

RADIO TEST REPORT FCC ID: QRP-SP-031

Product: Mobile Phone Trade Mark: AZUMI Model No.: V51s Family Model: N/A Report No.: S24103003003002 Issue Date: Nov. 18, 2024

Prepared for

Azumi S.A

Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China

Tel. 0755-23200050 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST RESULT CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
3	FACILITIES AND ACCREDITATIONS	6
3	3.1 FACILITIES	6
3	3.2 LABORATORY ACCREDITATIONS AND LISTINGS	6
3	3.3 MEASUREMENT UNCERTAINTY	6
4	GENERAL DESCRIPTION OF EUT	7
5	DESCRIPTION OF TEST MODES	9
6	SETUP OF EQUIPMENT UNDER TEST	
6	5.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	5.2 SUPPORT EQUIPMENT	
6	5.3 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
7	TEST REQUIREMENTS	14
7	7.1 CONDUCTED EMISSIONS TEST	14
,	7.1.1 Applicable Standard	
	7.1.2 Conformance Limit	
	7.1.3 Measuring Instruments	14
	7.1.4 Test Configuration	
	7.1.5 Test Procedure	
	7.1.6 Test Results	
7	7.2 RADIATED SPURIOUS EMISSION	
	7.2.1 Applicable Standard	
	7.2.2 Conformance Limit 7.2.3 Measuring Instruments	
	7.2.3 Measuring Instruments 7.2.4 Test Configuration	
	7.2.5 Test Procedure	
	7.2.6 Test Results	
7	7.3 6DB BANDWIDTH	
	7.3.1 Applicable Standard	
	7.3.2 Conformance Limit	
	7.3.3 Measuring Instruments	
	7.3.4 Test Setup	
	7.3.5 Test Procedure	
_	7.3.6 Test Results	
7	7.4 DUTY CYCLE	
	7.4.1 Applicable Standard	
	7.4.2 Conformance Limit 7.4.3 Measuring Instruments	
	7.4.4 Test Setup	
	7.4.5 Test Procedure	
	7.4.6 Test Results	
7	7.5 PEAK OUTPUT POWER	
	7.5.1 Applicable Standard	
	7.5.2 Conformance Limit	
	7.5.3 Measuring Instruments	
	7.5.4 Test Setup	
	7.5.5 Test Procedure	
_	7.5.6 Test Results	
	7.6 POWER SPECTRAL DENSITY	

	7.6.1	Applicable Standard	.30
	7.6.2	Conformance Limit	.30
	7.6.3	Measuring Instruments	.30
	7.6.4	Test Setup	.30
	7.6.5	Test Procedure	.30
	7.6.6	Test Results	
	7.7	CONDUCTED BAND EDGE MEASUREMENT	
	7.7.1	Applicable Standard	.32
	7.7.2	Conformance Limit	
	7.7.3	Measuring Instruments	.32
	7.7.4	Test Setup	
	7.7.5	Test Procedure	
	7.7.6		
	7.8	SPURIOUS RF CONDUCTED EMISSIONS	
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	
	7.8.3	Test Setup	
	7.8.4	Test Procedure	
	7.8.5	Test Results	
		ANTENNA APPLICATION	
	7.9.1	Antenna Requirement	
	7.9.2	Result	.34
8	TES	F RESULTS	.35
		Duty Cycle Maximum Conducted Output Power	
		MAXIMUM CONDUCTED OUTPUT POWER	
		Occupied Channel Bandwidth	
		MAXIMUM POWER SPECTRAL DENSITY LEVEL	
		BAND EDGE	
	8.7	CONDUCTED RF SPURIOUS EMISSION	.33

1 TEST RESULT CERTIFICATION

Azumi S.A
Avenida Aquilino de la Guardia con Calle 47, PH Ocean Plaza, Piso 16 of. 16-01, Marbella, Ciudad de Panama, Panama
AZUMI HK LTD
FLAT/RM 1202 12/F GOLDEN STAR BUILDING 20 LOCKHART ROAD WANCHAI,HK
Mobile Phone
V51s
N/A
S241030030003
Oct. 30, 2024 ~ Nov. 18, 2024

Measurement Procedure Used:

APPLICABLE STANDARDS				
APPLICABLE STANDARD/ TEST PROCEDURE TEST RESULT				
FCC 47 CFR Part 2, Subpart J				
FCC 47 CFR Part 15, Subpart C	Compliad			
ANSI C63.10-2013	Complied			
KDB 558074 D01 15.247 Meas Guidance v05r02				

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared : By : Allen Liu (Project Engineer) Reviewed : By : Aaron Cheng (Supervisor) Approved : Approved : Allen Liu (Supervisor) Approved : Approved : Allen Liu

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C							
Standard Section Test Item Verdict Remark							
15.207	Conducted Emission	PASS					
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b) Peak Output Power PASS		PASS					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS					
15.247 (e)	Power Spectral Density	PASS					
15.247 (d)	Band Edge Emission	PASS					
15.247 (d)	Spurious RF Conducted Emission	PASS					
15.203	Antenna Requirement	PASS					

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan District, Shenzhen, Guangdong, People's Republic of China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: No. 24 Xinfa East Road, Xiangshan Community, Xinqiao Street, Baoan
	District, Shenzhen, Guangdong, People's Republic of China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

NTEK 北测®

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment Mobile Phone				
Trade Mark	AZUMI			
FCC ID	QRP-SP-031			
Model No.	V51s			
Family Model	N/A			
Model Difference	N/A			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	FPC Antenna			
Antenna Gain	1.29dBi			
Power supply	DC 3.8V from Battery or DC 5V from Adapter.			
Battery	DC 3.8V, 2000mAh, 7.6Wh			
Adapter	INPUT: AC 100-240V~50-60Hz 0.15A OUTPUT: DC 5.0V500mA			
HW Version	AZUMI_V51S_HW_V1.0			
SW Version	AZUMI_V51S_TIGO_V001			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Note 2: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Revision History

Revision matory					
Report No.	Version	Description	Issued Date		
S24103003003002	Rev.01	Initial issue of report	Nov. 18, 2024		
		<u> </u>			

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps	
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously

2. AC power line Conducted Emission was tested under maximum output power.

3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

4. EUT built-in battery-powered, the battery is fully-charged.

SETUP OF EQUIPMENT UNDER TEST 6 6.1 **BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM** For AC Conducted Emission Mode AC PLUG C-1 AE-1 EUT Adapter C-2 AE-2 Earphone For Radiated Test Cases EUT For Conducted Test Cases C-3 Measurement EU Instrument Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
	Mobile Phone	V51s	N/A	EUT
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测®

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Agilent	E4440A	MY41000130	2024.04.26	2025.04.25	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2024.04.25	2025.04.24	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2024.04.25	2025.04.24	1 year
4	Test Receiver	R&S	ESPI7	101318	2024.04.26	2025.04.25	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2024.05.12	2025.05.11	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2024.04.26	2027.04.25	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2024.05.12	2027.05.11	3 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2024.05.12	2027.05.11	3 year
9	Amplifier	EMC	EMC051835 SE	980246	2024.04.25	2025.04.24	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2024.05.17	2027.05.16	3 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2024.04.25	2025.04.24	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2024.04.26	2027.04.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2024.04.26	2025.04.25	1 year
2	LISN	R&S	ENV216	101313	2024.04.25	2025.04.24	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2024.04.25	2025.04.24	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2024.04.26	2027.04.25	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Measurement Software

Item	Manufacturer	Software Name	Software Version	Description
1	MWRFtest	MTS 8310 2.4GHz/5GHz	2.0	RF Conducted Test
2	Farad	EZ-EMC_RE	AIT-03A	RadiatedTest
3	raditeq	RadiMation	2023.1.3	RadiatedTest
4	Farad	EZ-EMC_CE	AIT-03A	AC Conducted Test

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

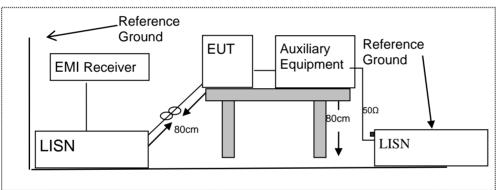
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency (MHz)	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

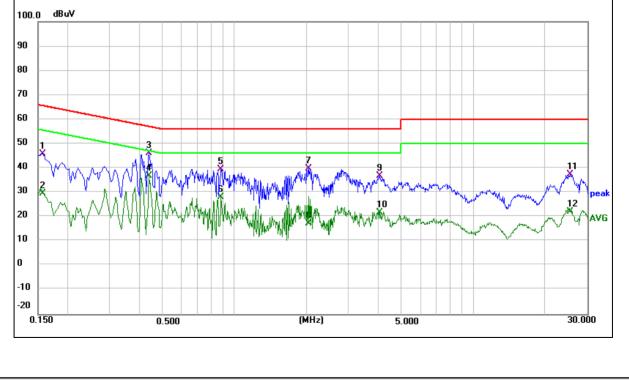
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Mobile Phone	Model Name :	V51s
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test vollage ·	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

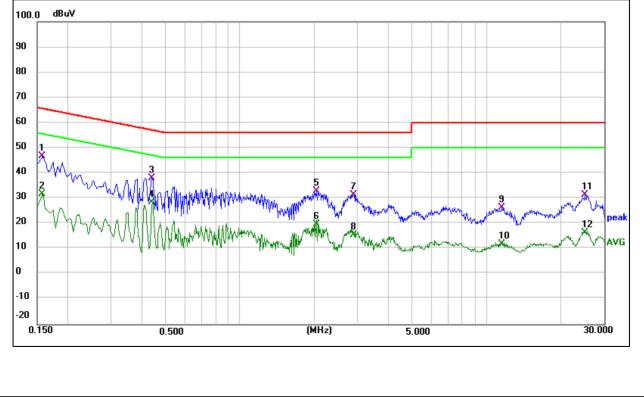
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	35.94	10.02	45.96	65.57	-19.61	QP
0.1580	19.59	10.02	29.61	55.57	-25.96	AVG
0.4380	35.63	10.57	46.20	57.10	-10.90	QP
0.4380	26.24	10.57	36.81	47.10	-10.29	AVG
0.8780	28.13	11.49	39.62	56.00	-16.38	QP
0.8780	16.56	11.49	28.05	46.00	-17.95	AVG
2.0380	29.98	9.81	39.79	56.00	-16.21	QP
2.0380	7.57	9.81	17.38	46.00	-28.62	AVG
4.0500	26.76	10.00	36.76	56.00	-19.24	QP
4.0500	11.79	10.00	21.79	46.00	-24.21	AVG
25.4100	24.04	13.49	37.53	60.00	-22.47	QP
25.4100	8.61	13.49	22.10	50.00	-27.90	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Mobile Phone	Model Name :	V51s
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	37.26	9.46	46.72	65.57	-18.85	QP
0.1580	22.21	9.46	31.67	55.57	-23.90	AVG
0.4380	28.25	9.92	38.17	57.10	-18.93	QP
0.4380	18.49	9.92	28.41	47.10	-18.69	AVG
2.0380	23.84	9.06	32.90	56.00	-23.10	QP
2.0380	10.75	9.06	19.81	46.00	-26.19	AVG
2.8980	22.47	9.13	31.60	56.00	-24.40	QP
2.8980	6.40	9.13	15.53	46.00	-30.47	AVG
11.5380	27.48	-1.17	26.31	60.00	-33.69	QP
11.5380	13.08	-1.17	11.91	50.00	-38.09	AVG
25.1860	18.82	12.57	31.39	60.00	-28.61	QP
25.1860	3.93	12.57	16.50	50.00	-33.50	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

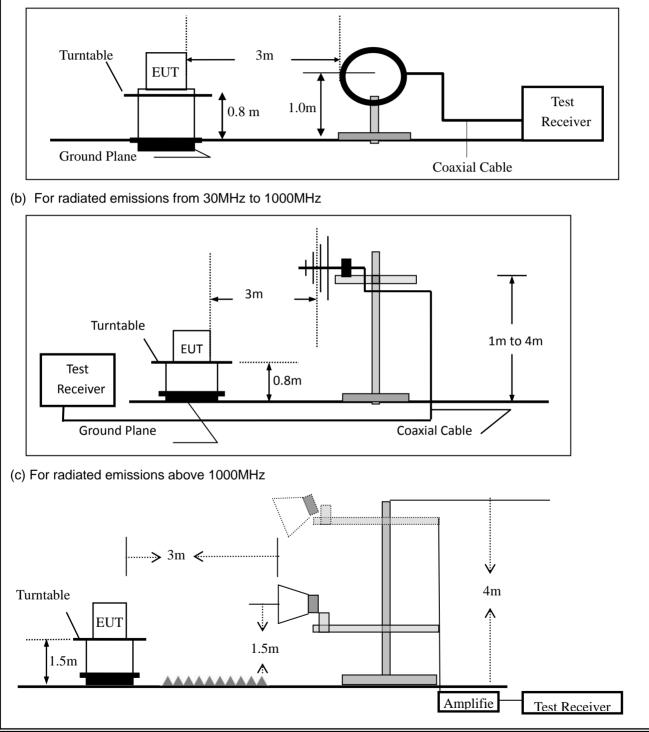
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(ML12)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting						
Attenuation	Auto						
Start Frequency	1000 MHz						
Stop Frequency	10th carrier harmonic						
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average						

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.

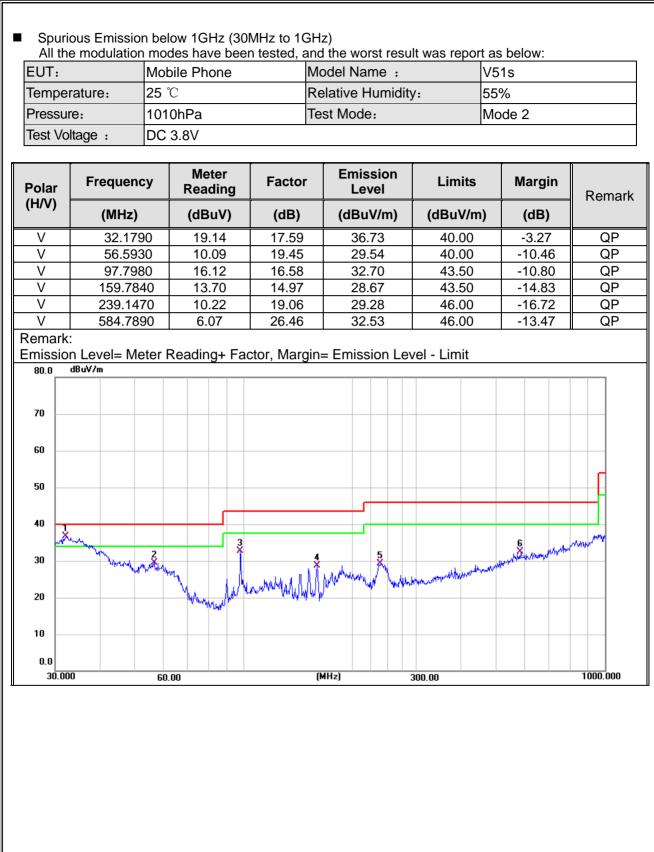
Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth	
30 to 1000	30 to 1000 QP		300 kHz	
Above 1000	Peak	1 MHz	1 MHz	
Above 1000	Average	1 MHz	1 MHz	

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Mobile Phone	Model No.:	V51s
Temperature:	20 ℃	Relative Humidity:	48%
Lest Mode.	Mode1/Mode2/Mode3/ Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
Н	47.1600	5.73	19.57	25.30	40.00	-14.70	QP
Н	89.9050	13.48	15.37	28.85	43.50	-14.65	QP
Н	98.4870	13.47	16.59	30.06	43.50	-13.44	QP
Н	212.2690	7.71	18.24	25.95	43.50	-17.55	QP
Н	576.6440	6.64	26.61	33.25	46.00	-12.75	QP
Н	938.8330	6.71	30.82	37.53	46.00	-8.47	QP
80.0	n Level= Meter dBu¥/m						
70							
60							
50							
40						سىلى 5	jetro, pitter
30	er Multingen Altrice and	2 3	<u> </u>	ANN A MANAGA	where whether a had made and	and The way water	
20 4/1/	an a	wind worth and work	1 m. Maynormal property little	NAME AND THE ADDR			
10							
0.0							
30.00	00 60).00	()	MHz)	300.00		1000.000

NTEK 北测®

JT:	Mot	oile Phon	е	Mo	del No.:		V51	s		
emperature:	20 °	Ċ		Rel	ative Humid	umidity: 48%				
est Mode:	Мос	de2/Mode	e3/Mode4	Tes	Test By: Allen Liu					
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limit	ts	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	//m)	(dB)		
		-	Low Ch	annel (240	2 MHz)(GFSK)Above	91G			
4804.338	61.77	5.21	35.59	44.30	58.27	74.0	00	-15.73	Pk	Vertical
4804.338	42.73	5.21	35.59	44.30	39.23	54.0	00	-14.77	AV	Vertical
7206.107	61.71	6.48	36.27	44.60	59.86	74.0	00	-14.14	Pk	Vertical
7206.107	41.35	6.48	36.27	44.60	39.50	54.0	00	-14.50	AV	Vertical
4804.169	63.90	5.21	35.55	44.30	60.36	74.0	00	-13.64	Pk	Horizontal
4804.169	41.80	5.21	35.55	44.30	38.26	54.0	00	-15.74	AV	Horizontal
7206.214	61.32	6.48	36.27	44.52	59.55	74.0	00	-14.45	Pk	Horizontal
7206.214	42.54	6.48	36.27	44.52	40.77	54.0	00	-13.23	AV	Horizontal
			Mid Cha	annel (244	0 MHz)(GFSK)Above	e 1G			
4880.473	64.34	5.21	35.66	44.20	61.01	74.0	00	-12.99	Pk	Vertical
4880.473	43.71	5.21	35.66	44.20	40.38	54.0	00	-13.62	AV	Vertical
7320.265	66.20	7.10	36.50	44.43	65.37	74.0	00	-8.63	Pk	Vertical
7320.265	40.93	7.10	36.50	44.43	40.10	54.0	00	-13.90	AV	Vertical
4880.366	63.24	5.21	35.66	44.20	59.91	74.0	00	-14.09	Pk	Horizontal
4880.366	41.93	5.21	35.66	44.20	38.60	54.0	00	-15.40	AV	Horizontal
7320.234	59.90	7.10	36.50	44.43	59.07	74.0	00	-14.93	Pk	Horizontal
7320.234	45.09	7.10	36.50	44.43	44.26	54.0	00	-9.74	AV	Horizontal
			High Ch	annel (248	0 MHz)(GFSK) Abov	e 1G			
4960.482	63.85	5.21	35.52	44.21	60.37	74.0	00	-13.63	Pk	Vertical
4960.482	42.33	5.21	35.52	44.21	38.85	54.0	00	-15.15	AV	Vertical
7440.131	65.57	7.10	36.53	44.60	64.60	74.0	0	-9.40	Pk	Vertical
7440.131	49.00	7.10	36.53	44.60	48.03	54.0	00	-5.97	AV	Vertical
4960.326	62.72	5.21	35.52	44.21	59.24	74.0	00	-14.76	Pk	Horizontal
4960.326	45.45	5.21	35.52	44.21	41.97	54.0	00	-12.03	AV	Horizontal
7440.199	63.90	7.10	36.53	44.60	62.93	74.0	00	-11.07	Pk	Horizontal
7440.199	44.78	7.10	36.53	44.60	43.81	54.0	0	-10.19	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

E١	JT:	Mobile	Mobile Phone			Model No.:			V51s			
Τe	emperature:	ature: 20 °C			Relativ	Relative Humidity: 4			48%			
Te	est Mode:	t Mode: Mode2/ Mode4 Test By:			By:	A	Allen	Liu				
Г												
	Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limi	its	Margin	Detector	Comment	
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	//m)	(dB)	Туре		

	1Mbps(GFSK)									
2310.00	73.04	2.97	27.80	43.80	60.01	74	-13.99	Pk	Horizontal	
2310.00	52.44	2.97	27.80	43.80	39.41	54	-14.59	AV	Horizontal	
2310.00	72.46	2.97	27.80	43.80	59.43	74	-14.57	Pk	Vertical	
2310.00	52.25	2.97	27.80	43.80	39.22	54	-14.78	AV	Vertical	
2390.00	73.24	3.14	27.21	43.80	59.79	74	-14.21	Pk	Vertical	
2390.00	53.31	3.14	27.21	43.80	39.86	54	-14.14	AV	Vertical	
2390.00	73.47	3.14	27.21	43.80	60.02	74	-13.98	Pk	Horizontal	
2390.00	52.23	3.14	27.21	43.80	38.78	54	-15.22	AV	Horizontal	
2483.50	71.55	3.58	27.70	44.00	58.83	74	-15.17	Pk	Vertical	
2483.50	53.54	3.58	27.70	44.00	40.82	54	-13.18	AV	Vertical	
2483.50	74.58	3.58	27.70	44.00	61.86	74	-12.14	Pk	Horizontal	
2483.50	54.93	3.58	27.70	44.00	42.21	54	-11.79	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

NTEK 北测®

JT:	Mobile	Phone		Model	Model No.:			V51s			
emperature:	20 ℃			Relativ	Relative Humidity:			48%			
est Mode:	Mode2	/ Mode4		Test B	Test By:			Allen Liu			
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lin	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре		
3260	63.15	4.04	29.57	44.70	52.06	7	4	-21.94	Pk	Vertical	
3260	57.00	4.04	29.57	44.70	45.91	5	4	-8.09	AV	Vertical	
3260	66.52	4.04	29.57	44.70	55.43	7	4	-18.57	Pk	Horizontal	
3260	58.13	4.04	29.57	44.70	47.04	5	4	-6.96	AV	Horizontal	
3332	66.29	4.26	29.87	44.40	56.02	7	4	-17.98	Pk	Vertical	
3332	57.83	4.26	29.87	44.40	47.56	5	4	-6.44	AV	Vertical	
3332	65.76	4.26	29.87	44.40	55.49	7	4	-18.51	Pk	Horizontal	
3332	52.59	4.26	29.87	44.40	42.32	5	4	-11.68	AV	Horizontal	
17797	45.84	10.99	43.95	43.50	57.28	7	4	-16.72	Pk	Vertical	
17797	34.95	10.99	43.95	43.50	46.39	5	4	-7.61	AV	Vertical	
17788	44.93	11.81	43.69	44.60	55.83	7	4	-18.17	Pk	Horizontal	
17788	37.49	11.81	43.69	44.60	48.39	5	4	-5.61	AV	Horizontal	

Note: (1) All other emissions more than 20dB below the limit.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Mobile Phone	Model No.:	V51s
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Mobile Phone	Model No.:	V51s
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 PEAK OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Mobile Phone	Model No.:	V51s
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5*DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Mobile Phone	Model No.:	V51s
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Mobile Phone	Model No.:	V51s
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

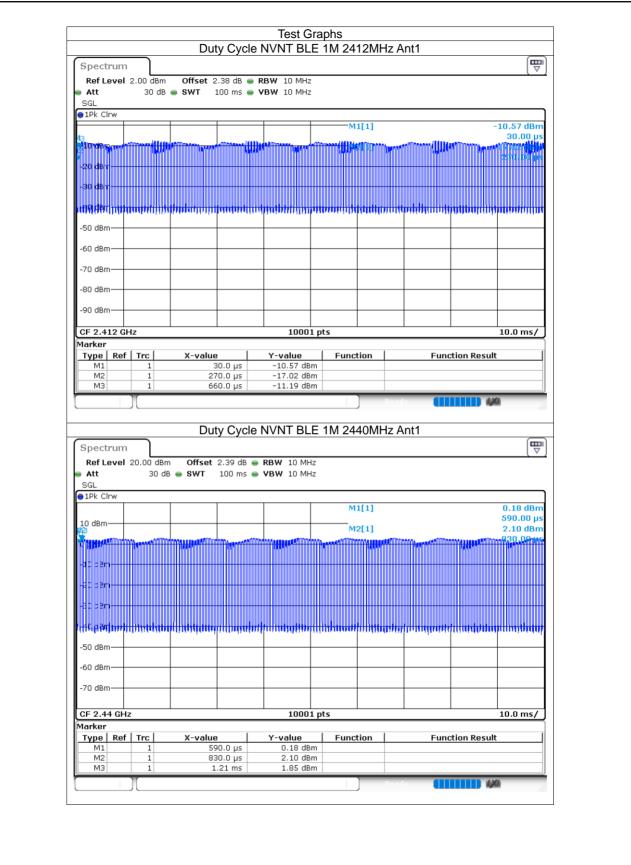
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

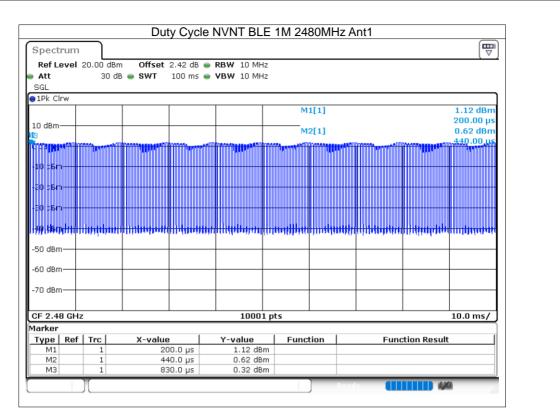
7.9.2 Result

The EUT antenna is permanent attached FPC antenna (Gain: 1.29 dBi). It comply with the standard requirement.

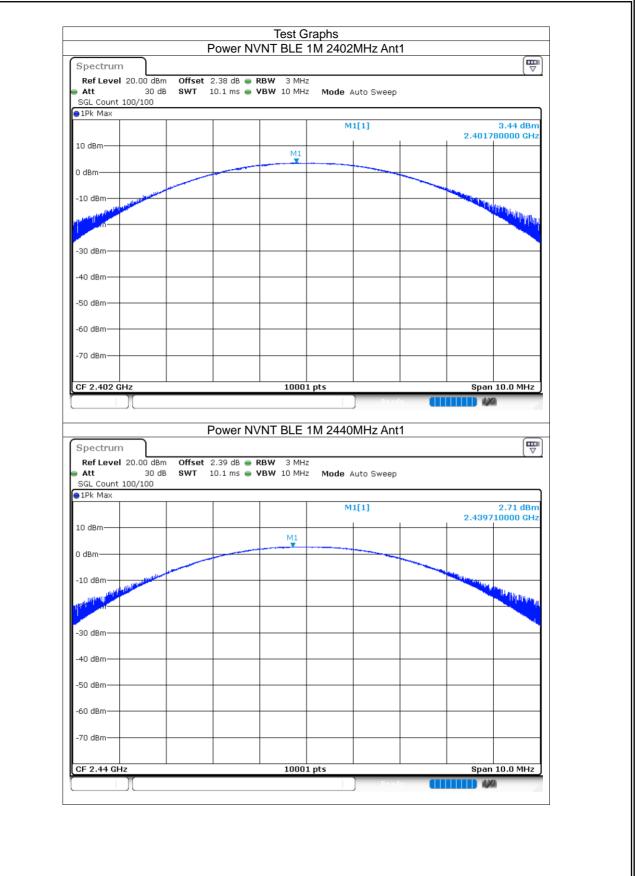

8 TEST RESULTS

8.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2412	Ant1	63.07	2	2.56
NVNT	BLE 1M	2440	Ant1	63.19	1.99	2.63
NVNT	BLE 1M	2480	Ant1	63.2	1.99	2.56



Report No.: S24103003003002



8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	3.44	30	Pass
NVNT	BLE 1M	2440	Ant1	2.71	30	Pass
NVNT	BLE 1M	2480	Ant1	1.75	30	Pass

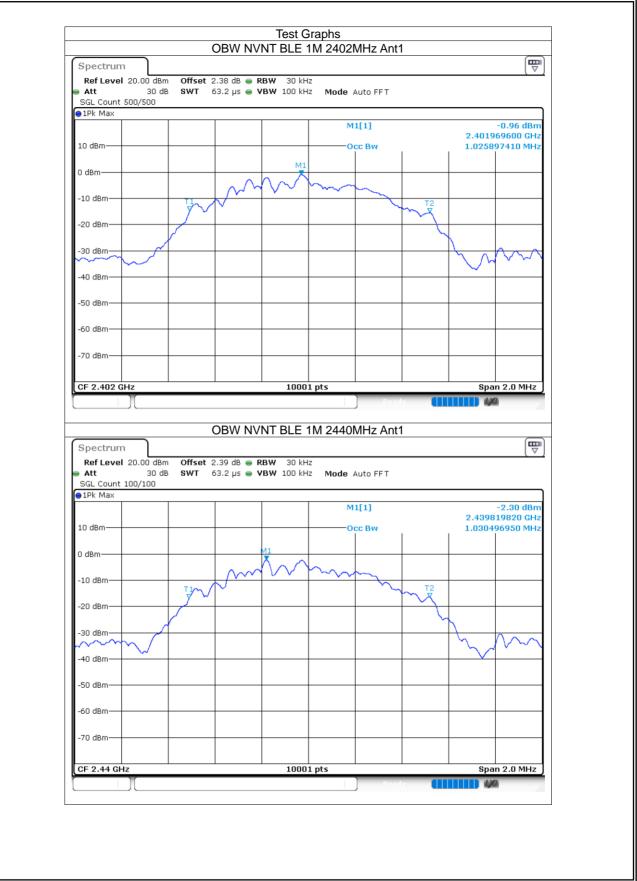
Version.1.3

Spectrum							
Ref Level 20.00)dBm Offso 30dB SWT	et 2.42 dB 👄	RBW 3 MHz VBW 10 MHz	Mode Auto Swe	en		
SGL Count 100/10		10.1 mb 🖕	TEN 10 Mile	Mode Auto Swe	eh		
1Pk Max			1				1.75.45
				M1[1]		2.4798	1.75 dBm 15000 GHz
LO dBm							
			M1				
) dBm							
-10 dBm							
							Lu -
2014 Ballulan							W. hundette
-30 dBm							
-40 dBm							
50 dBm							
-60 dBm							
70 dBm					_		
CF 2.48 GHz			10001	nts		Snan	10.0 MHz

8.3-6DB BANDWIDTH

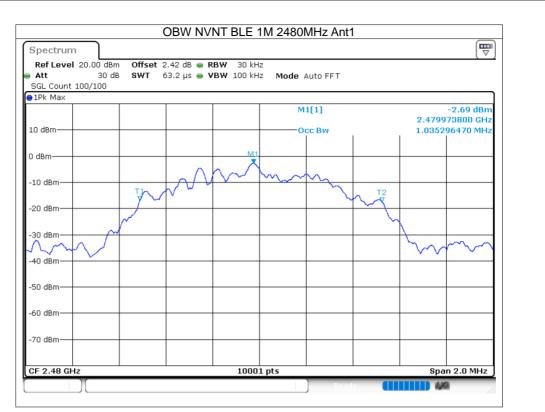
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.713	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.685	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.684	0.5	Pass

Specti	um							
-	vel 2	0.00 dE 30		_	RBW 100 kHz VBW 300 kHz	Mode Auto FFT		
1Pk Ma		0, 200						
10 dBm-						M1[1]		0.32 dBm 2.480241180 GHz
						M2[1]		-5.70 dBm 2.479642000 GHz
0 dBm—				M2				
-10 dBm	_							
-20 dBm								
30. d8m	-	<u> </u>						
40 dBm								
-50 dBm								
-60 dBm								
-70 dBm	+				++			
CF 2.48 1arker	GHz				10001	pts		Span 2.0 MHz
Type	Ref	Trc	X-value	.	Y-value	Function	Functio	on Result
M1		1	2.480241	18 GHz	0.32 dBm	1		
M2		1	2.4796		-5.70 dBm			
MЗ		1	2.4803	26 GHz	-5.73 dBm	ו		

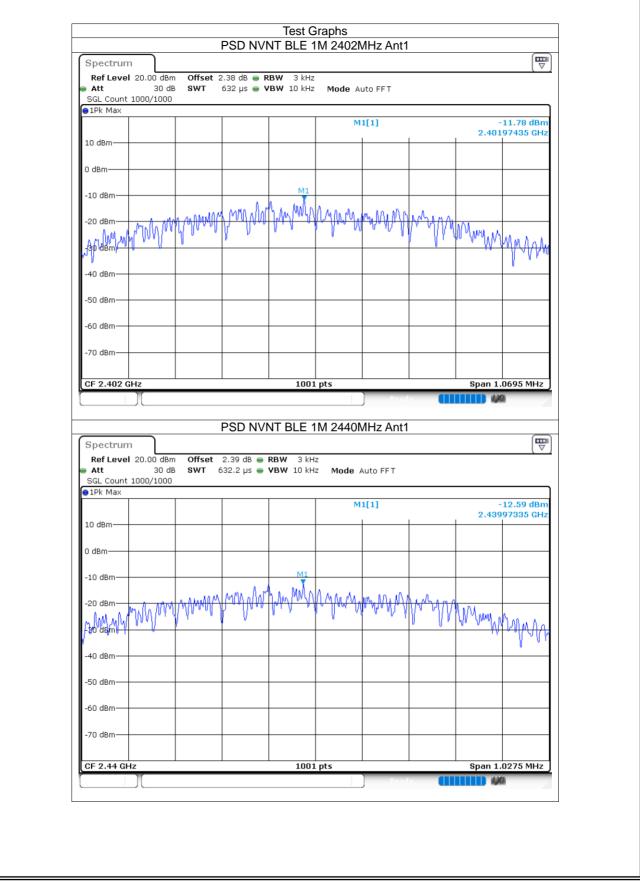


8.4 OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.026
NVNT	BLE 1M	2440	Ant1	1.03
NVNT	BLE 1M	2480	Ant1	1.035

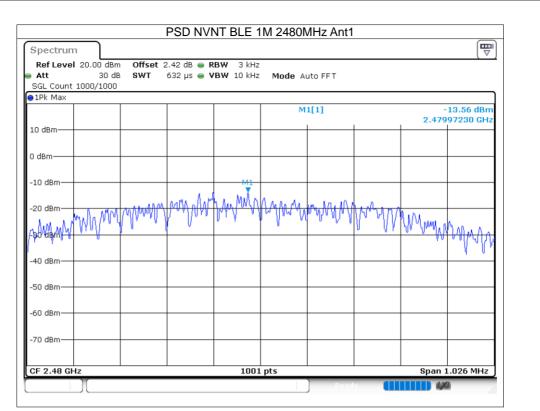


Version.1.3

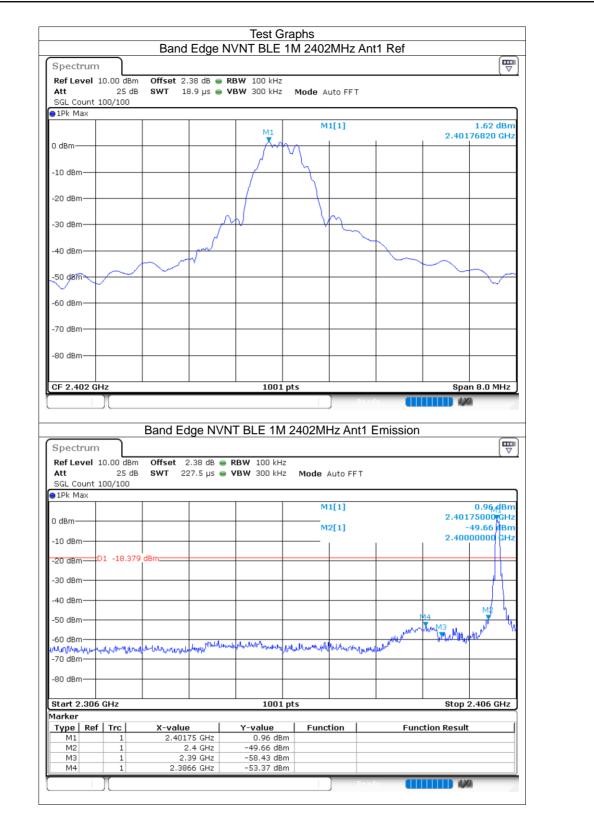


8.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL

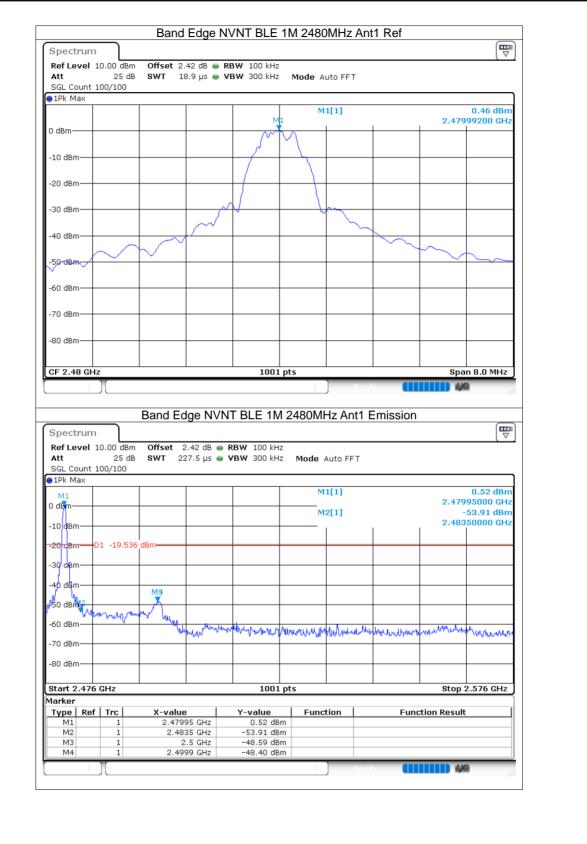
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-11.78	8	Pass
NVNT	BLE 1M	2440	Ant1	-12.59	8	Pass
NVNT	BLE 1M	2480	Ant1	-13.56	8	Pass

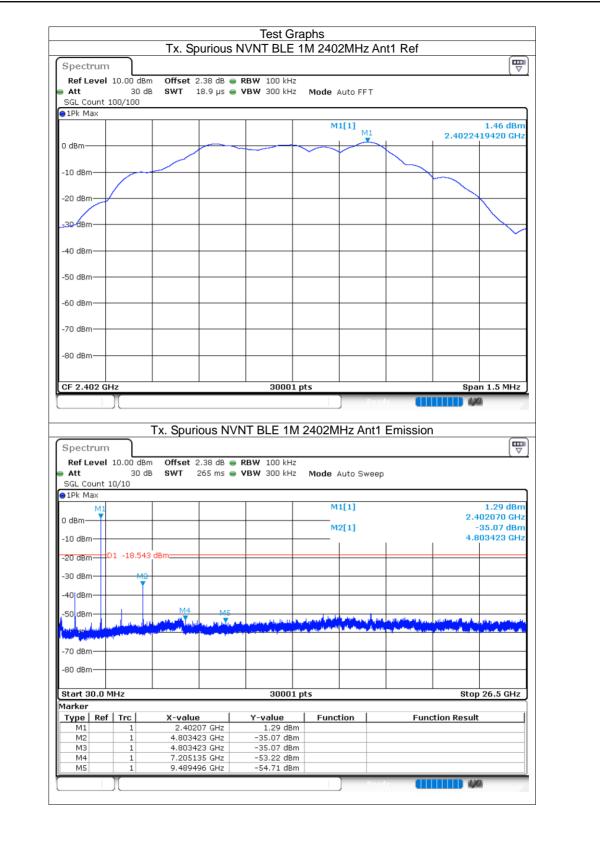


Report No.: S24103003003002



8.6 BAND EDGE


0.0 2/ 220	-					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-54.98	-20	Pass
NVNT	BLE 1M	2480	Ant1	-48.85	-20	Pass



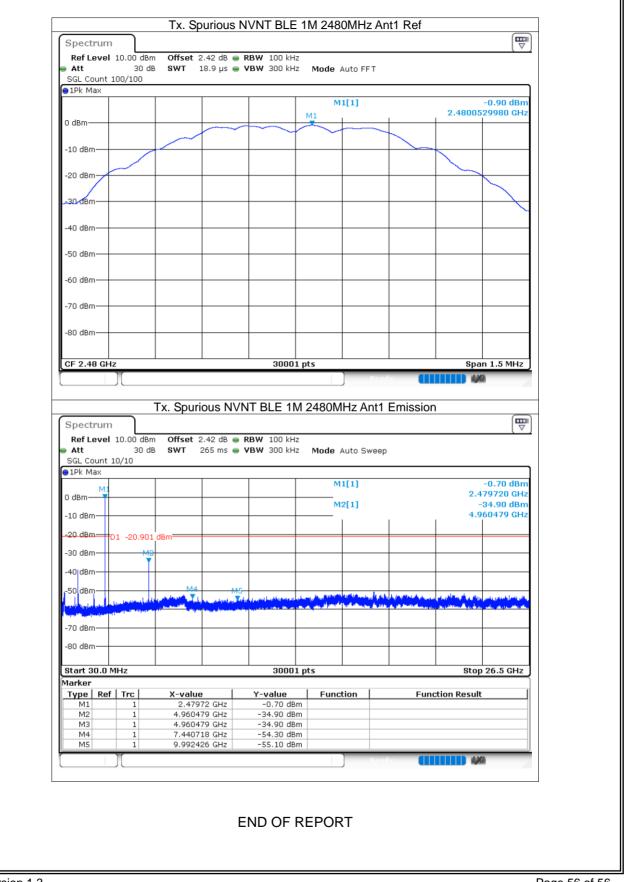
8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-36.53	-20	Pass
NVNT	BLE 1M	2440	Ant1	-32.05	-20	Pass
NVNT	BLE 1M	2480	Ant1	-33.99	-20	Pass

Report No.: S24103003003002

ACCREDITED

Certificate #4298.01



Ref Lo Att			d B S			RBW 100 kH		Auto FFT			
SGL Co		00/100)								
Tek M	an							M1[1]			1.45 dBm
								M1		2.4402	415420 GHz
0 dBm—											
-10 dBm			_								
10 0.011											
-20 dBm	ν										
_ /											
-30 dBm											
-40 dBm	<u>ا</u>										
-50 dBm	י י							+		-	+
-60 dBm											
-ou aBN	'										
-70 dBm	η										┼───┨│
-80 dBm	+							1			
	4 GHz					3000)1 pts			Sp	an 1.5 MHz
	rum	10.00	dBm (Offset 2.	.39 dB 🥃	(NT BLE 1	M 2440				
Spect Ref Lo Att SGL Co	rum evel	10.00	dBm (Offset 2.	.39 dB 🥃	/NT BLE 1	M 2440				
Spect Ref Lo Att	rum evel ount 2 ax	10.00	dBm (Offset 2.	.39 dB 🥃	(NT BLE 1	M 24401 Hz Hz Mode				
Spect Ref Lo Att SGL Co	rum evel ount 2 ax	10.00	dBm (Offset 2.	.39 dB 🥃	(NT BLE 1	M 2440	Auto Swe M1[1]		n2.	0.52 dBm 440010 GHz
Spect Ref Lu Att SGL Cc 1Pk M	rum evel ount 2 ax	10.00	dBm (Offset 2.	.39 dB 🥃	(NT BLE 1	M 2440	Auto Swe		n2.	
Spect RefLd Att SGL Cc 1Pk M 0 dBm-	rum evel	10.00 j 30	dBm (Offset 2.	.39 dB 🥃	(NT BLE 1	M 2440	Auto Swe M1[1]		n2.	0.52 dBm 440010 GHz -30.61 dBm
Spect Ref Ld Att SGL Cc 1Pk M 0 dBm- -10 dBm- -20 dBm	rum evel ount 2 ax M1	10.00 j 30 0/20	dBm () dB s	Offset 2.	.39 dB 🥃	(NT BLE 1	M 2440	Auto Swe M1[1]		n2.	0.52 dBm 440010 GHz -30.61 dBm
Spect Ref Lo Att SGL Cc 1Pk M 0 dBm -10 dBm -20 dBm -30 dBm	rum evel ax M1	10.00 j 30 0/20	dBm () dB (547 dBm	Offset 2.	.39 dB 🥃	(NT BLE 1	M 2440	Auto Swe M1[1]		n2.	0.52 dBm 440010 GHz -30.61 dBm
Spect Ref L SGL Cc IPk M 0 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	rum evel ount 2 ax MI	10.00 j 30 0/20	dBm () dB (547 dBm	Offset 2.	39 dB 🖷	/NT BLE 1 RBW 100 kł VBW 300 kł	M 2440	Auto Swe M1[1] M2[1]	iep	n2.	0.52 dBm 440010 GHz -30.61 dBm
Spect Ref Lo Att SGL Cc 1Pk M 0 dBm -10 dBm -20 dBm -30 dBm	rum evel ount 2 ax MI	10.00 j 30 0/20	dBm () dB (547 dBm	Offset 2 SWT 2	.39 dB 🥃	/NT BLE 1 RBW 100 kł VBW 300 kł	M 2440	Auto Swe M1[1] M2[1]		n2.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref L SGL Cc IPk M 0 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	rum evel ount 2 ax MI	10.00 j 30 0/20	dBm () dB (547 dBm	Offset 2 SWT 2	39 dB 65 ms 	/NT BLE 1 RBW 100 kł VBW 300 kł	M 2440	Auto Swe M1[1] M2[1]	iep	n24.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref L SGL Cc IPk M 0 dBm- -10 dBm -20 dBm -30 dBm -40 dBm	rum evel ax M1	10.00 j 30 0/20	dBm () dB (547 dBm	Offset 2 SWT 2	39 dB 65 ms 	/NT BLE 1 RBW 100 kł VBW 300 kł	M 2440	Auto Swe M1[1] M2[1]		n24.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref Lo SGL Cc IPk M O dBm- -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	rum evel ax MJ	10.00 j 30 0/20	dBm () dB (547 dBm	Offset 2 SWT 2	39 dB 65 ms 	/NT BLE 1 RBW 100 kł VBW 300 kł	M 2440	Auto Swe M1[1] M2[1]		n24.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref L SGL Cc SGL Cc IPk M 0 dBm- -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm -70 dBm -80 dBm	rum evel ax M1) (dBm () dB (547 dBm	Offset 2 SWT 2	39 dB 65 ms 	/NT BLE 1	M 2440	Auto Swe M1[1] M2[1]		n 2. 4.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref Lu SGL Cc IPk M 0 dBm- -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -70 dBm -80 dBm	rum evel ax M1) (dBm () dB (547 dBm	Offset 2 SWT 2	39 dB 65 ms 	/NT BLE 1	M 2440	Auto Swe M1[1] M2[1]		n 2. 4.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref Li Att SGL Cc 1Pk M 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -80 dBm Start 3 Marker Type	rum evel ax M1 D D D D D D D D D D D D D D D D D D) [dBm () 0 dB () 547 dBm M3	M4	39 dB 65 ms	/NT BLE 1 RBW 100 kł VBW 300 kł S	M 2440	Auto Swe M1[1] M2[1]		n 2. 4.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref Lu Att SGL Cc 1Pk M 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70 dBm -80 dBm Start 3 Marker	rum evel ax M1 D D D D D D D D D D D D D D D D D D)(dBm () 0 dB () 547 dBm M3	M4	39 dB 65 ms	/NT BLE 1 RBW 100 kF VBW 300 kF 	M 2440	Auto Swe		n 2. 4.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref Ld Att SGL Cc 1Pk M 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -80 dBm Start 3 Marker Type M1 M2 M3	rum evel ax M1 D D D D D D D D D D D D D D D D D D	II.0.00 / 30 30 0/20 II18. IHz IHz ITrc 1 1 1 1	dBm () 0 dB () 547 dBm M3	M4 K-value 2.4400 4.88018	39 dB 65 ms M 	/NT BLE 1 RBW 100 kH VBW 300 kH S	M 2440	Auto Swe		n 2. 4.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref L SGL Cc SGL Cc IPk M 0 dBm- -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm -80 dBm Start 3 Marker Type M1 M2	rum evel ax M1 D D D D D D D D D D D D D D D D D D	10.00 / 30 0/20 1 -18.	dBm () 0 dB () 547 dBm M3	M4 K-value 2.4400 4.88018	39 dB 65 ms 75 ms	/NT BLE 1 RBW 100 k VBW 300 k	M 2440	Auto Swe		n 2. 4.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz
Spect Ref L Att SGL Co 1Pk M 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -70 dBm -70 dBm -70 dBm Start 3 Marker Type M1 M2 M3 M4	rum evel ax M1 D D D D D D D D D D D D D D D D D D) 10.00 (30 0/20 1 -18. Hz Hz Trc 1 1 1 1 1	dBm () 0 dB () 547 dBm M3	M4 K-value 2.4400 4.88018 7.31895	39 dB 65 ms 75 ms	/NT BLE 1 RBW 100 kF VBW 300 kF S S V - Value 0.52 d -30.61 d -30.61 d -49.79 d	M 2440	Auto Swe		n 2. 4.	0.52 dBm 440010 GHz -30.61 dBm 880186 GHz

