

FCC Test Report

Report No: FCS202202015W01

Issued for

Applicant:	A-Sure Technology CO., LIMITED		
Address:	FLAT/RM 1502, EASEY COMMERCIAL BUILDING, 253-261 HENNESSY ROAD, WANCHAI, HK		
Product Name:	Car Infotainment Navigation System		
Brand Name:	A-Sure		
Model Name:	К42_9		
Series Model:	K42 Series, K83 Series, K84 Series, KVL Series, KV5 Series		
FCC ID:	2A43A-K42-9		
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan			
Tel: 769-27280901 Fax:	769-27280901 http://www.FCS-lab.com		

TEST RESULT CERTIFICATION

Applicant's Name:	A-Sure Technology CO., LIMITED
Address	FLAT/RM 1502, EASEY COMMERCIAL BUILDING, 253-261 HENNESSY ROAD, WANCHAI, HK
Manufacture's Name:	A-Sure Technology CO., LIMITED
Address	FLAT/RM 1502, EASEY COMMERCIAL BUILDING, 253-261 HENNESSY ROAD, WANCHAI, HK
Product Description	
Product Name:	Car Infotainment Navigation System
Model Name:	K42_9
Brand Name	A-Sure
Series Model	Refer to page 1
Test Standards	FCC Part15.247

Test Procedure..... ANSI C63.10-2013

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document..

Date of Test.....

Date (s) of performance of tests.: 10 Feb, 2022 ~ 18 Feb, 2022

Date of Issue..... 19 Feb, 2022

Test Result..... Pass

Tested by	:	Scott shen	
		(Scott Shen)	TON CERIFICAN
Reviewed by	:	DuteQuer	
		(Duke Qian)	
Approved by	:	Julenson	P. DWUINSHOD

(Jack Wang)

Table of Contents	Page
1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF THE EUT	8
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
2.4 EQUIPMENTS LIST	12
3. 6DB BANDWIDTH	13
3.1 LIMIT	13
3.2 TEST PROCEDURE	13
3.3 TEST SETUP	13
3.4 TEST RESULTS	14
4 CONDUCTED OUTPUT POWER	19
4.1 LIMIT	19
4.2 TEST PROCEDURE	19
4.3 TEST SETUP	19
4.5 TEST RESULTS	19
5. POWER SPECTRAL DENSITY	20
5.1 LIMIT	20
5.2 TEST PROCEDURE	20
5.3 TEST SETUP	20
5.5 TEST RESULTS	21
5.6 ORIGINAL TEST DATA	22
6. BAND EDGE AND SPURIOUS(CONDUCTED)	27
6.1 LIMIT	27
6.2 TEST PROCEDURE 6.3 TEST SETUP	27 27
6.5 TEST RESULTS	27
6.5 ORIGINAL TEST DATA	20 28
7 RADIATED EMISSION MEASUREMENT	37
8 CONDUCTED EMISSION TEST	50
	50

Table of Contents	Page
9. ANTENNA REQUIREMENT	53
9.1 STANDARD REQUIREMENT	53
9.2 RESULT	53

Revision History

Rev.	Issue Date Effect Page		Contents
00	19 Jan, 2022	N/A	Initial Issue

 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: 769-27280901

 http://www.FCS-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

FCC Part 15.247,Subpart C						
Standard Section	Test Item	Judgment	Remark			
FCC 15.247 (a) (2)	6dB Bandwidth	PASS				
FCC 15.247 (b) (3)	Conducted Output Power	PASS				
FCC 15.247 (e)	Power Spectral Density	PASS				
FCC 15.247 (d)	Band-edge and Spurious Emissions (Conducted)	PASS				
FCC 15.247 (d)	Dedicted Sourieus Emissions					
FCC 15.209	Radiated Spurious Emissions	PASS				
FCC 15.205						
FCC 15.247 (d)	Dedicted Rend Edge Compliance					
FCC 15.209	Radiated Band Edge Compliance	PASS				
FCC 15.205						
FCC 15.207	Power Line Conducted Emission	N/A				
FCC 15.203	Antenna requirement	PASS				
15.205	Restricted Band Edge Emission	PASS				

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name:	ompany Name: Flux Compliance Service Laboratory			
Address:Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan				
Telephone: +86-769-27280901				
Fax:	+86-769-27280901			
Laboray Accreditations				
FCC Test Firm Registration Number: 514908 CNAS Number: L15566				
Designation number: CN0127				
A2LA accreditation number: 5545.01				
ISED Number: 25801				

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	±4.13 dB
4	Conducted Emission (150KHz-30MHz)	±4.74 dB
5	All emissions,radiated(<1G) 30MHz-1000MHz	±5.2 dB
6	All emissions, radiated 1GHz -18GHz	±4.66 dB
7	All emissions, radiated 18GHz -40GHz	±4.31 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Car Infotainment Navigation System
Trade Name	A-Sure
Model Name	K42_9
Series Model	Refer to page 1
Model Difference	The above product with same circuit, PCB layout, electrical parts, materials and wiring structures, the materials of decorative accessories is same, only different appearance shape and different color.
Channel List	Please refer to the Note 2.
	IEEE 802.11b: 2412MHz-2462MHz
Operation frequency	IEEE 802.11g: 2412MHz-2462MHz
	IEEE 802.11n HT20: 2412MHz-2462MHz
	IEEE 802.11b: DSSS (CCK, QPSK, BPSK)
Modulation:	IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
	IEEE 802.11n HT20,: OFDM (64QAM, 16QAM, QPSK, BPSK)
T	IEEE 802.11b: 1, 2, 5.5, 11 Mbps
Transmitter rate:	IEEE 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps
	IEEE 802.11n HT20: up to 150 Mbps,
Power supply	Input: DC 9 -15V 3 -10 A
Battery	N/A
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the User's Manual

Note:

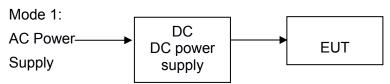
1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)			
01	2412	05	2432	09	2452	
02	2417	06	2437	10	2457	
03	2422	07	2442	11	2462	
04	2427	08	2447			

3. Table for Filed Antenna

100						
An	. Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	N/A	External antenna	N/A	1.0 dBi	Antenna



1

0000.2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software: the

Pandora_R22.20.1701

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

Mode	Setting Tx Power	data rate (Mbps) (see Note)	Channel	Frequency (MHz)
IEEE 802.11b	8	1	LCHCH1	2412
	8	1	MCH: CH6	2437
	8	1	HCH:CH11	2462
	20	6	LCH: CH1	2412
IEEE 802.11g	20	6	MCH: CH6	2437
	20	6	HCH: CH11	2462
IEEE 802.11n HT20	20	MCS8	LCH:CH1	2412
	20	MCS8	MCH: CH6	2437
	20	MCS8	HCHCH11	2462

Note:

(1) According exploratory test, EUT will have maximum output power in those data rate, so those data rate were used for all test,

(2) During the test, the dutycycle>98%, the test voltage was tuned from 85% to 115% of the

Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	DC power supply	ZHAOXIN	RXN-605D-II	N/A	this is for testing only in repor

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	N/A	N/A	N/A	N/A	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^[]Length_. column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2022. 02.10	2023. 02.09
Signal Analyzer	R&S	FSV40-N	FCS-E012	2022. 02.10	2023. 02.09
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2022. 02.10	2023. 02.09
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2022. 02.10	2023. 02.09
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2022. 02.10	2023. 02.09
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2022. 02.10	2023. 02.09
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2022. 02.10	2023. 02.09
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2022. 02.10	2023. 02.09
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2022. 02.10	2023. 02.09
Temperature & Humidity	HTC-1	victor	FCS-E005	2022. 02.10	2023. 02.09

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2022. 02.10	2023. 02.09
LISN	R&S	ENV216	FCS-E007	2022. 02.10	2023. 02.09
LISN	ETS	3810/2NM	FCS-E009	2022. 02.10	2023. 02.09
Temperature & Humidity	HTC-1	victor	FCS-E008	2022. 02.10	2023. 02.09

RF Connected Test

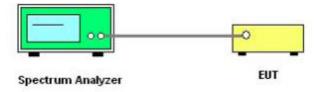
Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2022. 02.10	2023. 02.09
Spectrum Analyzer	Agilent	E4447A	MY50180039	2022. 02.10	2023. 02.09
Spectrum Analyzer	R&S	FSV-40	101499	2022. 02.10	2023. 02.09
Power Sensor	Agilent	UX2021XA	FCS-E021	2022. 02.10	2023. 02.09

3. 6DB BANDWIDTH

3.1 Limit

For direct sequence systems, the minimum 6dB bandwidth shall be at least 500 kHz

3.2 Test Procedure

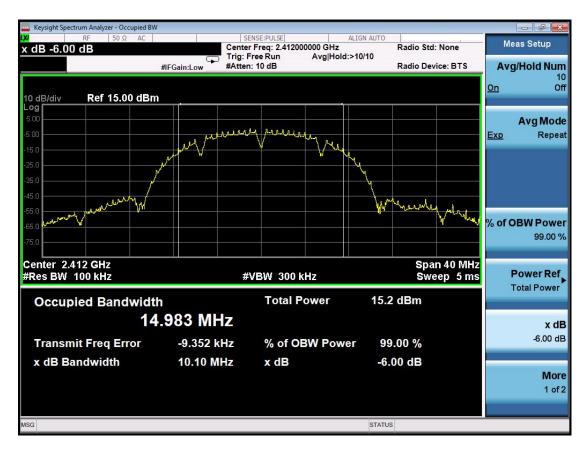

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Set the spectrum analyzer as follows

RBW:	100kHz
VBW:	300kHz
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold

(3) Allow the trace to stabilize, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission

3.3 Test setup



3.4 Test results

TestMode	Channel (MHz)	6dB Bandwidth (MHz)	Limit [MHz]	Verdict
802.11b	2412MHz	10.10	0.5	Pass
802.11b	2437MHz	10.06	0.5	Pass
802.11b	2462MHz	10.09	0.5	Pass
802.11g	2412MHz	16.36	0.5	Pass
802.11g	2437MHz	16.35	0.5	Pass
802.11g	2462MHz	16.33	0.5	Pass
802.11n 20	2412MHz	17.20	0.5	Pass
802.11n 20	2437MHz	17.18	0.5	Pass
802.11n 20	2462MHz	17.05	0.5	Pass

3.5 Original Test Data

802.11b-CH2412MHZ

802.11b-CH237MHZ

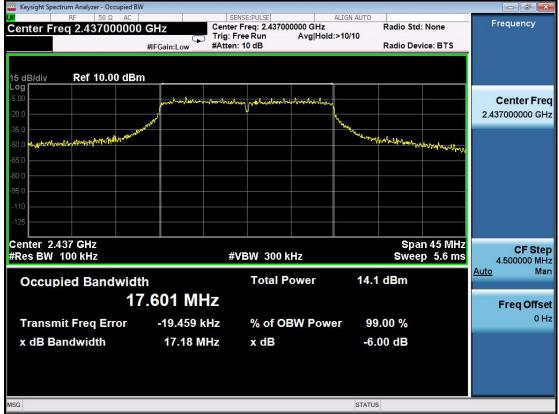
802.11b-CH2462MHZ

802.11g H2412MHz

802.11g CH2437MHz


Keysight Spectrum Analyzer - Occupied BW					
№F 50 Ω AC Center Freq 2.437000000 15 dB/div Ref 10.00 dBm	GHz #IFGain:Low Cente Trig: F #Atter	r Freq: 2.437000000 GHz r Freq: 2.437000000 GHz rree Run Avg Hold n: 10 dB		d: None vice: BTS	Frequency
Is alsolution Ref. 10.00 Column -500				Yhyrishilandha	Center Freq 2.437000000 GHz
Center 2.437 GHz #Res BW 100 kHz		VBW 300 kHz Total Power		an 40 MHz eep 5 ms	CF Step 4.000000 MHz <u>Auto</u> Man
16 Transmit Freq Error x dB Bandwidth	-3.890 kHz 16.35 MHz	% of OBW Pow x dB	er 99.00 % -6.00 dB		Freq Offset 0 Hz
MSG			STATUS		

802.11g CH2462MHZ



802.11n 20-2412MHz

802.11n 20-2437MHz

802.11n 20-2462MHz

4 CONDUCTED OUTPUT POWER

4.1 limit

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2 test procedure

- a. Connect each EUT's antenna output to power sensor by RF cable and attenuator
- b. Measure the PK output power of each antenna port by power sensor.

4.3 TEST SETUP

4.5 test results

TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
802.11b	2412MHz	8.58	30	Pass
802.11b	2437MHz	8.57	30	Pass
802.11b	2462MHz	8.44	30	Pass
802.11g	2412MHz	8.37	30	Pass
802.11g	2437MHz	8.42	30	Pass
802.11g	2462MHz	8.50	30	Pass
802.11n 20	2412MHz	9.60	30	Pass
802.11n 20	2437MHz	9.69	30	Pass
802.11n 20	2462MHz	9.73	30	Pass

5. POWER SPECTRAL DENSITY

5.1 LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Set the spectrum analyzer as follows:

Center frequency	DTS Channel center frequency
RBW:	3 kHz ≤ RBW ≤ 100 kHz
VBW:	≥ 3RBW
Span	1.5 times the DTS bandwidth
Detector Mode:	Peak
Sweep time:	auto
Trace mode	Max hold

(3) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude level within the RBW

(4) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 TEST SETUP

Spectrum Analyzer

EUT

5.4 TEST RESULTS

TestMode	Channel (MHz)	Result (dBm/3KHz)	Limit (dBm/3KHz)	Verdict
802.11b	2412MHz	-15.147	8	Pass
802.11b	2437MHz	-15.410	8	Pass
802.11b	2462MHz	-16.053	8	Pass
802.11g	2412MHz	-16.104	8	Pass
802.11g	2437MHz	-16.955	8	Pass
802.11g	2462MHz	-17.077	8	Pass
802.11n 20	2412MHz	-18.455	8	Pass
802.11n 20	2437MHz	-17.456	8	Pass
802.11n 20	2462MHz	-18.295	8	Pass

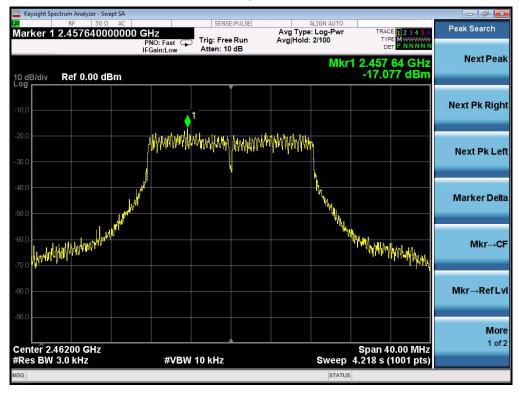
5.5 original test data

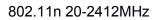
802.11b-2412MHz

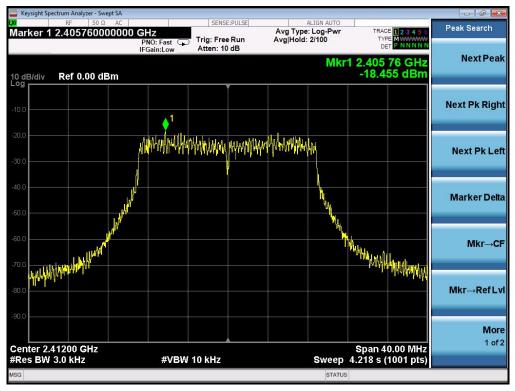
802.11b-2437MHz

802.11b-2462MHz

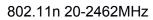
802.11g-2412MHz

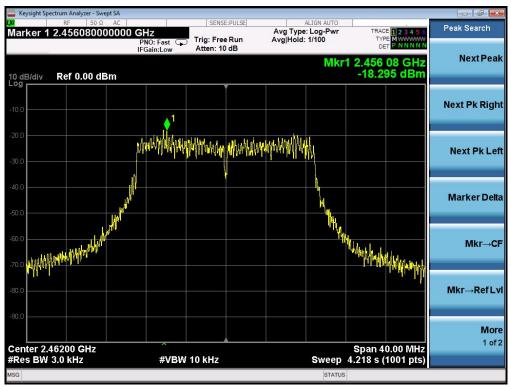



802.11g-2437MHz



802.11g-2462MHz





802.11n 20-2437MHz

6. Band edge and spurious(conducted)

6.1 LIMIT

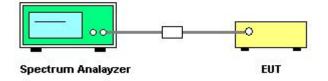
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

6.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center	
	frequency	
RBW:	100kHz	
VBW:	300kHz	
Span	1.5times the DTS bandwidth	
Detector Mode:	Avg	
Sweep time:	auto	
Trace mode	Max hold	


(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz	
VBW:	300kHz	
Span	Encompass frequency range to be	
	measured	
Number of measurement points	≥span/RBW	
Detector Mode:	Avg	
Detector Mode: Sweep time:	Avg auto	

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

6.3 TEST SETUP

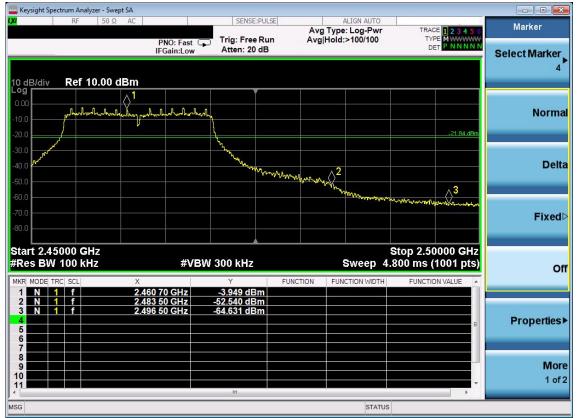
6.5 TEST RESULTS

Eut set mode	CH or Frequency	Result
802.11b	CH1	Pass
	CH11	Pass
802.11g	CH1	Pass
	CH11	Pass
802.11n 20	CH1	Pass
	CH11	Pass

6.5 Original test data

802.11b Low CH

802.11b High CH



802.11g low CH

802.11g high CH

802.11n20 Low CH

