

Global United Technology Services Co., Ltd.

Report No.: GTS2024100285F01

TEST REPORT

Applicant: Shenzhen Sunricher Technology Limited

Address of Applicant: 3rd Floor, B building, Jia'an Industrial Building, Liu Xian Third

road, No.72 area, Xin'an Street, Baoan District, Shenzhen,

China

Manufacturer/ Factory: Shenzhen Sunricher Technology Limited

Address of 3rd Floor, B building, Jia'an Industrial Building, Liu Xian Third

Manufacturer/ Factory: road, No.72 area, Xin'an Street, Baoan District, Shenzhen,

China

Equipment Under Test (EUT)

Product Name: **Smart Dimmer**

Model No.: SR-ZG2835RAC-S-US, HK-SL-DIM-US-B, SR-XX2835YYY-

S-(ZZ)['XX', can be any alphanumeric character or

blank, 'YYY'can be A-Z, 1-999 or blank for marketing

purposes, 'ZZ'can be A-Z stands fordifferent for marketing

purpose]

FCC ID: 2AHST2835R

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

October 28, 2024 Date of sample receipt:

Date of Test: October 29, 2024-November 11, 2024

Date of report issued: November 11, 2024

PASS * **Test Result:**

* In the configuration tested, the EUT complied with the standards specified above.

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 33

2 Version

Version No.	Date	Description		
00	November 11, 2024	Original		

Prepared By:	Tranklu	Date:	November 11, 2024
	Project Engineer		
Check By:	Reviewer	Date:	November 11, 2024

3 Contents

		Pa	age
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TES	Г SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	744
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.6	TEST FACILITY	
	5.7	TEST LOCATION	
	5.8	ADDITIONAL INSTRUCTIONS	
6	TES	FINSTRUMENTS LIST	8
7	TES	Γ RESULTS AND MEASUREMENT DATA	10
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	15
	7.5	POWER SPECTRAL DENSITY	-
	7.6	Spurious Emission in Non-restricted & restricted Bands	
	7.6.1		
	7.6.2	Radiated Emission Method	18
8	TES	T SETUP PHOTO	33
0	CUT	CONSTRUCTIONAL DETAILS	22

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013

4.1 Measurement Uncertainty

No.	Item	Measurement Uncertainty		
1	Radio Frequency	±7.25×10 ⁻⁸		
2	Duty cycle	±0.37%		
3	Occupied Bandwidth	±3%		
4	RF conducted power	±0.75dB		
5	RF power density	±3dB		
6	Conducted Spurious emissions	±2.58dB		
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)		
		±3.1dB (9kHz-30MHz)		
		±3.8039dB (30MHz-200MHz)		
8	Radiated Spurious emission test	±3.9679dB (200MHz-1GHz)		
		±4.29dB (1GHz-18GHz)		
		±3.30dB (18GHz-40GHz)		
9	Temperature test	±1°C		
10	Humidity test	±3%		
11	Time	±3%		

General Information 5

General Description of EUT 5.1

Product Name:	Smart Dimmer
Model No.:	SR-ZG2835RAC-S-US, HK-SL-DIM-US-B, SR-XX2835YYY-S-(ZZ)['XX', can be any alphanumeric character or blank,'YYY'can be A-Z, 1-999 or blank for marketing purposes,'ZZ'can be A-Z stands fordifferent for marketing purpose]
Test Model No.:	SR-ZG2835RAC-S-US
	identical in the same PCB layout, interior structure and electrical opearance color and model name for commercial purpose.
Test sample(s) ID:	GTS2024100285-1
Sample(s) Status	Engineer sample
S/N:	N/A
Operation Frequency:	2405MHz~2480MHz
Channel numbers:	16
Channel separation:	5MHz
Modulation type:	O-QPSK
Antenna Type:	PCB Antenna
Antenna gain:	1.23dBi(Declared by applicant)
Power supply:	AC 100~240V 50/60Hz 2.2A

Remark:

- 1. Antenna gain information provided by the customer
- 2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

Page 5 of 33

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2405MHz	15	2425MHz	19	2445MHz	23	2465MHz
12	2410MHz	16	2430MHz	20	2450MHz	24	2470MHz
13	2415MHz	17	2435MHz	21	2455MHz	25	2475MHz
14	2420MHz	18	2440MHz	22	2460MHz	26	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2405MHz		
The middle channel	2445MHz		
The Highest channel	2480MHz		

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
-------------------	---

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number	
Sunricher	incandescent light bulb	N/A	N/A	

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

6 Test Instruments list

Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Jun. 22, 2024	Jun. 21, 2027		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Apr. 11, 2024	Apr. 10, 2025		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	Mar. 19, 2023	Mar. 18, 2025		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	Apr. 17, 2023	Apr. 16, 2025		
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
7	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	Apr. 11, 2024	Apr. 10, 2025		
8	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov. 13, 2023	Nov.12, 2024		
9	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	Apr. 11, 2024	Apr. 10, 2025		
10	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	Apr. 11, 2024	Apr. 10, 2025		
11	Horn Antenna (15GH-40GHz)	SCHWARZBECK	01296	GTS691	Mar. 07, 2024	Mar. 06, 2025		
12	FSV-Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	Mar. 12, 2024	Mar. 11, 2025		
13	Amplifier		LNA-1000-30S	GTS650	Apr. 11, 2024	Apr. 10, 2025		
14	CDNE M2+M3-16A	HCT	30MHz-300MHz	GTS692	Nov. 07, 2024	Nov. 06, 2025		
15	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	Apr. 11, 2024	Apr. 10, 2025		
16	Thermo meter	JINCHUANG	GSP-8A	GTS643	Apr. 18, 2024	Apr. 17, 2025		
17	RE cable 1	GTS	N/A	GTS675	Jul. 02, 2024	Jul. 01, 2025		
18	RE cable 2	GTS	N/A	GTS676	Jul. 02, 2024	Jul. 01, 2025		
19	RE cable 3	GTS	N/A	GTS677	Jul. 02, 2024	Jul. 01, 2025		
20	RE cable 4	GTS	N/A	GTS678	Jul. 02, 2024	Jul. 01, 2025		
21	RE cable 5	GTS	N/A	GTS679	Jul. 02, 2024	Jul. 01, 2025		
22	RE cable 6	GTS	N/A	GTS680	Jul. 02, 2024	Jul. 01, 2025		
23	RE cable 7	GTS	N/A	GTS681	Jul. 05, 2024	Jul. 04, 2025		
24	RE cable 8	GTS	N/A	GTS682	Jul. 05, 2024	Jul. 04, 2025		

Cond	ucted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	Jul. 12, 2022	Jul. 11, 2027
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 11, 2024	Apr. 10, 2025
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	Apr. 11, 2024	Apr. 10, 2025
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
6	Thermo meter	JINCHUANG	GSP-8A	GTS642	Apr. 18, 2024	Apr. 17, 2025
7	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	Apr. 11, 2024	Apr. 10, 2025
8	ISN	SCHWARZBECK	NTFM 8158	GTS565	Apr. 11, 2024	Apr. 10, 2025
9	High voltage probe	SCHWARZBECK	TK9420	GTS537	Apr. 11, 2024	Apr. 10, 2025
10	Antenna end assembly	Weinschel	1870A	GTS560	Apr. 11, 2024	Apr. 10, 2025

RF Co	RF Conducted Test:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	Apr. 13, 2024	Apr. 12, 2025
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 13, 2024	Apr. 12, 2025
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	Apr. 13, 2024	Apr. 12, 2025
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	Apr. 13, 2024	Apr. 12, 2025
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	Apr. 13, 2024	Apr. 12, 2025
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	Apr. 13, 2024	Apr. 12, 2025
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	Apr. 13, 2024	Apr. 12, 2025
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	Apr. 13, 2024	Apr. 12, 2025
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	Apr. 18, 2024	Apr. 17, 2025

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	KUMAO	SF132	GTS647	Apr. 18, 2024	Apr. 17, 2025	

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

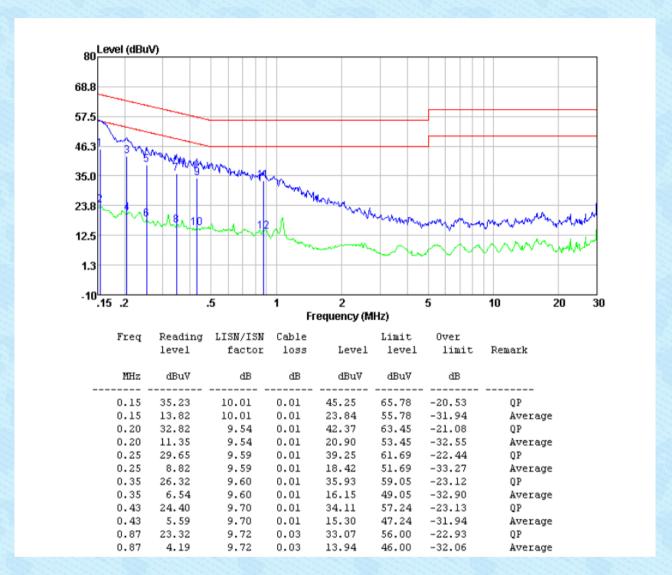
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

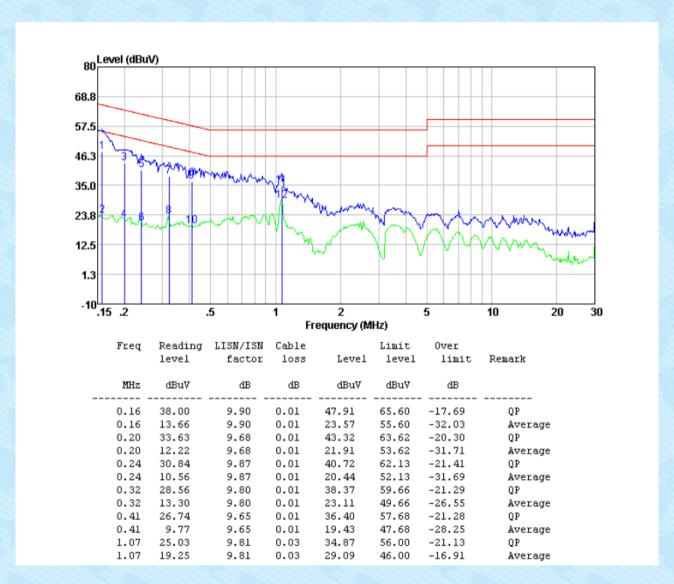
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, reference to the appendix II for details.

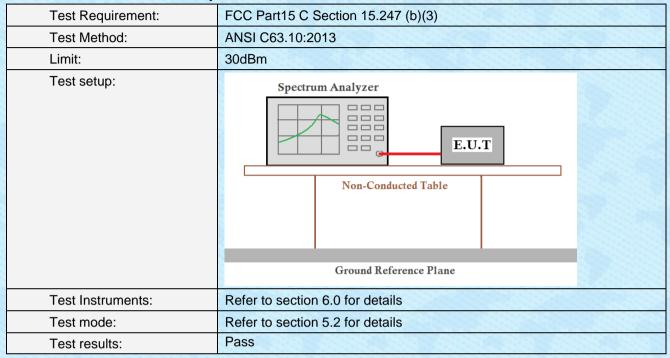

7.2 Conducted Emissions

7.2 Conducted Linissions					
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Fraguency range (MHz)	Limit	(dBuV)		
	Frequency range (MHz)	Quasi-peak	Aver		
	0.15-0.5	66 to 56*	56 to		
	0.5-5 5-30	56 60	50		
	* Decreases with the logarithm		3		
Test setup:	Reference Plane				
	AUX Equipment Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Equipment Under Test LISN Line Impedence Stabilization Network Test table height-0 8m				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz				
Test results:	Pass				


Measurement data:

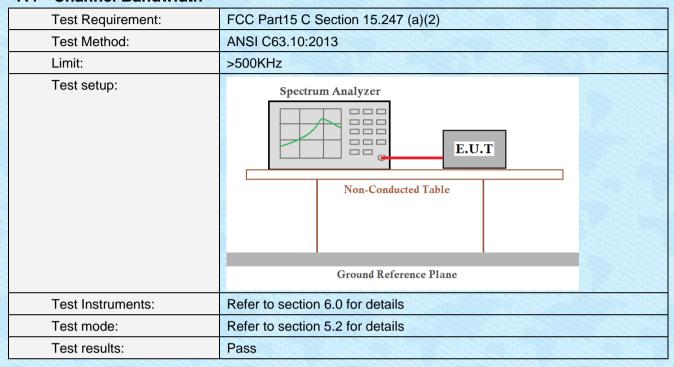
Pre-scan all test modes, found worst case at 2405MHz, and so only show the test result of it. **Line:**

Neutral:

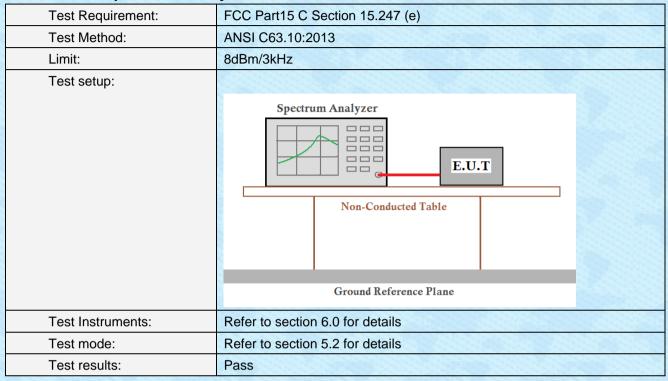


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss


7.3 Conducted Peak Output Power

Measurement Data: The detailed test data see Appendix for ZigBee.


7.4 Channel Bandwidth

Measurement Data: The detailed test data see Appendix for ZigBee.

7.5 Power Spectral Density

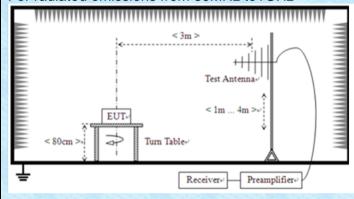
Measurement Data: The detailed test data see Appendix for ZigBee.

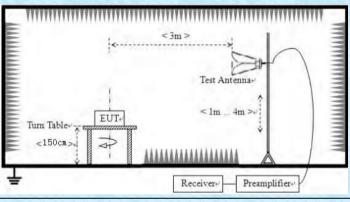
Page 17 of 33

7.6 Spurious Emission in Non-restricted & restricted Bands

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:			
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		


Measurement Data: The detailed test data see Appendix for ZigBee.


7.6.2 Radiated Emission Method

7.6.2 Radiated Emission Wetr					
Test Requirement:	FCC Part15 C Section 15.209				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz				
Test site:	Measurement Distar	nce: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average
1	Note: For Duty cycle < 98%, average dete				
Limit:	Frequency	Limit (u	//m)	Value	Measurement Distance
	0.009MHz-0.490M	IHz 2400/F(I	(Hz) QI	P/PK/AV	300m
	0.490MHz-1.705M	Hz 24000/F(KHz)	QP	30m
	1.705MHz-30MH	z 30		QP	30m
	30MHz-88MHz	100		QP	
	88MHz-216MHz	z 150		QP	
	216MHz-960MH	z 200		QP	3m
	960MHz-1GHz	500		QP	OIII
	Above 1GHz	500	Α	verage	
	Above Toriz	5000)	Peak	
Test setup:	For radiated emiss	sions from 9kH	z to 30MH	lz	
	For radiated emissions from 9kHz to 30MHz (3m) Test Antenna Receiver				

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

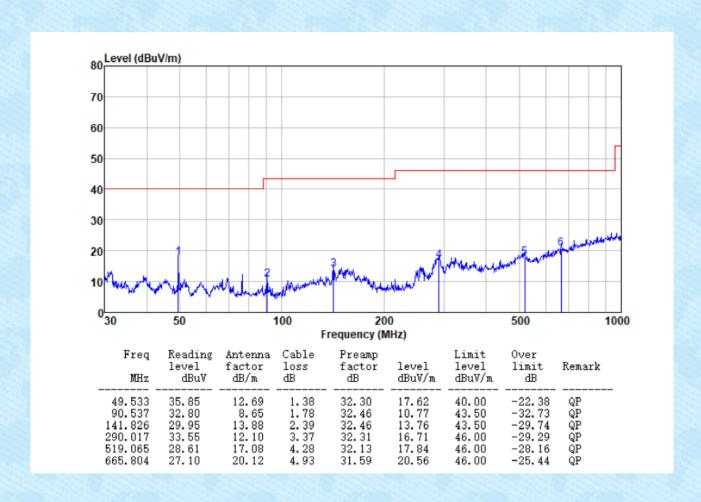
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:	Refer to see	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass	Pass				

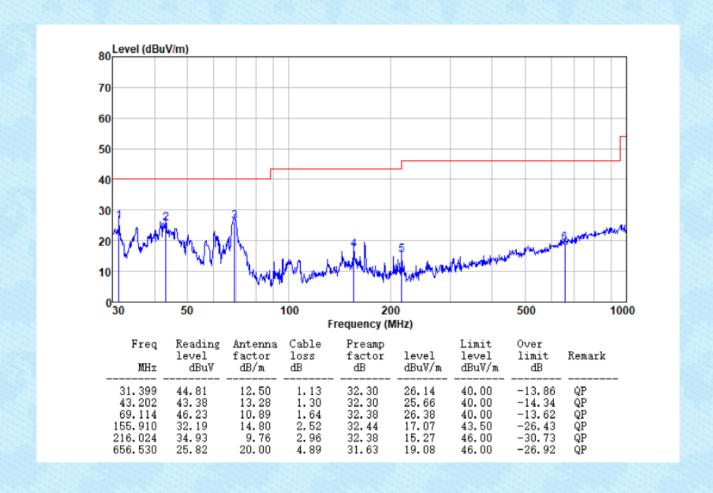
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


■ 9kHz~30MHz

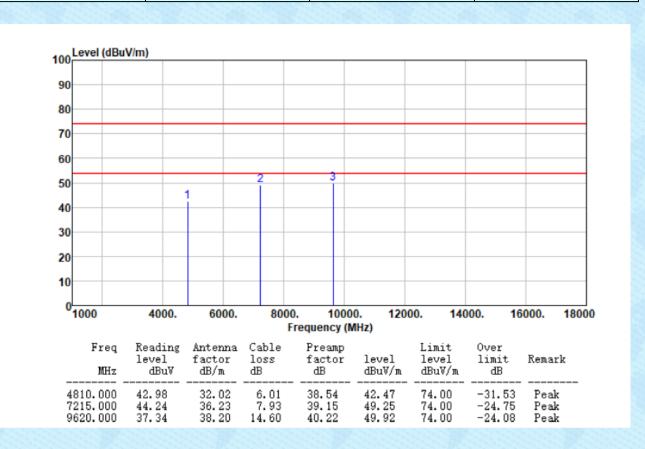
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


■ Below 1GHz

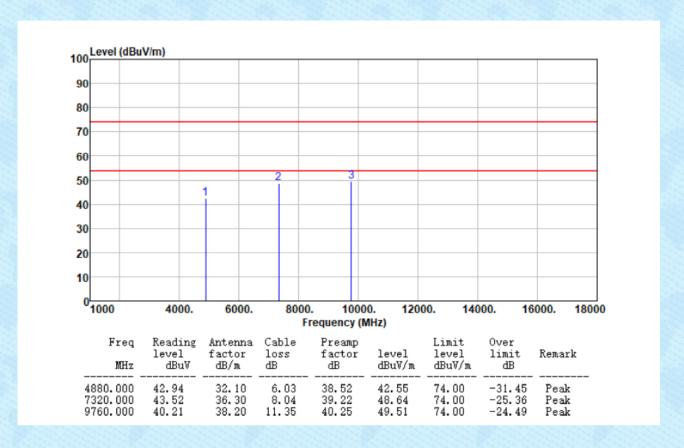
Pre-scan all test modes, found worst case at 2405MHz, and so only show the test result of it. **Horizontal:**

Vertical:

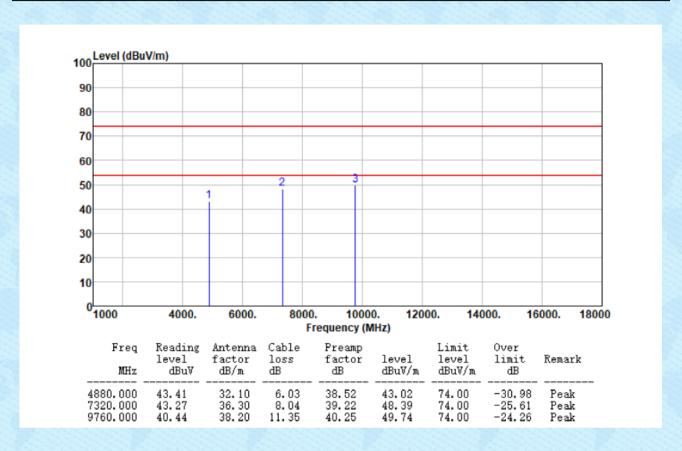
■ Above 1GHz


Unwanted Emissions in Non-restricted Frequency Bands

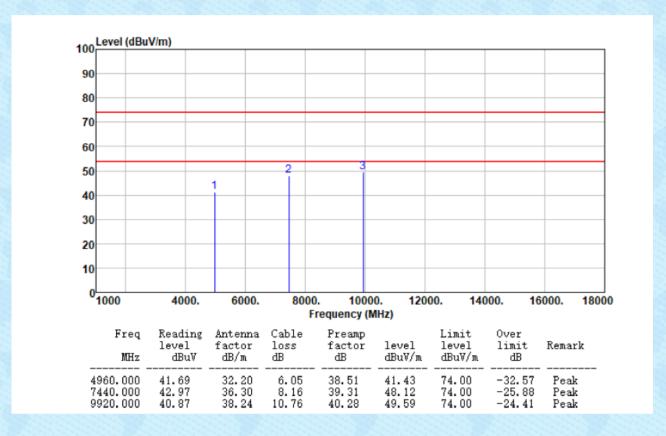
Test channel:	Lowest	Polarization:	Horizontal	
---------------	--------	---------------	------------	--



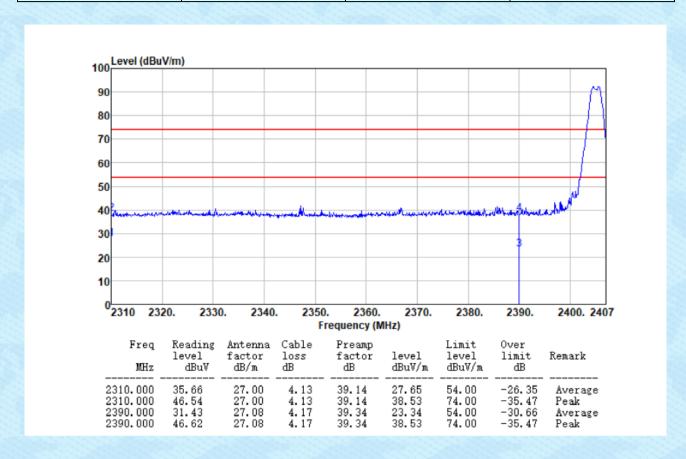
Test channel:	Lowest	Polarization:	Vertical	



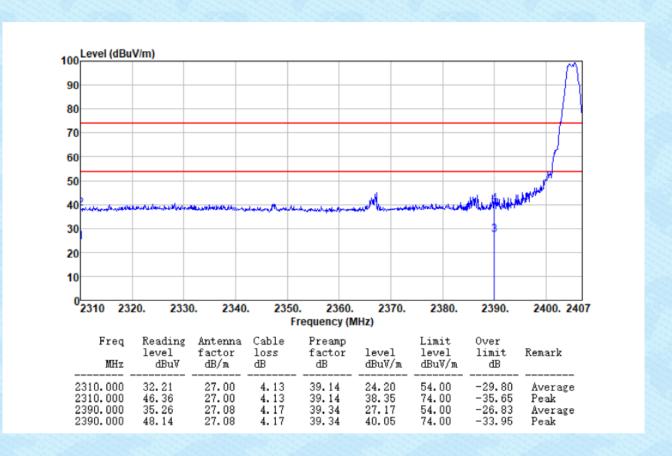
Toot channel:	Middle	Polarization:	Harizantal
Test channel:	Midule	Polarization:	Horizontal



8	Test channel:	Highest	Polarization:	Horizontal
	1 001 0110111011	1goct	· olarization.	110112011tai

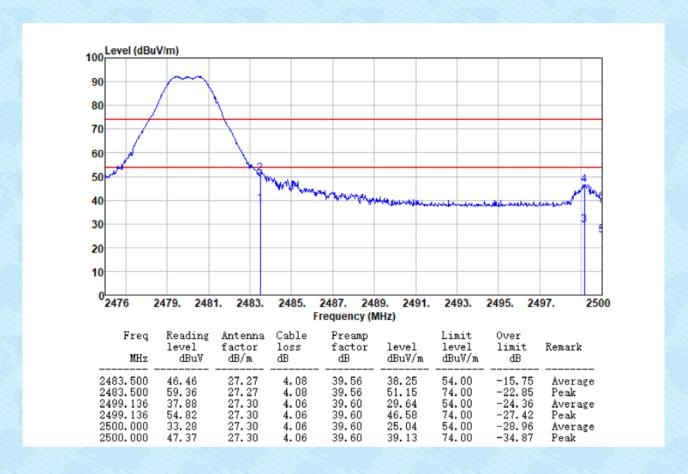

Remarks:

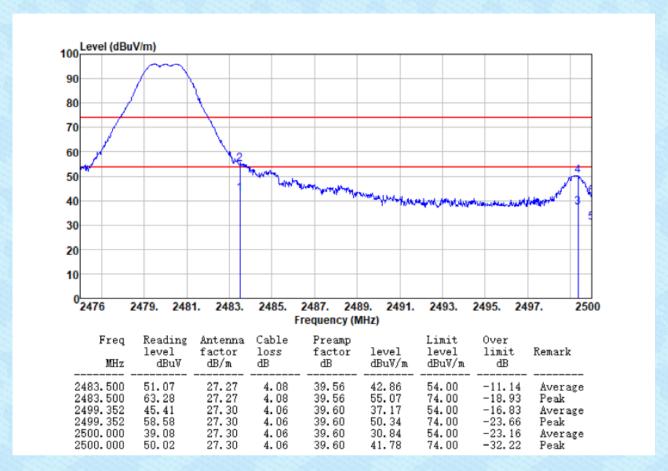
- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Unwanted Emissions in Restricted Frequency Bands

Test channel:	Lowest	Polarization:	Horizontal	
---------------	--------	---------------	------------	--





Test channel: Highest	Polarization:	Horizontal	
-----------------------	---------------	------------	--

Test channel:	Highest	Polarization:	Vertical
rost orialinoi.	riigiiost	i dianzadon.	VCHICAI

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----