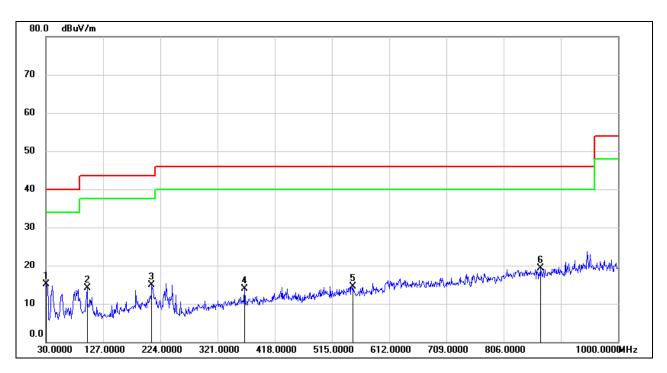
Radiated Emissio	ns - Below 1 GHz	Radiated Emissions - Above 1 GHz		
Temperature: 24.5 °C		Temperature: N/A		
Humidity:	61 %	Humidity:	N/A	
Atmosphere Pressure	Atmosphere Pressure 101 kPa		N/A	


TEST MODE

Radiated Em	issions - Below 1 GHz	Radiated Emissions - Above 1 GHz		
Pre-test Mode:	Mode 1 & Mode 2	Pre-test Mode:	N/A	
Final Test Mode:	Final Test Mode: Mode 1 & Mode 2		N/A	

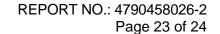
TEST RESULTS

Radiated Emissions – Below 1 GHz						
Measurement Method Radiated Polar: Horizontal						
Test Mode:	Mode 1	Test Voltage:	AC 120 V/60 Hz			



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	31.9400	35.42	-19.13	16.29	40.00	-23.71	QP
2	64.9200	35.31	-20.54	14.77	40.00	-25.23	QP
3	233.7000	38.49	-18.85	19.64	46.00	-26.36	QP
4	321.9700	39.61	-14.75	24.86	46.00	-21.14	QP
5	404.4200	36.03	-13.26	22.77	46.00	-23.23	QP
6	854.5000	30.76	-6.14	24.62	46.00	-21.38	QP

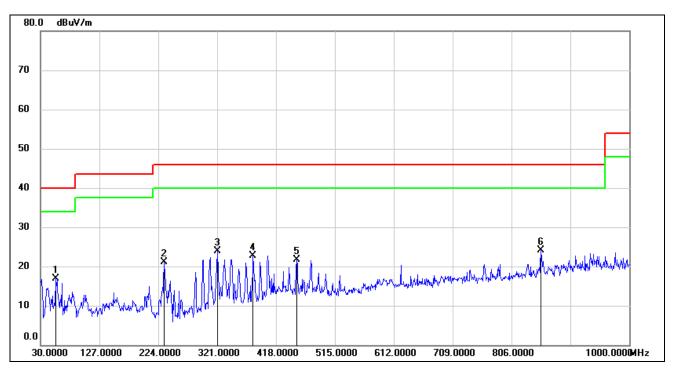
Note: 1. Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)



Radiated Emissions – Below 1 GHz						
Measurement Method Radiated Polar: Vertical						
Test Mode:	Mode 1	Test Voltage:	AC 120 V/60 Hz			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	34.21	-19.04	15.17	40.00	-24.83	QP
2	99.8399	35.16	-21.15	14.01	43.50	-29.49	QP
3	209.4500	32.18	-17.23	14.95	43.50	-28.55	QP
4	366.5900	27.98	-14.01	13.97	46.00	-32.03	QP
5	549.9200	24.95	-10.49	14.46	46.00	-31.54	QP
6	868.0800	25.04	-5.80	19.24	46.00	-26.76	QP

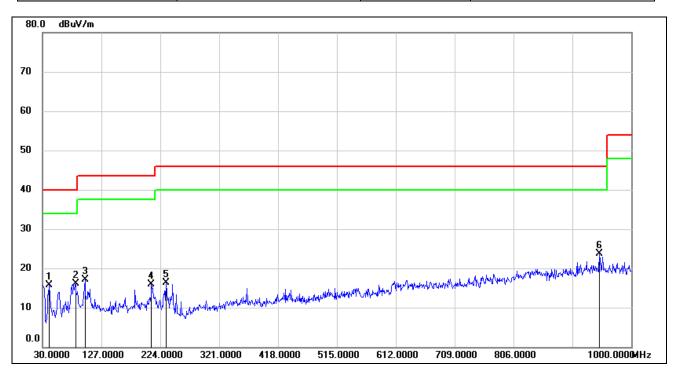
Note: 1. Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)



Radiated Emissions – Below 1 GHz

Measurement Method Radiated Polar: Horizontal

Test Mode: Mode 2 Test Voltage: DC 3.6V



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	55.2200	37.50	-20.63	16.87	40.00	-23.13	QP
2	233.7000	39.99	-18.85	21.14	46.00	-24.86	QP
3	321.9700	38.61	-14.75	23.86	46.00	-22.14	QP
4	380.1700	36.44	-13.64	22.80	46.00	-23.20	QP
5	451.9500	34.06	-12.42	21.64	46.00	-24.36	QP
6	854.5000	30.26	-6.14	24.12	46.00	-21.88	QP

Note: 1. Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

Radiated Emissions – Below 1 GHz					
Measurement Method	Radiated	Polar:	Vertical		
Test Mode:	Mode 2	Test Voltage:	DC 3.6V		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	40.6699	35.73	-20.05	15.68	40.00	-24.32	QP
2	84.3200	37.78	-21.63	16.15	40.00	-23.85	QP
3	99.8399	38.16	-21.15	17.01	43.50	-26.49	QP
4	209.4500	33.18	-17.23	15.95	43.50	-27.55	QP
5	233.7000	35.13	-18.85	16.28	46.00	-29.72	QP
6	947.6200	28.22	-4.43	23.79	46.00	-22.21	QP

Note: 1. Reading +Correct (Amplifier Factor + Cable Loss + Antenna Factor)

2. Margin = Result - Limit

END OF REPORT