LTE Band 13 Body Date: 2023-5-12 Electronics: DAE4 Sn786 Medium: Head 750MHz Medium parameters used: f = 782 MHz; σ = 0.901 S/m; ϵ_r = 41.969; ρ = 1000 kg/m³ Communication System: UID 0, LTE_FDD (0) Frequency: 782 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (10.75, 10.75, 10.75) **Left Side Middle 1RB24/Area Scan (41x101x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.399 W/kg **Left Side Middle 1RB24/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 17.92 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 0.480 W/kg SAR(1 g) = 0.328 W/kg; SAR(10 g) = 0.223 W/kg Maximum value of SAR (measured) = 0.408 W/kg Fig.22 LTE Band 13 Body #### LTE Band 26 Head Date: 2023-5-13 Electronics: DAE4 Sn786 Medium: Head 835MHz Medium parameters used (interpolated): f = 821.5 MHz; σ = 0.903 S/m; ε_r = 41.095; ρ = 1000 kg/m³ Communication System: UID 0, LTE FDD (0) Frequency: 821.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (10.75, 10.75, 10.75) **Right Cheek Low 36RB19/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.482 W/kg **Right Cheek Low 36RB19/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 16.86 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 0.973 W/kg SAR(1 g) = 0.443 W/kg; SAR(10 g) = 0.229 W/kg Maximum value of SAR (measured) = 0.526 W/kg Fig.23 LTE Band 26 Head ## LTE Band 26 Body Date: 2023-5-13 Electronics: DAE4 Sn786 Medium: Head 835MHz Medium parameters used (interpolated): f = 821.5 MHz; $\sigma = 0.903 \text{ S/m}$; $\epsilon_r = 41.095$; $\rho = 1000 \text{ kg/m}^3$ Communication System: UID 0, LTE FDD (0) Frequency: 821.5 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (10.75, 10.75, 10.75) **Rear Side Middle 1RB37/Area Scan (71x121x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.290 W/kg Rear Side Middle 1RB37/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.05 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.409 W/kg SAR(1 g) = 0.224 W/kg; SAR(10 g) = 0.131 W/kg Fig.24 LTE Band 26 Body #### LTE Band 38 Head Date: 2023-5-19 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used: f = 2580 MHz; σ = 1.984 S/m; ϵ_r = 38.232; ρ = 1000 kg/m³ Communication System: UID 0, LTE_TDD (0) Frequency: 2580 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN7683 ConvF (7.76, 7.76, 7.76) **Right Cheek Low 1RB50/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.958 W/kg **Right Cheek Low 1RB50/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.591 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.35 W/kg SAR(1 g) = 0.574 W/kg; SAR(10 g) = 0.265 W/kg Maximum value of SAR (measured) = 0.738 W/kg Fig.25 LTE Band 38 Head ## LTE Band 38 Body Date: 2023-5-19 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used: f = 2580 MHz; σ = 1.984 S/m; ϵ_r = 38.232; ρ = 1000 kg/m³ Communication System: UID 0, LTE_TDD (0) Frequency: 2580 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN7683 ConvF (7.76, 7.76, 7.76) Rear Side Low 50RB0/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.556 W/kg **Rear Side Low 50RB0/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.896 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.902 W/kg SAR(1 g) = 0.437 W/kg; SAR(10 g) = 0.226 W/kg Maximum value of SAR (measured) = 0.566 W/kg Fig.26 LTE Band 38 Body #### LTE Band 41 Head Date: 2023-5-19 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used (interpolated): f = 2595 MHz; $\sigma = 2.002$ S/m; $\epsilon_r = 38.182$; $\rho = 1000$ kg/m³ Communication System: UID 0, LTE TDD (0) Frequency: 2595 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN7683 ConvF (7.76, 7.76, 7.76) **Right Cheek Middle 1RB50/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.13 W/kg **Right Cheek Middle 1RB50/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.91 V/m; Power Drift = 0.16 dB Peak SAR (extrapolated) = 1.54 W/kg SAR(1 g) = 0.585 W/kg; SAR(10 g) = 0.282 W/kg Maximum value of SAR (measured) = 0.801 W/kg Fig.27 LTE Band 41 Head ## LTE Band 41 Body Date: 2023-5-19 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used (interpolated): f = 2595 MHz; $\sigma = 2.002$ S/m; $\epsilon_r = 38.182$; $\rho = 1000$ kg/m³ Communication System: UID 0, LTE TDD (0) Frequency: 2595 MHz Duty Cycle: 1:1.58 Probe: EX3DV4 - SN7683 ConvF (7.76, 7.76, 7.76) Rear Side Middle 1RB50/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.657 W/kg Rear Side Middle 1RB50/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.137 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.957 W/kg SAR(1 g) = 0.484 W/kg; SAR(10 g) = 0.250 W/kg Maximum value of SAR (measured) = 0.606 W/kg Fig.28 LTE Band 41 Body #### LTE Band 66 Head Date: 2023-5-28 Electronics: DAE4 Sn786 Medium: Head 1750MHz Medium parameters used (interpolated): f = 1745 MHz; $\sigma = 1.358 \text{ S/m}$; $\epsilon_r = 39.722$; $\rho = 1000 \text{ kg/m}^3$ Communication System: UID 0, LTE FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.81, 8.81, 8.81) **Right Tilt Middle 1RB50/Area Scan (61x61x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.949 W/kg **Right Tilt Middle 1RB50/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.946 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 1.49 W/kg SAR(1 g) = 0.691 W/kg; SAR(10 g) = 0.301 W/kg Maximum value of SAR (measured) = 0.991 W/kg Fig.29 LTE Band 66 Head ## LTE Band 66 Body Date: 2023-5-28 Electronics: DAE4 Sn786 Medium: Head 1750MHz Medium parameters used (interpolated): f = 1745 MHz; $\sigma = 1.358 \text{ S/m}$; $\epsilon_r = 39.722$; $\rho = 1000 \text{ kg/m}^3$ Communication System: UID 0, LTE FDD (0) Frequency: 1745 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.81, 8.81, 8.81) **Top Side Middle 50RB0/Area Scan (41x71x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.736 W/kg **Top Side Middle 50RB0/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.72 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 1.13 W/kg SAR(1 g) = 0.600 W/kg; SAR(10 g) = 0.298 W/kg Maximum value of SAR (measured) = 0.783 W/kg Fig.30 LTE Band 66 Body #### **Bluetooth Head** Date: 2023-5-25 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used: f = 2402 MHz; σ = 1.775 S/m; ϵ_r = 38.703; ρ = 1000 kg/m³ Communication System: UID 0, BT (0) Frequency: 2402 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.02, 8.02, 8.02) Right Tilt Ch.0/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.178 W/kg Right Tilt Ch.0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.914 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.266 W/kg SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.075 W/kg Maximum value of SAR (measured) = 0.185 W/kg Fig.31 Bluetooth Head ## **Bluetooth Body** Date: 2023-5-25 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used: f = 2402 MHz; σ = 1.775 S/m; ϵ_r = 38.703; ρ = 1000 kg/m³ Communication System: UID 0, BT (0) Frequency: 2402 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.02, 8.02, 8.02) Top Side Ch.0/Area Scan (61x111x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0744 W/kg Top Side Ch.0/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.927 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.117 W/kg SAR(1 g) = 0.062 W/kg; SAR(10 g) = 0.032 W/kg Maximum value of SAR (measured) = 0.0778 W/kg Fig.32 Bluetooth Body #### WLAN 2.4GHz Head Date: 2023-5-25 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used: f = 2462 MHz; σ = 1.846 S/m; ϵ_r = 38.504; ρ = 1000 kg/m³ Communication System: UID 0, WLAN (0) Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.02, 8.02, 8.02) **Left Cheek Ch.11/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.631 W/kg **Left Cheek Ch.11/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.085 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 1.01 W/kg SAR(1 g) = 0.450 W/kg; SAR(10 g) = 0.212 W/kg Maximum value of SAR (measured) = 0.578 W/kg Fig.33 WLAN 2.4GHz Head ## **WLAN 2.4GHz Body** Date: 2023-5-25 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used: f = 2462 MHz; σ = 1.846 S/m; ϵ_r = 38.504; ρ = 1000 kg/m³ Communication System: UID 0, WLAN (0) Frequency: 2462 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.02, 8.02, 8.02) **Rear Side Ch.11/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.425 W/kg Rear Side Ch.11/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.154 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.624 W/kg SAR(1 g) = 0.290 W/kg; SAR(10 g) = 0.141 W/kg Maximum value of SAR (measured) = 0.438 W/kg Fig.34 WLAN 2.4GHz Body #### **WLAN 5GHz Head** Date: 2023-5-16 Electronics: DAE4 Sn786 Medium: Head 5600MHz Medium parameters used: f = 5660 MHz; σ = 5.086 S/m; ϵ_r = 36.024; ρ = 1000 kg/m³ Communication System: UID 0, WLAN 5G (0) Frequency: 5660 MHz Duty
Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (5.13, 5.13, 5.13) **Left Tilt Ch.132/Area Scan (91x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.826 W/kg Left Tilt Ch.132/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.577 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 3.45 W/kg SAR(1 g) = 0.647 W/kg; SAR(10 g) = 0.161 W/kg Maximum value of SAR (measured) = 1.50 W/kg Fig.35 WLAN 5GHz Head ## **WLAN 5GHz Body** Date: 2023-5-16 Electronics: DAE4 Sn786 Medium: Head 5750MHz Medium parameters used (interpolated): f = 5785 MHz; $\sigma = 5.373$ S/m; $\varepsilon_r = 34.489$; $\rho = 1000$ kg/m³ Communication System: UID 0, WLAN 5G (0) Frequency: 5785 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (5.23, 5.23, 5.23) **Top Side Ch.157/Area Scan (61x111x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 1.73 W/kg Top Side Ch.157/Zoom Scan (8x8x21)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 5.489 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 4.11 W/kg SAR(1 g) = 0.940 W/kg; SAR(10 g) = 0.330 W/kg Fig.36 WLAN 5GHz Body ## **WLAN 5GHz Extremity** Date: 2023-5-16 Electronics: DAE4 Sn786 Medium: Head 5600MHz Medium parameters used: f = 5660 MHz; σ = 5.086 S/m; ϵ_r = 36.024; ρ = 1000 kg/m³ Communication System: UID 0, WLAN 5G (0) Frequency: 5660 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (5.13, 5.13, 5.13) **Top Side Ch.132/Area Scan (61x91x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 10.0 W/kg **Top Side Ch.132/Zoom Scan (8x8x21)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 2.744 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 38.4 W/kg **SAR(1 g) = 5.03 W/kg; SAR(10 g) = 1.36 W/kg**Maximum value of SAR (measured) = 15.5 W/kg Fig.37 WLAN 5GHz Extremity # **ANNEX B: SystemVerification Results** #### **750MHz** Date: 2023-5-12 Electronics: DAE4 Sn786 Medium: Head 750MHz Medium parameters used: f = 750 MHz; σ = 0.881 S/m; ε_r = 42.353; ρ = 1000 kg/m³ Communication System: CW_TMC Frequency: 750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (10.75, 10.75, 10.75) System Validation/Area Scan (81x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 59.456 V/m; Power Drift = -0.04 dB SAR(1 g) = 2.10 W/kg; SAR(10 g) = 1.39 W/kg Maximum value of SAR (interpolated) = 2.76 W/kg System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.456 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 2.98 W/kg **SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.37 W/kg** Maximum value of SAR (measured) = 2.73 W/kg 0 dB = 2.73 W/kg = 4.36 dB W/kg Fig.B.1. Validation 750MHz 250mW Date: 2023-5-10 Electronics: DAE4 Sn786 Medium: Head 835MHz Medium parameters used: f = 835 MHz; $\sigma = 0.922 \text{ S/m}$; $\epsilon r = 40.636$; $\rho = 1000 \text{ kg/m}^3$ Communication System: CW TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (10.75, 10.75, 10.75) System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 65.248 V/m; Power Drift = 0.07 dB SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (interpolated) = 3.69 W/kg System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 65.248 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 4.46 W/kg SAR(1 g) = 2.50 W/kg; SAR(10 g) = 1.62 W/kg Maximum value of SAR (measured) = 3.72 W/kg 0 dB = 3.72 W/kg = 5.71 dB W/kg Fig.B.2. Validation 835MHz 250mW Date: 2023-5-13 Electronics: DAE4 Sn786 Medium: Head 835MHz Medium parameters used: f = 835 MHz; $\sigma = 0.915 \text{ S/m}$; $\epsilon r = 40.933$; $\rho = 1000 \text{ kg/m}^3$ Communication System: CW TMC Frequency: 835 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (10.75, 10.75, 10.75) System Validation/Area Scan (91x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 63.782 V/m; Power Drift = 0.02 dB SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (interpolated) = 3.66 W/kg System Validation/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.782 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 4.29 W/kg SAR(1 g) = 2.47 W/kg; SAR(10 g) = 1.59 W/kg Maximum value of SAR (measured) = 3.68 W/kg 0 dB = 3.68 W/kg = 5.66 dB W/kg Fig.B.3. Validation 835MHz 250mW Date: 2023-5-18 Electronics: DAE4 Sn786 Medium: Head 1750MHz Medium parameters used: f = 1750 MHz; σ = 1.388 S/m; ε_r = 39.464; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.81, 8.81, 8.81) System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 80.565 V/m; Power Drift = 0.12 dB SAR(1 g) = 9.27 W/kg; SAR(10 g) = 4.95 W/kg Maximum value of SAR (interpolated) = 11.3 W/kg **System Validation/Zoom Scan (7x7x7)/Cube0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.565 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 22.4 W/kg SAR(1 g) = 9.46 W/kg; SAR(10 g) = 5.02 W/kg Maximum value of SAR (measured) = 11.5 W/kg 0 dB = 11.5 W/kg = 10.61 dB W/kg Fig.B.4. Validation 1750MHz 250mW Date: 2023-5-28 Electronics: DAE4 Sn786 Medium: Head 1750MHz Medium parameters used: f = 1750 MHz; σ = 1.362 S/m; ϵ_r = 39.701; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 1750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.81, 8.81, 8.81) System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 80.014 V/m; Power Drift = -0.09 dB SAR(1 g) = 8.96 W/kg; SAR(10 g) = 4.92 W/kg Maximum value of SAR (interpolated) = 11.0 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.014 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 20.7 W/kg SAR(1 g) = 8.75 W/kg; SAR(10 g) = 4.83 W/kg Maximum value of SAR (measured) = 10.8 W/kg 0 dB = 10.8 W/kg = 10.33 dB W/kg Fig.B.5. Validation 1750MHz 250mW Date: 2023-5-20 Electronics: DAE4 Sn786 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.425 S/m; ϵ_r = 39.233; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.55, 8.55, 8.55) System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 84.576 V/m; Power Drift = 0.08 dB SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (interpolated) = 12.2 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.576 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 12.4 W/kg 0 dB = 12.4 W/kg = 10.93 dB W/kg Fig.B.6. Validation 1900MHz 250mW Date: 2023-5-28 Electronics: DAE4 Sn786 Medium: Head 1900MHz Medium parameters used: f = 1900 MHz; σ = 1.414 S/m; ϵ_r = 39.478; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 1900 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.55, 8.55, 8.55) System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 83.739 V/m; Power Drift = 0.02 dB SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.13 W/kg Maximum value of SAR (interpolated) = 12.0 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.739 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 24.8 W/kg SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.18 W/kg Maximum value of SAR (measured) = 12.3 W/kg 0 dB = 12.3 W/kg = 10.90 dB W/kg Fig.B.7. Validation 1900MHz 250mW Date: 2023-5-25 Electronics: DAE4 Sn786 Medium: Head 2450MHz Medium parameters used: f = 2450 MHz; σ = 1.832 S/m; ε_r = 38.544; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 2450 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.02, 8.02, 8.02) System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 92.128 V/m; Power Drift = 0.06 dB SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.09 W/kg Maximum value of SAR (interpolated) = 15.4 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 92.128 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 31.3 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.13 W/kg Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dB W/kg Fig.B.8. Validation 2450MHz 250mW Date: 2023-5-17 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used: f = 2550 MHz; σ = 1.958 S/m; ε_r = 38.055; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 2550 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.02, 8.02, 8.02) System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 95.234 V/m; Power Drift = 0.12 dB SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.36 W/kg Maximum value of SAR (interpolated) = 16.3 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 95.234 V/m; Power Drift = 0.12 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 14.5 W/kg; SAR(10 g) = 6.49 W/kg Maximum value of SAR (measured) = 16.6 W/kg 0 dB = 16.6 W/kg = 12.20 dB W/kg Fig.B.9. Validation 2550MHz 250mW Date: 2023-5-19 Electronics: DAE4 Sn786 Medium: Head 2550MHz Medium parameters used: f = 2550 MHz; σ = 1.949 S/m; ε_r = 38.331; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 2550 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (8.02, 8.02, 8.02) System Validation/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 93.766 V/m; Power Drift = 0.05 dB SAR(1 g) = 14.1 W/kg; SAR(10 g) = 6.29 W/kg Maximum
value of SAR (interpolated) = 16.1 W/kg System Validation/Zoom Scan (7x7x7)/Cube0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.766 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 14.3 W/kg; SAR(10 g) = 6.37 W/kg Maximum value of SAR (measured) = 16.4 W/kg 0 dB = 16.4 W/kg = 12.15 dB W/kg Fig.B.10. Validation 2550MHz 250mW Date: 2023-5-16 Electronics: DAE4 Sn786 Medium: Head 5250MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.637 \text{ S/m}$; $\varepsilon_r = 36.709$; $\rho = 1000 \text{ kg/m}^3$ Communication System: CW TMC Frequency: 5250 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (5.72, 5.72, 5.72) System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 63.579 V/m; Power Drift = 0.02 dB SAR(1 g) = 7.91 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (interpolated) = 17.7 W/kg **System Validation/Zoom Scan (8x8x21)/Cube0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.579 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.68 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 17.5 W/kg 0 dB = 17.5 W/kg = 10.43 dB W/kg Fig.B.11. Validation 5250MHz 100mW Date: 2023-5-16 Electronics: DAE4 Sn786 Medium: Head 5600MHz Medium parameters used: f = 5600 MHz; σ = 5.005 S/m; ϵ_r = 36.187; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 5600 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (5.13, 5.13, 5.13) System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 67.754 V/m; Power Drift = -0.10 dB SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.37 W/kg Maximum value of SAR (interpolated) = 20.8 W/kg System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.754 V/m; Power Drift = -0.10 dB Peak SAR (extrapolated) = 36.3 W/kg SAR(1 g) = 8.01 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 20.6 W/kg 0 dB = 20.6 W/kg = 13.14 dB W/kg Fig.B.12. Validation 5600MHz 100mW Date: 2023-5-16 Electronics: DAE4 Sn786 Medium: Head 5750MHz Medium parameters used: f = 5750 MHz; σ = 5.326 S/m; ϵ_r = 34.582; ρ = 1000 kg/m³ Communication System: CW TMC Frequency: 5750 MHz Duty Cycle: 1:1 Probe: EX3DV4 - SN7683 ConvF (5.23, 5.23, 5.23) System Validation/Area Scan (61x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Reference Value = 66.384 V/m; Power Drift = 0.07 dB SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (interpolated) = 18.1 W/kg System Validation/Zoom Scan (8x8x21)/Cube0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.384 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 17.8 W/kg 0 dB = 17.8 W/kg = 12.50 dB W/kg Fig.B.13. Validation 5750MHz 100mW # **ANNEX C: SAR Measurement Setup** ## C.1. Measurement Set-up DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items: Picture C.1 SAR Lab Test Measurement Set-up - A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running WinXP and the DASY5 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as - warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ## C.2. DASY5 E-field Probe System The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum. ## **Probe Specifications:** Model: ES3DV3, EX3DV4 Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3) Calibration: In head and body simulating tissue at Frequencies from 835 up to 5800MHz Linearity: ± 0.2 dB(30 MHz to 6 GHz) for EX3DV4 ± 0.2 dB(30 MHz to 4 GHz) for ES3DV3 Dynamic Range: 10 mW/kg — 100W/kg Probe Length: 330 mm **Probe Tip** Length: 20 mm Body Diameter: 12 mm Tip Diameter: 2.5 mm (3.9 mm for ES3DV3) Tip-Center: 1 mm (2.0mm for ES3DV3) Application: SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields Picture C.2 Near-field Probe Picture C.3 E-field Probe #### C.3. E-field Probe Calibration Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter. The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm². E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe. $$SAR = C \frac{\Delta T}{\Delta t}$$ Where: Δt = Exposure time (30 seconds), C = Heat capacity of tissue (brain or muscle), ΔT = Temperature increase due to RF exposure. $$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$ Where: σ = Simulated tissue conductivity, ρ = Tissue density (kg/m³). ## C.4. Other Test Equipment ### C.4.1. Data Acquisition Electronics (DAE) The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. PictureC.4: DAE ### C.4.2. Robot The SPEAG DASY system uses the high precision robots (DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability 0.02mm) - High reliability (industrial design) - Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives) - Jerk-free straight movements (brushless synchron motors; no stepper motors) - ➤ Low ELF interference (motor control fields shielded via the closed metallic construction shields) Picture C.5 DASY 5 #### C.4.3. Measurement Server The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5:128MB), RAM (DASY5:128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad. The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot
movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server. Picture C.6 Server for DASY 5 #### C.4.4. Device Holder for Phantom The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\ \varepsilon$ =3 and loss tangent $\ \delta$ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms. Picture C.7-1: Device Holder Picture C.7-2: Laptop Extension Kit #### C.4.5. Phantom The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm). Shell Thickness: 2 ± 0. 2 mm Filling Volume: Approx. 25 liters Dimensions: 810 x 1000 x 500 mm (H x L x W) Available: Special **Picture C.8: SAM Twin Phantom** # ANNEX D: Position of the wireless device in relation to the phantom # D.1. General considerations This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position. w_t Width of the handset at the level of the acoustic w_b Width of the bottom of the handset A Midpoint of the width w_t of the handset at the level of the acoustic output B Midpoint of the width w_h of the bottom of the handset Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset Picture D.2 Cheek position of the wireless device on the left side of SAM Picture D.3 Tilt position of the wireless device on the left side of SAM ### D.2. Body-worn device A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer. Picture D.4 Test positions for body-worn devices ### D.3. Desktop device A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used. The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom. Picture D.5 Test positions for desktop devices ### **D.4. DUT Setup Photos** Picture D.6 ### **ANNEX E: Equivalent Media Recipes** The liquid used for the frequency range of 700-6000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209. **Table E.1: Composition of the Tissue Equivalent Matter** | Frequency
(MHz) | 835 | 1750 | 1900 | 2450 | 2600 | 5200 | 5800 | |--|------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------| | Water | 41.45 | 55.242 | 55.242 | 58.79 | 58.79 | 65.53 | 66.10 | | Sugar | 56.0 | 1 | / | 1 | 1 | 1 | 1 | | Salt | 1.45 | 0.306 | 0.306 | 0.06 | 0.06 | | | | Preventol | 0.1 | 1 | / | 1 | 1 | 17.24 | 16.95 | | Cellulose | 1.0 | / | / | 1 | 1 | 17.24 | 16.95 | | Glycol Monobutyl | / | 44.452 | 44.452 | 41.15 | 41.15 | 1 | 1 | | Diethylenglycol
monohexylether | / | / | / | 1 | 1 | 1 | 1 | | Triton X-100 | 1 | / | / | / | / | 1 | / | | Dielectric
Parameters
Target Value | ε=41.5
σ=0.90 | ε=40.08
σ=1.37 | ε=40.0
σ=1.40 | ε=39.20
σ=1.80 | ε=39.01
σ=1.96 | ε=35.99
σ=4.66 | ε=35.30
σ=5.27 | Note: There is a little adjustment respectively for 750, 5300 and 5600, based on the recipe of closest frequency in table E.1 ### **ANNEX F: System Validation** The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components. **Table F.1: System Validation** | Drobo | Liquid name | Validation | Fraguanay | CW | Modulatio | n Signal Vali | dation | |--------------|-------------|--------------------|-----------|------------------|------------|---------------|--------| | Probe
SN. | Liquid name | Validation
date | Frequency | CW
Validation | Modulation | Duty | PAR | | SIN. | (MHz) | uate | point | valluation | Туре | Factor | PAR | | 7683 | Head 750 | 2023-02-20 | 750MHz | Pass | N/A | N/A | N/A | | 7683 | Head 835 | 2023-02-20 | 835MHz | Pass | GMSK | Pass | N/A | | 7683 | Head 1750 | 2023-02-20 | 1750MHz | Pass | N/A | N/A | N/A | | 7683 | Head 1900 | 2023-02-20 | 1900MHz | Pass | GMSK | Pass | N/A | | 7683 | Head 2450 | 2023-02-22 | 2450MHz | Pass | OFDM/TDD | Pass | Pass | | 7683 | Head 2550 | 2023-02-20 | 2550MHz | Pass | TDD | Pass | N/A | | 7683 | Head 3500 | 2023-02-21 | 3500MHz | Pass | TDD | Pass | N/A | | 7683 | Head 3700 | 2023-02-21 | 3700MHz | Pass | TDD | Pass | N/A | | 7683 | Head 3900 | 2023-02-21 | 3900MHz | Pass | TDD | Pass | N/A | | 7683 | Head 5250 | 2023-02-22 | 5250MHz | Pass | OFDM | N/A | Pass | | 7683 | Head 5600 | 2023-02-22 | 5600MHz | Pass | OFDM | N/A | Pass | | 7683 | Head 5750 | 2023-02-22 | 5750MHz | Pass | OFDM | N/A | Pass | ### **ANNEX G: DAE Calibration Certificate** | CALIBRATION (| | | icate No: Z22-60439 | | | | | |--|---------------------|--|-------------------------------------|--|--|--|--| | CALIBICATION | EKTII IOAI | | | | | | | | Object | DAE4 - | DAE4 - SN: 786 | | | | | | | Calibration Procedure(s) | 0.0 | -002-01
tion Procedure for the Data / | Acquisition Electronics | | | | | | Calibration date: | Septen | nber 29, 2022 | | | | | | | All calibrations have be humidity<70%. Calibration Equipment us Primary Standards | ed (M&TE critical f | | environment temperature(22±3)°C and | | | | | | Process Calibrator 753 | 1971018 | 14-Jun-22 (CTTL, No.J22X0418 | 30) Jun-23 | | | | | | | Name | Function | Signature | | | | | | Calibrated by: | Yu Zongying | SAR Test Engineer | Ant - | | | | | | Reviewed by: | Lin Hao | SAR Test Engineer | 林粉 | | | | | | restated by: | | | | | | | | | Approved by: | Qi Dianyuan | SAR Project Leader | do | | | | | Certificate No: Z22-60439 Page 1 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emfiă-caict.ac.en http://www.caict.ac.en Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### **DC Voltage Measurement** A/D - Converter Resolution nominal $\begin{array}{llll} \mbox{High Range:} &
\mbox{1LSB} = & \mbox{6.1}\mu\mbox{V}, & \mbox{full range} = & -100...+300 \ m\mbox{W} \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV}, & \mbox{full range} = & -1.....+3m\mbox{W} \\ \mbox{DASY measurement parameters:} \mbox{Auto Zero Time: 3 sec;} \mbox{Measuring tlme: 3 sec} \end{array}$ | Calibration Factors | x | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.121 ± 0.15% (k=2) | 404.267 ± 0.15% (k=2) | 404.668 ± 0.15% (k=2) | | Low Range | 3.97160 ± 0.7% (k=2) | 3.97314 ± 0.7% (k=2) | 3.95725 ± 0.7% (k=2) | ### Connector Angle | Connector Angle to be used in DASY system | 228.5° ± 1 ° | |---|--------------| |---|--------------| Certificate No: Z22-60439 Page 3 of 3 ### **ANNEX H: Probe Calibration Certificate** Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client SAICT Certificate No: Z23-60028 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN: 7683 Calibration Procedure(s) FF-Z11-004-02 Calibration Procedures for Dosimetric E-field Probes Calibration date: February 16, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature(22±3)⁺C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |----------------------|-------|-------------|--|-----------------------| | Power Meter NRP2 | | 101919 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Power sensor NRP-ZS | 91 | 101547 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Power sensor NRP-ZS | 91 | 101548 | 14-Jun-22(CTTL, No.J22X04181) | Jun-23 | | Reference 10dBAtten | uator | 18N50W-10dB | 19-Jan-23(CTTL, No.J23X00212) | Jan-25 | | Reference 20dBAtten | uator | 18N50W-20dB | 19-Jan-23(CTTL, No.J23X00211) | Jan-25 | | Reference Probe EX3 | DV4 | SN 3846 | 20-May-22(SPEAG, No.EX3-3846_May2 | (2) May-23 | | DAE4 | | SN 771 | 20-Jan-22(SPEAG, No.DAE4-771_Jan22 | 2) Jan-23 | | DAE4 | | SN 1555 | 25-Aug-22(SPEAG, No.DAE4-1555_Aug | (22) Aug-23 | | Secondary Standards | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGenerator MG3 | 3700A | 6201052605 | 14-Jun-22(CTTL, No.J22X04182) | Jun-23 | | Network Analyzer E50 | 071C | MY46110673 | 10-Jan-23(CTTL, No.J23X00104) | Jan-24 | | | Na | me | Function | Signature | | Calibrated by: | | Zongying | SAR Test Engineer | 2-116 | | Reviewed by: | Lit | n Hao | SAR Test Engineer | 排光 | | | | | | | Issued: February 21, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Qi Dianyuan Certificate No: Z23-60028 Approved by: SAR Project Leader Add: No.52 HuaYuanBei Road, Haidian District, Berjing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@eaict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Polarization Φ rotation around probe axis Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i θ=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No:Z23-60028 Page 2 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf/a caict.ac.cn http://www.caiet.ac.en ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7683 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |------------------------------|----------|----------|----------|-----------| | Norm(µV/(V/m)²) ^A | 0.63 | 0.63 | 0.62 | ±10.0% | | DCP(mV) ^{El} | 103.7 | 104.8 | 104.6 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB µV | С | D
dB | VR
mV | Max
Dev. | Max
Unc ^E
(k≃2) | |-----------|--|---|---------|------------|-------|----------|----------|-------------|----------------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 207.3 | ±2.1% | ±4.7% | | | | Y | 0.0 | 0.0 | 1.0 | | 206.5 | | | | | | Z | 0.0 | 0.0 | 1.0 | | 208.9 | | | | 10352-AAA | Pulse Waveform (200Hz, 10%) | X | 1.41 | 60.00 | 5.76 | | 60 | ±2.1% | ±9.6% | | | 20 00 | Υ | 1.40 | 60.00 | 5.71 | 10.00 | 60 | | | | | | Z | 1.40 | 60.00 |
5.74 | | 60 | | | | 10353-AAA | Pulse Waveform (200Hz, 20%) | Х | 6:00 | 68.00 | 7.00 | | 80 | ±2.7% | ±9,6% | | | 20 20 20 | Y | 6.00 | 68.00 | 7.00 | 6.99 | 80 | | | | | | Z | 0.80 | 60:00 | 4.57 | 1.450 | 80 | | | | 10354-AAA | Pulse Waveform (200Hz, 40%) | X | 0.17 | 139.32 | 0.54 | 3.98 | 95 | ±2.3% | ±9,6% | | | 30 2 3 | Y | 0.18 | 142:45 | 0.34 | | 95 | | | | | | Z | 0.39 | 152.48 | 0:68 | 1.12364 | 95 | | | | 10355-AAA | Pulse Waveform (200Hz, 60%) | X | 8.34 | 159.94 | 4.53 | 2.22 | 120 | ±1.3% | ±9.6% | | | | Y | 6.71 | 159.96 | 17.92 | | 120 | | | | | | Z | 9.39 | 159.08 | 22.96 | | 120 | | | | 10387-AAA | QPSK Waveform, 1 MHz | X | 0.54 | 62.14 | 10.35 | | 150 | ±4.5% | ±9.6% | | | Page 2000 ST State of The ST ST ST | Y | 0.69 | 64.27 | 11.73 | 1.00 | 150 | | | | | | Z | 0.65 | 64.12 | 11.72 | 100000 | 150 | | | | 10388-AAA | QPSK Waveform, 10 MHz | X | 1.29 | 64.42 | 12.76 | | 150 | ±1.5% | ±9.6% | | | CHANGE PROBLEM CAMPLE OF THE CONTROL | Y | 1.44 | 65.67 | 13.79 | 0.00 | 150 | | | | | | Z | 1.42 | 65.70 | 13.74 | Chercula | 150 | | | | 10396-AAA | 64-QAM Waveform, 100 kHz | X | 1.75 | 65.11 | 16.63 | | 150 | ±1.1% | ±9.6% | | | The same and s | Y | 1.85 | 66.39 | 17.86 | 3.01 | 150 | | | | | | Z | 1.81 | 65.99 | 17.68 | | 150 | | | | 10414-AAA | WLAN CCDF, 64-QAM, 40MHz | X | 3.99 | 66.17 | 15.25 | | 150 | ±4.7% | ±9.6% | | | The state of s | Y | 4.14 | 66.41 | 15.55 | 0.00 | 150 | | | | | | Z | 4.12 | 66.53 | 15.58 | | 150 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%, Certificate No:Z23-60028 Page 3 of 22 ⁵ The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5). ⁸ Numerical linearization parameter: uncertainty not required. Numerical linearization parameter; uncertainty not required. E. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@calct.ac.cn http://www.calct.ac.cn ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7683 ### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | T6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------|------| | X | 11.17 | 81.84 | 33.99 | 2.45 | 0.00 | 4.90 | 0.33 | 0.00 | 1.01 | | Υ | 12.84 | 94.42 | 34.34 | 2.69 | 0.00 | 4.90 | 0.30 | 0.00 | 1.02 | | Z | 12.01 | 88.21 | 34.28 | 3.18 | 0.00 | 4.90 | 0.21 | 0.00 | 1.02 | ### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 156.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No:Z23-60028 Page 4 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; ±86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.en ### DASY/EASY – Parameters of Probe: EX3DV4 – SN:7683 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |---------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.75 | 10.75 | 10.75 | 0.11 | 1.60 | ±12.7% | | 900 | 41.5 | 0.97 | 10.28 | 10.28 | 10.28 | 0.17 | 1.26 | ±12.7% | | 1640 | 40.3 | 1.29 | 9.01 | 9.01 | 9.01 | 0.19 | 1.12 | ±12.7% | | 1750 | 40.1 | 1.37 | 8.81 | 8.81 | 8.81 | 0.18 | 1.18 | ±12.7% | | 1900 | 40.0 | 1.40 | 8.55 | 8.55 | 8.55 | 0.24 | 1.02 | ±12.7% | | 2100 | 39.8 | 1.49 | 8.65 | 8.65 | 8.65 | 0.21 | 1.08 | ±12.7% | | 2300 | 39.5 | 1.67 | 8.30 | 8.30 | 8.30 | 0.66 | 0.67 | ±12.7% | | 2450 | 39.2 | 1.80 | 8.02 | 8.02 | 8.02 | 0.66 | 0.68 | ±12.7% | | 2600 | 39.0 | 1.96 | 7.76 | 7.76 | 7.76 | 0.55 | 0.75 | ±12.7% | | 3300 | 38.2 | 2.71 | 7.49 | 7.49 | 7.49 | 0.30 | 1.03 | ±13.9% | | 3500 | 37.9 | 2.91 | 7.34 | 7.34 | 7.34 | 0.31 | 1.04 | ±13.9% | | 3700 | 37.7 | 3,12 | 7.09 | 7.09 | 7.09 | 0.30 | 1.06 | ±13.9% | | 3900 | 37.5 | 3.32 | 6.95 | 6.95 | 6.95 | 0.30 | 1.45 | ±13.9% | | 4100 | 37.2 | 3.53 | 6.91 | 6.91 | 6.91 | 0.30 | 1.40 | ±13.9% | | 4400 | 36.9 | 3.84 | 6.74 | 6.74 | 6.74 | 0.30 | 1.50 | ±13.9% | | 4600 | 36.7 | 4.04 | 6.66 | 6.66 | 6.66 | 0.40 | 1.33 | ±13.9% | | 4800 | 36.4 | 4.25 | 6.58 | 6.58 | 6.58 | 0.40 | 1.38 | ±13.9% | | 4950 | 36.3 | 4.40 | 6.36 | 6.36 | 6.36 | 0.40 | 1.35 | ±13.9% | | 5250 | 35.9 | 4.71 | 5.72 | 5.72 | 5.72 | 0.45 | 1.32 | ±13.9% | | 5600 | 35.5 | 5.07 | 5.13 | 5.13 | 5.13 | 0.40 | 1.60 | ±13.9% | | 5750 | 35.4 | 5.22 | 5.23 | 5.23 | 5.23 | 0.45 | 1.40 | ±13.9% | ^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No:Z23-60028 Page 5 of 22 FAt frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel:+86-10-62304633-2117 E-mail: emf@caiet.ac.en http://www.caiet.ac.en ## Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Certificate No:Z23-60028 Page 6 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.en ### Receiving Pattern (Φ), θ=0° ## f=600 MHz, TEM f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Certificate No:Z23-60028 Page 7 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn E-mail: emf\(\textit{a}\) caict.ac.en # Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz) Certificate No:Z23-60028 Page 8 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: omf@cnict.ac.cn http://www.cnict.ac.cn ### **Conversion Factor Assessment** ### f=750 MHz,WGLS R9(H_convF) ### f=1750 MHz,WGLS R22(H_convF) ### Deviation from Isotropy in Liquid Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2) Certificate No:Z23-60028 Page 9 of 22 Add: No.52 HunYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.en ### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | UncE
(k=2) | |-------|-----|---
--|---------------|---------------| | 0 | | CW | CW | 0.00 | ±4.7 % | | 0010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 0011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 0012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 0013 | CAB | IEEE 802.11g WiFl 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 0021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ±9.6 % | | 0023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ±9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ±9.6 % | | 0025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 0026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 0029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 0030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802 15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ±9.6% | | 0033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ±9.6% | | 0034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4,53 | ±9,69 | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 9 | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ±9.69 | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ±9.69 | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ±9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ±9.69 | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 ° | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ±9.63 | | 10049 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ±9.6 9 | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ±9.69 | | 10059 | CAB | IEEE 802 11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 % | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 9 | | | | IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 MiDJS) | WLAN | 3.60 | ± 9.6 % | | 10061 | CAB | | WLAN | 8.68 | 19.69 | | 10062 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.63 | ±9.6 % | | 10063 | CAD | IEEE 802 11a/h WIFI 5 GHz (OFDM, 9 Mbps) | WLAN | 9.09 | ±9.69 | | 10064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.00 | ±9.63 | | 10065 | CAD | IEEE 802,11a/h WIFI 5 GHz (OFDM, 18 Mbps) | WLAN | 9.38 | ±9.6 % | | 10066 | _ | IEEE 802.11a/h WIFI 5 GHz (OFDM, 24 Mbps) | WLAN | 10.12 | ± 9.6 9 | | 10067 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 ° | | 10068 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps) | WLAN | 10.56 | ±9.6 ° | | 10069 | CAD | IEEE 802 11a/h WIFI 5 GHz (OFDM, 54 Mbps) | A CONTRACTOR OF THE PARTY TH | | | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ±9.6 % | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.6 | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | | | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10,30 | ±9.6 ° | | 10075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ±9.6 | | 10076 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ±9.65 | | 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN
CDMA2000 | 11.00
3.97 | ± 9.6 ° | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | | | | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ±9.6 ° | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 ° | | 10097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ±9.69 | | 10098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ±9.6 | | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 ° | | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ±9.6 | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 | Page 10 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@eaict.ac.cn http://www.caiet.ac.cn | | | | | | 10 | |-------|-----|--|---------|-------|---------| | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ±9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ±9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6% | | 10114 | CAG | IEEE 802 11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ±9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ±9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN. | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ±9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ±9.6% | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ±9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 % | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ±9.6% | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9,92 | ± 9,6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ± 9.6 % | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz. QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ±9.6 % | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ±9.6 % | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ±9.6% | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ±9.6 % | | 10166 |
CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ±9.6% | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 % | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6% | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 % | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6% | | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6% | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6% | | 10185 | GAI | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | Page 11 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@cniet.ac.cn http://www.cniet.ac.cn | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6% | |-------|-----|---|---------|-------|---------| | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 0195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | IEEE 802 11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198 | CAF | IEEE 802 11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 % | | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ±9.6 % | | 0226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz. 16-QAM) | LTE-TDD | 9.49 | ±9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ± 9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9.6 % | | 10229 | DAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz. 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TOD | 9,19 | ±9.6% | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz. 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz. QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10238 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz. 16-QAM) | LTE-TDD | 9.48 | ±9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ±9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ± 9,6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6% | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ±9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | 19.6% | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TOD | 9.90 | ±9.6 % | | 10254 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ±9.6 % | | 10258 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ± 9,6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ±9.6 % | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | | 10260 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ±9.6 % | | 10261 | CAG | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ±9.6% | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz. 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10266 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TOD | 10.07 | ± 9.6 % | | 10267 | CAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz. 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | Page 12 of 22 Add: No.52 HuaYuanBei Roud, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn | 10269 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.13 | ± 9.6 % | |-------|-----------|--|--------------------|-------|--------------------| | 10270 | CAB | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAD | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rei8.4) | WCDMA | 3,96 | ± 9.6 % | | 10277 | CAD | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAD | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAG | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ±9.6 % | | 10290 | CAG | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | CAG | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | 10292 | CAG | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10293 | CAG | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10295 | CAG | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ±9.6% | | 10298 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | CAF | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | | 10300 | CAC | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | CAC | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WiMAX | 12.03 | ± 9.6 % | | 10302 | CAB | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX | 12.57 | ± 9.6 % | | 10303 | CAB | IEEE 802 16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 12.52 | ± 9.6 % | | 10304 | CAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 11.86 | ± 9.6 % | | 10305 | CAA | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ± 9.6 % | | 10306 | CAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 14.67 | ±9.6 % | | 10307 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WIMAX | 14.49 | ± 9.6 % | | 10308 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAB | IEEE 802 16e WIMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10309 | AAB | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3) | WIMAX | 14.57 | ± 9.6 % | | 10311 | AAB | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAD | IDEN 1:3 | IDEN | 10.51 | ± 9.6 % | | 10314 | | IDEN 1:6 | IDEN | | | | 10314 | AAD | IEEE 802,11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 13.48 | ± 9.6 %
± 9.6 % | | 10315 | AAD | IEEE 802.11g WIFI 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAA | IEEE 802.11a WiFi 5 GHz (GFDM, 6 Mbps, 96pc dc) | WLAN | 8.36
| ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 6.99 | ±9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | | 2.22 | ±9.6% | | 10356 | AAA | | Generic
Generic | 0.97 | | | 10387 | | Pulse Waveform (200Hz. 80%) | C-2-3114-014-0 | | ±9.6% | | | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ±9.6% | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ±9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ±9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6,27 | ±9.6 % | | 10400 | 1,100,100 | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAA | IEEE 802,11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ±9.6 % | | | | IEEE 802 11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10403 | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | ±9.6 % | | 10404 | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000 | 3.77 | ± 9.6 % | | 10406 | AAD | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ± 9.6 % | | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3.4,7.8,9) | LTE-TDD | 7.82 | ±9.6 % | | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1,54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | VVLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ±9.6% | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ±9.6 % | | 10419 | AAA | IEEE 802 11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ±9.6% | | 10422 | AAA | IEEE 802.11n (HT Groenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10425 | AAE | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ±9.6% | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ±9.6 % | Page 13 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emfig caict.ac.cn http://www.caict.ac.cn | 10427 | AAB | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 % | |-------|-----|---|--|--|---------| | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3,1) | LTE-FDD | 8.38 | ± 9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8,34 | ±9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | 8,34 | ± 9.6 % | | 10434 | AAG | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ± 9.6 % | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10447 | AAA | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ± 9.6 % | | 10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.53 | ±9.6% | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7,51 | ±9.6% | | 10450 | AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.48 | ±9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | WCDMA | 7.59 | ±9.6% | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Test | 10.00 | ± 9,6 % | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 8.63 | ±9.6% | | 10457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 6.62 | ±9.6 % | | 10458 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ±9.6% | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ±9.6% | | 10460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ±9.6 % | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 % | | 10463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8,56 | ± 9.6 % | | 10464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.6% | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8,57 | ± 9.6 % | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ±9.6 % | | 10469 | AAD | LTE-TDD (SC-FDMA, 1 RB; 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10472 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ±9.6 % | | 10473 | AAA | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.6 % | | 10474 | AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.6 % | | 10475 | AAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ±9.6 % | | 10477 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.6 % | | 10478 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ±9.6 % | | 10480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.18 | ±9.6% | | 10481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ±9.6% | | 10482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TOD | 7.71 | ± 9.6 % | | 10483 | AAA |
LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TOD | 8.39 | ±9.6 % | | 10484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ±9.6% | | 10485 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7,59 | ± 9.6 % | | 10486 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.38 | ± 9.6 % | | 10487 | AAC | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.60 | ± 9.6 % | | 10488 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.70 | ± 9.6 % | | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ±9.6 % | | 10491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.41 | ±9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.55 | ±9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ±9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ±9.6 % | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UE Sub) | LTE-TDD | 8.54 | ±9.6 % | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, 6L Sub) | LTE-TDD | 7.67 | ±9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QFSK, UL Sub) | LTE-TDD | 8,40 | | | | | | THE PARTY OF P | The second secon | ±9.6 % | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ±9.6 % | | | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TOD | 7.67 | ±9.6 % | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | Page 14 of 22 Add: No.52 HuaYuanBei Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2117 | E-mail: emfia caict.ac.cn | http://www.eaict.ac.en | |---------------------------|------------------------| |---------------------------|------------------------| | | | | Table Make | 1 2 25 | | |-------|-----|---|------------|--------|---------| | 10503 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ±9.6% | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8,31 | ±9.6% | | 10505 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ±9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ±9.6 % | | 10509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | ± 9.6 % | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ±9.6% | | 10511 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ±9.6% | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ±9.6 % | | 10514 | AAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10515 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ±9.6% | | 10516 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAF | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAF | IEEE 802,11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ±9.6 % | | 10519 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc do) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ±9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ±9.6 % | | 10523 | AAC | IEEE 802,11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ±9.6 % | | 10525 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) | WLAN | 8.36 | ±9.6 % | | 10526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ±9.6% | | 10527 | AAF | IEEE 802 11ac WiFi (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ±9.6% | | 10528 | AAF | IEEE 802 11ac WIFI (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10529 | AAF | IEEE 802.11ac WIFI (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ±9.6 % | | 10531 | AAF | [EEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ±9.6 % | | 10532 | AAF | IEEE 802,11ac WIFI (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ±9.6 % | | 10532 | AAE | IEEE 802,11ac WIFI (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10534 | AAE | IEEE 802.11ac WIFI (20MHz, MCS0, 98pc dc) | WLAN | 8.45 | ±9.6 % | | 10535 | AAE | IEEE 802 11ac WIFI (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ±9.6 % | | | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10536 | AAF | | WLAN | 8.44 | ± 9.6 % | | 10537 | AAF | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) | WLAN | 8.54 | ±9.6 % | | 10540 | AAA | IEEE 802.11ac WIFI (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | | - | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | | | | | 10542 | AAA | IEEE 802.11ac WiFi (49MHz, MGS8, 99pc dc) | WLAN | 8.65 | ±9.6 % | | 10543 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ±9.6% | | 10544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | ±9.6% | | 10545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10546 | AAC | IEEE 802.11ac WiFI (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ± 9.6 % | | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ±9.6% | | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ±9.6% | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ±9.6% | | 10551 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | B.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802:11ac WIFI (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WIFI (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802, 11ac WIFI (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WIFI (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ±9.6% | | 10562 | AAC | IEEE 802.11ac WiFI (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ±9.6% | | 10563 | AAC | IEEE 802.11ac WiFI (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc do) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | Page 15 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emfarcaict.ac.cn http://www.caict.ac.cn | | 111111111111111111111111111111111111111 | The same of sa | - presidentes | | | |--|---
--|---------------|---|--| | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ±9.6 % | | 10567 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ±9.6% | | 10569 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8:30 | ± 9.6 % | | 10571 | AAC | IEEE 802 11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ±9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ±9.6% | | 10575 | AAC | IEEE 802.11g.WiFl 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ±9.6% | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-DFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.6 % | | 10577 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ±9.6 % | | 10578 | AAD | IEEE 802:11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10583 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ±9.6 % | | 10584 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.6% | | 10585 | AAD | IEEE 802.11a/h WIFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ±9.6% | | 10586 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WIFI 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ±9.6 % | | 10589 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ±9.6% | | 10590 | AAA | IEEE 802,11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | 10592 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc do) | WLAN | 8.79 | ± 9.6 % | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ±9.6 % | | 10594 | AAA | IEEE 802 11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ±9.6% | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 50pc dc) | WLAN | 8.74 | ±9.6% | | 10596 | AAA | | | 460000000000000000000000000000000000000 | the second secon | | 10596 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | 100,000 | 8.72 | ± 9.6 % | | 10599 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ±9.6% | | 10600 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ±9.6% | | 10600 | AAA | IEEE 802,11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ±9.6% | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10603 | | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ±9.6% | | 10604 | AAA | IEEE 802 11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 % | | The state of s | | IEEE 802 11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ±9.6% | | 10605 | AAA | IEEE 802 11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ±9.6% | | 10606 | AAC | IEEE 802,11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10607 | AAC | IEEE 802.11ac WIFI (20MHz, MCS0, 90pc do) | WLAN | 8.64 | ±9.6 % | | 10608 | AAC | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802,11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ±9,6% | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WIFI (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ±9.6% | | 10613 | AAC | IEEE 802 11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ±9,6% | | 10614 | AAC | IEEE 802,11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802-11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10616 | AAC | IEEE 802:11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802,11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ±9.6% | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ±9.6% | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8,86 | ±9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ±9.6% | | 10621 | AAC | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ±9,6% | | 10624 | AAC | IEEE 802.11ac WiFI (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ±9.6% | Page 16 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 | | E-m | ail: emf@caict.ac.cn http://www.caict.ac.cn | | |-------|-----|---|---| | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | _ | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | | | 10627 | AAC | IEEE 802 11ac WiFi (80MHz, MCS1, 90pc dc) | | | 10628 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | | | 10625 | AAC | IEEE
802,11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ±9.6% | |---|--|--|---|--|---| | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dg) | WLAN | 8.83 | ± 9.6 % | | 10627 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10629 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10630 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ±9.6% | | 10631 | AAC | IEEE 802:11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ±9.6% | | 10632 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10633 | AAC | IEEE 802.11ac WiFI (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10634 | AAC | IEEE 802,11ac WiFi (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ±9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ±9.6 % | | 10636 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ±9.6 % | | | | | WLAN | 8.79 | ±9.6% | | 10637 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | | | | | 10638 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ±9.6% | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8,85 | ±9.6% | | 10640 | AAC | IEEE 802:11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8,98 | ±9.6% | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | 9.06 | ±9.6% | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ±9.6% | | 10643 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ±9.6 % | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ±9.6% | | 10645 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc) | WLAN | 9.11 | ±9.6 % | | 10646 | AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TOD | 11.96 | ±9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ±9.6% | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 3.45 | ±9.6 % | | 10652 | AAC | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10653 | AAC | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ±9.6 % | | 10654 | AAC | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10655 | AAC | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ± 9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ± 9.6 % | | 10661 | AAC | Pulse Wayeform (200Hz, 60%) | Test | 2.22 | ±9.6 % | | 10662 | AAC | Pulse Waveform (200Hz. 80%) | Test | 0.97 | ±9.6 % | | 10670 | AAC | Bluetooth Low Energy | Bluetooth | 2.19 | ±9.6% | | 10671 | AAD | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ±9.6 % | | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ±9.6 % | | 10673 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ±9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | | | 10675 | AAD | | | | ±9.6% | | 10676 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc) IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.90 | ±9.6 % | | | | | WLAN | 8.77 | ±9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ±9.6 % | | 10678 | AAD | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ±9.6% | | | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ±9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ±9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ±9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ±9.6 % | | | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8,42 | ±9.6 % | | 10683 | The latest | | | | 1000 | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | | | 10684
10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±9.6 % | | 10684
10685
10686 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc)
IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN
WLAN | | | | 10684
10685
10686
10687 | AAC
AAC
AAE | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN
WLAN
WLAN | 8.33
8.28
8.45 | ±9.6% | | 10684
10685
10686
10687
10688 | AAC
AAC
AAE
AAE | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN
WLAN
WLAN
WLAN | 8.33
8.28 | ±9.6 %
±9.6 % | | 10684
10685
10686
10687
10688
10689 | AAC
AAC
AAE | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN
WLAN
WLAN | 8.33
8.28
8.45 | ±9.6 %
±9.6 %
±9.6 % | | 10684
10685
10686
10687
10688
10689
10690 | AAC
AAE
AAE
AAD
AAE | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) IEEE 802.11ax (20MHz, MCS5, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN
WLAN
WLAN
WLAN | 8.33
8.28
8.45
8.29 | ±9.6 %
±9.6 %
±9.6 % | | 10684
10685
10686
10687
10688
10689 | AAC
AAC
AAE
AAE
AAD | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) IEEE 802.11ax (20MHz, MCS5, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN
WLAN
WLAN
WLAN
WLAN | 8.33
8.28
8.45
8.29
8.55 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10684
10685
10686
10687
10688
10689
10690 | AAC
AAE
AAE
AAD
AAE | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) IEEE 802.11ax (20MHz, MCS5, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) IEEE 802.11ax (20MHz, MCS7, 99pc dc) IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN | 8.33
8.28
8.45
8.29
8.55
8.29
8.25 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 10684
10685
10686
10687
10688
10689
10690
10691
10692 | AAC
AAC
AAE
AAB
AAB
AAA | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) IEEE 802.11ax (20MHz, MCS5, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) IEEE 802.11ax (20MHz, MCS7, 99pc dc) IEEE 802.11ax (20MHz, MCS7, 99pc dc) IEEE 802.11ax (20MHz, MCS8, 99pc dc) IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN | 8.33
8.28
8.45
8.29
8.55
8.29
8.25
8.29 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 10684
10685
10686
10687
10688
10689
10690
10691 | AAC
AAE
AAE
AAD
AAE
AAB | IEEE 802.11ax (20MHz, MCS2, 99pc dc) IEEE 802.11ax (20MHz, MCS3, 99pc dc) IEEE 802.11ax (20MHz, MCS4, 99pc dc) IEEE 802.11ax (20MHz, MCS5, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) IEEE 802.11ax (20MHz, MCS6, 99pc dc) IEEE 802.11ax (20MHz, MCS7, 99pc dc) IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN | 8.33
8.28
8.45
8.29
8.55
8.29
8.25 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | Page 17 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8:91 | ±9.6 % |
---|-----|--|--|------|---------| | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ±9.5 % | | 10698 | AAA | IEEE 802:11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ±9.6% | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10700 | AAA | IEEE 802,11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ±9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10702 | AAA | IEEE 802,11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ±9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ±9.6 % | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ±9.6% | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ±9.6% | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±9.6% | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ±9.6% | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ±9.6% | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ±9.6% | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ±9.6% | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ±9.6 % | | 10715 | AAC | IEEE 802 11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ±9.6% | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ±9.6% | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ±9.6% | | 10719 | AAC | IEEE 802.11ax (80MHz, MGS0, 90pc dc) | WLAN | 8,81 | ±9.6% | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ±9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ±9.6% | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ±9.6% | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ±9.6% | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ±9.6% | | 10727 | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ±9.6% | | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ±9.6% | | 10729 | AAG | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ±9.6 % | | 10730 | AAC | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ±9.6% | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ±9.6% | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ±9.6 % | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ±9.6% | | 10734 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.25 | | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | The state of s | | ± 9.6 % | | 10736 | AAC | | WLAN | 8.33 | ±9.6% | | | | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ±9.6% | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ±9.6% | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ±9.6% | | 10740 | AAC | IEEE 802.11ex (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ±9.6 % | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ±9.6% | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10743 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ±9.6% | | | | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ±9.6% | | THE RESERVE AND ADDRESS OF THE PARTY | _ | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8,93 | ±9.6% | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ±9.6% | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ±9.6% | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MGS7, 90pc dc) | WLAN | 8.79 | ±9.6% | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10752 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8,94 | ±9.6% | Page 18 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf/a/caict.ac.cn http://www.caict.ac.cn | | 4414 | | 40.00000 | Here are an area | | |---------------------------|---------------|--
--|------------------|---------| | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 % | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ±9.6 % | | 10757 | AAC | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ±9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10759 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10763 | AAC | IEEE 802,11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ±9.6 % | | 10766 | AAC | IEEE 802.11ax (160MHz, MCS11, 99pc dd) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 % | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ±9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ± 9.6 % | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ±9.6 % | | 10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.69 | | 10779 | AAC | | 5G NR FR1 TDD | 8.42 | | | diversion of the Day Sold | - Consequence | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | - Community to the Community of Comm | | ±9,6% | | 10780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)
5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.69 | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ±9.69 | | The second second | - | | | | ±9.6 % | | 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9,6 % | | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6% | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ±9.69 | | 10787 | AAC | 5G NR (CP-DFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ±9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8,39 | ±9.6% | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 9 | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7,95 | ± 9.6 % | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ±9.69 | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ±9.69 | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7,89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7,93 | ± 9.6 9 | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 16 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 9 | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8,35 | ± 9.6 ! | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 ° | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 ° | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 9 | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | Page 19 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.cn http://www.caiet.ac.cn | 10823 | AAC | EC ND (CD OEDM 100% DD 10 MH- ODOV 20 MH-) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | |------------------------------|-----|--|---------------|------|---------| | The second second | | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)
5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 % | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | | | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 % | | 10829 | AAD | | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ±9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 % | | 10836 | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAD | 5G NR (CP-OFDM, 1 NB, 100 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6% | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | and the second second second | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR
FR1 TDD | 8.34 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 KHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ±9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ±9.6% | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ±9.6 % | | 10874 | AAD | 5G NR (DFT-s-QFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-DFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ±9.6 % | | 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ±9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 84QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ±9.6% | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | Page 20 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | |----------------|------|--|---------------|------|---------| | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ±9,6% | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-QFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ±9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ±9.6 % | | 10918 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ±9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAD. | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 % | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6% | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ±9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,52 | ±9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6% | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8,15 | ± 9.6 % | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | | - | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | | AAR | | | | | | 10955
10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 13 KHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | Page 21 of 22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caiet.ac.en
http://www.caiet.ac.en | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz. 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ±9.6 % | |-------|-----|---|---------------|-------|---------| | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ±9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ±9.6 % | | 10961 | AAB | 5G NR DL (CP-QFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ±9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.8 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6 % | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ±9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ±9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ±9.6 % | | 10967 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ±9.6 % | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ±9.6 % | | 10978 | AAA | ULLA BDR | ULLA | 1.16 | ± 9.6 % | | 10979 | AAA | ULLA HDR4 | ULLA | 8.58 | ±9.6 % | | 10980 | AAA | ULLA HDR8 | ULLA | 10.32 | ±9.6 % | | 10981 | AAA | ULLA HDRp4 | ULLA | 3.19 | ±9.6 % | | 10982 | AAA | ULLA HDRp8 | ULLA | 3.43 | ±9.6% | | 10983 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.31 | ± 9.6 % | | 10984 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.42 | ±9.6 % | | 10985 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.54 | ±9.6 % | | 10986 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.50 | ±9.6 % | | 10987 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.53 | ±9.6 % | | 10988 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.38 | ±9.6% | | 10989 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.33 | ± 9.6 % | | 10990 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9,52 | ±9.6 % | E. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No:Z23-60028 Page 22 of 22 ### **ANNEX I: Dipole Calibration Certificate** ### 750MHz Dipole Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client SAICT Certificate No: Z22-60333 | | CAL | .IBRAT | TION | CERT | IFICATE | | |--|-----|--------|------|------|---------|--| |--|-----|--------|------|------|---------|--| Object D750V3 - SN: 1163 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 22, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Reference Probe EX3DV4 | SN 7464 | 26-Jan-22(SPEAG,No.EX3-7464_Jan22) | Jan-23 | | DAE4 | SN 1556 | 12-Jan-22(CTTL-SPEAG,No.Z22-60007) | Jan-23 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-22 (CTTL, No.J22X00409) | Jan-23 | | Network Analyzer E5071C | MY46110673 | 14-Jan-22 (CTTL, No.J22X00406) | Jan-23 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 1 3 To | | Reviewed by: | Lin Hao | SAR Test Engineer | 一种水 | | Approved by: | Qi Dianyuan | SAR Project Leader | 25 | Issued: August 26, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60333 Page 1 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z22-60333 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ±1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|----------------|--------------|-----------------| | Nominal Head TSL parameters | 22.0 ℃ | 42.0 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ±0.2) °C | 41.3 ±6 % | 0.90 mho/m ±6 % | | Head TSL temperature change during test | <1.0 ℃ | | SHE | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 250 mW input power | 2.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.48 W/kg ±18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.62 W/kg ±18.7 % (k=2) | Certificate No: Z22-60333 Page 3 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@eaiet.ac.en http://www.eaiet.ac.en ### Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0Ω- 4.06)Ω | | |--------------------------------------|---------------|--| | Return Loss | - 27.8dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 0.941 ns | |------------------------------------|--| | Elourious Portal factor and amount | E. 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole
arms, because they might bend or the soldered connections near the feed-point may be damaged. ### Additional EUT Data | Manufactured by SPE | | |---------------------|--| |---------------------|--| Certificate No: Z22-60333 Page 4 of 6 Date: 2022-08-22 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1163 Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.902$ S/m; $\epsilon_r = 41.26$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2022-01-26 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2022-01-12 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.49 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.17 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.42 W/kg Smallest distance from peaks to all points 3 dB below = 21.2 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 2.84 W/kg 0 dB = 2.84 W/kg = 4.53 dBW/kg Certificate No: Z22-60333 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.sc.cn http://www.caict.ac.cn ### Impedance Measurement Plot for Head TSL Page 6 of 6