

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

FCC Test Report

Applicant : Shenzhen Lingdechuang Technology Co., Ltd.

Address 701, Building A, Ruziniu Building, Bantian

Street, Longgang District, Shenzhen, China

Product Name : Wireless Mobile Private Cloud Disk

Report Date : Sept. 12, 2024

Shenzhen Anbotek

Compliance Laboratory Limited

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

Contents

1. General Information	""poler	Vup.	010k	Anbo	
1.1. Client Information	TITY AMBOREN	Anto	ek	rek Vupo,	rok no
1.2. Description of Device (E 1.3. Auxiliary Equipment Use 1.4. Operation channel list 1.5. Description of Test Mode 1.6. Measurement Uncertain	ed Duning Test.	16/4	^{Ip} olo _K		hotek l
1.5. Description of Test Mode	es	0	" "IEK	ripoje.	F.1.
1.6. Measurement Uncertain	ity	1400 iek	Anbe		- Aupor
W.7. Test Summary				Yî	
1.8. Description of Test Facil	ity	- Pub.		K	P. Ve
1.10. Test Equipment List	atek	Aupolis.		0000 Yor	(o),
1.10. Test Equipment List 2. Conducted Emission at AC por 2.1. EUT Operation	wor line	k	tok Vul	,	hotek Ant
2. Conducted Emission at AC po	WEI IIIIE		otek.	Vupotor	- SK
2.1. EUT Operation	10.	<u> </u>	,p00,	POISH	Arbore
2.2. Test Setup 2.3 Test Data	(Po;	rek	Vupoler.		
2.2. Test Setup	* upolek	AUD	polek	Anbo	rotek
3. Duty Cycle		Vupole.		k Vipolok	
3.1. EUT Operation	40.			ν ν'	liskVipo _L
3.2. Test Setup	Autore		rek vi	,000 m	·
4. 5 · · · · · · · · · · · · · · · · · ·	10 de 1 42	Sk. VUD	.V.	Polek	YUDO'S
4. Emission bandwidth and occup	pied bandwidth	otek	74pote;	-407	" upolok
4.1. EUT Operation				Rupor	
4.2. Test Setup		Aupore.	· · · · · · · · · · · · · · · · · · ·		
4.5. Test Data	Vug.	bolek	VUD.	v voie	k Aupolio
3.1. EUT Operation	ower		k Aupo		, od. , you
5.1. EUT Operation	kpopok	A.	······································	/n/4//////////////////////////////////	,010 B.
5.2. Test Setup		iek Au	,o/0 ¹ ,		yolek
5.5. Test Data	10/0 K. W.		holek	Anbolt	VIOK
6. Power spectral density	~olek	"po _{le"}	VII.		
6.1. EUT Operation	And	otek	+ upo .		Vupope
6.2. Test Setup	Arboro	Vi.	Vupore _v		y solotek
6.5. Test Data		- Andrew	.v. v.	Vick Vupor	
7. Channel Move Time, Channel	Closing Transr	nission Time	£	19,	
7.1. EUT Operation	And a		Pakek	"upor	
7.2. Test Setup	- Orek Tub	7 ₁₆ . V	,ek	" "poter	- Mul
7.3. Test Data			Anboli	, otek	Aupole.
8. Non-Occupancy Period Test		-16k	, upolek		
8.1. EUT Operation	otek	Wupo.		r Fupore,	ALL.
8.2. Test Setup	Vu.		Anbe		ek hupor
8.3. Test Data		b.,	16 ₁ 4. V4p	ore. Vur	16k - 10
6.3. Test Data 7. Channel Move Time, Channel 7.1. EUT Operation 7.2. Test Setup 7.3. Test Data 8. Non-Occupancy Period Test 8.1. EUT Operation 8.2. Test Setup 8.3. Test Data 9. DFS Detection Thresholds 9.1. EUT Operation 9.2. Test Setup		Anbo			ypor W.
9.1. EUT Operation	. h.	1910	upore.	VII.	, upoter
9.2 Test Setup	Polor Vul	,	rek	Aupo	rek :

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

nbotek

Anboiek

Anbotek

Anbotek

Anboiek

Anborek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anboiek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anborek

Anbolek

Aupolek

Anbotek

Anbotek

'upolek

otek

Aupolek

potek

Anbolek

Anbolek

'upotek

Anbotek

otek

Anbolek

Anbotek

Anbotek

Aupolek

Aupolek

Anbotek

Anboiek

Anbotek

Aupotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Aupolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anboiek

Aupolek

Aupolek

Anboiek

Anboiek

Anboiek

Anbotek

Anbotek

Anbotek

Aupotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

	Aupole.	Vu.	abotek	Ani.D. ZBITITO	hotek	Anbore	W. Stek	Vupot.	
_	Anbotek	Aupora	Vuporek	Anborer	Ann	Aupolek	Anbo	- Ari	potek
. N	9.3.	Test Data				k		30	,no'
Ofc.	10. Band	d edge emissions	(Radiated)		k Vupor	<i>b</i>	10das 10s	31	VUL
olodic.	V	. EUT Operation		oter Aur	da. Yar	otek Yup,			P.
D1.		2. Test Setup		Jorek Au	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Wpole VI	34	
AU	10.3	B. Test Data	"opole"	······································	"Poler	Anb.		35	
	11. Unde	esirable emission	limits (below	1GHz)	Vi. Polek	- Vuporer	Yun Potsk	410	,ek
1/4		. EUT Operation	role _k	Anbore	Vek.	* Opoler	Aug.	43	potek
		Test Setup	And	k Vybolek	Anbo		k Alpore	43	
otek	11.3	8. Test Data	K	, VIII.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Anbo		.e 44	Anbo
· ^\	12. Unde	esirable emission	limits (above	1GHz)		otek vu	Oter Aur	46	
Vupo	12.1	FUT Operation	oro V.	rek vi	Poler Vu	o ak	Sporek A	48	1
	12.1	. EUT Operation 2. Test Setup	hotek	And	atek .	Anbore	Ku.	49	
br.	~~\delta 12.3	B. Test Data	V	1.400105	AUD	Colek	Anbo	49	rek
	APPENI	DIX I TEST SET	TUP PHOTOC	RAPH John	Anbore	VIII	anbotek	54	
e/-		DIX II EXTERNA			Polok	Anbo	ret.	54	"upope,
. No.		DIX III INTERN			Vur		Ando	54	. \

Anbotek

Anbolek

Anbotek

Anboiek

Anbotek

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

TEST REPORT

Shenzhen Lingdechuang Technology Co., Ltd. Applicant

Manufacturer Shenzhen Lingdechuang Technology Co., Ltd.

Wireless Mobile Private Cloud Disk **Product Name**

Model No. FX2510, FX2511, FX1020, FX1040, FX3520, FX3520S, FX3540S

Trade Mark

Rating(s) Input: 5V= 3A

> 47 CFR Part 15E ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Test Standard(s)

KDB 662911 D01 Multiple Transmitter Output v02r01

KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

KDB 905462 D03 Client Without DFS New Rules v01r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Neceipt.	Jul. 51, 2024
se And tok upotek Anbo	The Moter Anbote Am Stek Mino
Date of Test:	Jul. 31, 2024 to Sept. 12, 2024
Aupotek Aupotek Aupotek	Cecilia Chen
Prepared By:	Appores Am
tek Anbotek Anbotek Anbotek	(Cecilia Chen)
upotek Aupotek Aup	Bolward pan
Approved & Authorized Signer:	Aupon Aug Aup Ser Aug
	(Edward Dan)

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

hotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Aupolek

Aupolek

Aupolek

Aupolek

Anboiek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Report No.:1812C40008312504 Aupolek

Anbotek

Anboiek

Anbolek

Anbolek

Aupolek

Aupolek

Anbolek

Anbotek

Anbolek

FCC ID: 2BKNU-FX2510

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anboick Anbotek Page 5 of 54 AND

Anbolek

Anbolek

Anbolek

Anbolek

botek

Anbotek

Anbolek

Anbolek

Anborek

Anbotek

Anbolek

Anbotek

Aupolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Revision History

hotek	Aupotek Vupotek Vipe	Revision History	k Auporek Auporek
'n upotek	Report Version	Description	Issued Date
Anb.	Rek Anbotek Roo Anbotek	Original Issue.	Sept. 12, 2024
1	Aupolek Aupole Whole	V Aupore Auporek	Aupotes Aug
ICK	Vipores, Viporek Viporek	otek Aupolek Aupolek	Auporek Auporek
'upotek	Aupo, Votek Vupotek	Vipole Vipolek Vipolek Vipol	er Vupojek Vupojek

Anbolek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anboiek

Anbolek

Aupolek Anbotek Aupolek Anbotek Aupolek Anbotek Anbotek Anbotek Anbotek Anbotek Anboiek Anbotek Anbotek Anborek Anbolek Anbolek Anbolek Anbotek Anbotek Anbotek Anbotek Anbolek Anboiek Anbotek Aupotek Anbotek Anbolek Anbotek Anbotek Anbolek nbotek Anbotek Anbotek Anbolek Anbolek Anbotek Anbolek Anbotek Anbotek Anbolek Anbotek Anbolek Anbotek Anbotek Anbolek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbolek Anbotek Anbotek Anbotek Anboiek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbolek Anbotek Anbolek Aupolek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anbotek Anbolek Anbolek Anbotek Aupolek Anbolek Anbotek Anbolek Anbotek Anbotek Anbotek Anbolek Anbotek Anborek Anbotek Anbolek Anbolek Anbotek Anbotek Anbotek Anbolek Anbolek Anbotek Anbotek otek Anbotek Aupolek Anbotek Anbolek Anbolek Aupolek Anbotek Anbolek Anbolek Anbolek Anbolek Anbotek Anbotek Anbolek Aupolek Anbolek Anbotek Anbotek Anbolek Anbotek Anbotek Anbolek Anbotek Anboiek upotek

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

1. General Information

1.1. Client Information

Applicant	:	Shenzhen Lingdechuang Technology Co., Ltd.
Address	:	701, Building A, Ruziniu Building, Bantian Street, Longgang District, Shenzhen, China
Manufacturer	:	Shenzhen Lingdechuang Technology Co., Ltd.
Address	:	701, Building A, Ruziniu Building, Bantian Street, Longgang District, Shenzhen, China
Factory	:	Shenzhen Lingdechuang Technology Co., Ltd.
Address	:	701, Building A, Ruziniu Building, Bantian Street, Longgang District, Shenzhen, China

1.2. Description of Device (EUT)

1.2. Description (ζ. L	Aug (EQ1) Aug tek Tupofer Vupofer V
Product Name	:	Wireless Mobile Private Cloud Disk
Model No.	:	FX2510, FX2511, FX1020, FX1040, FX3520, FX3520S, FX3540S (Note: All samples are the same except the model number and appearance color, so we prepare "FX2510" for test only.)
Trade Mark	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	DC 5V from adapter input AC 120V/60Hz
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anbottek Anbotek Anbotek
RF Specification	_	
Operation Frequency	·	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 2A: 5290MHz; U-NII Band 2A: 5530MHz to 5610MHz; U-NII Band 3: 5775MHz
Number of Channel	:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 2C: 11; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; U-NII Band 2A: 2;

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

Vupo, k.	40	pole, Yu., Poler, Villa, Aug., Kek
		U-NII Band 2C: 5; U-NII Band 3: 2;
		802.11ac(HT80):
		U-NII Band 1: 1;
		U-NII Band 2A: 1;
		U-NII Band 2C: 2;
		U-NII Band 3: 1
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Device Type	:	Client Devices
DFS Type	:	Slave without radar detection
Antenna Type	:	FPC Antenna
TPC Function	:	Without TPC
		U-NII Band 1: 0.39dBi;
Antenna Gain(Peak)		U-NII Band 2A: 1.13dBi;
/ intorina Sairi(i cak)		U-NII Band 2C: 0.31dBi;

Remark:

Anbotek

Anbo!

(1) All of the RF specification are provided by customer.

U-NII Band 3: -0.33dBi

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

y.	Title	Manufacturer	Model No.	Serial No.
	Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J
, o	ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 (FCC ID: MSQ- RTAX5D00 IC: 3568A-RTAX5D00)	RAIG5D2020695NL

1.4. Operation channel list

Operation Band: U-NII Band 1

	Operation band.	O-MII Dana I	70° B.		Vie. VUI	Yo.	
	Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz	
200	Channel Frequency (MHz)		Channel	Frequency (MHz) Channel		Frequency (MHz)	
-	Anbole 36 An	5180	otek 38 Aupote.	5190	42°	5210	
	40	5200	Shotek 46 Anbol	5230	k Yupolek	Aupol	
6	44,018k	5220	P. Poley P.	poles / And	otek / Aupotek	4700	
	48 nbotek	5240	A. hotek	Aupoten Au	Stek / Aubo	ick \ Vupo	

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52 ^{,00}	5260	Anbo 54	5270	potek 58 Anbo	5290 no 100 100 100 100 100 100 100 100 100 10
potek 56 Anbote	5280	62	5310	Anbotek / Anb	ick / "po,
Anbotek 60 Anbo	5300	SK VVIDOISE	Aug	Aupolok	Yupo, rek
64 n	5320	potek / Aupotek	Aug	Andotek	Vupo, 1

nbotek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

Operation Band: U-NII Band 2C

, ,	Operation Bana.	O MIL Balla 20		164	You	700
abotek	Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Anbo,	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
P.	100	otel 5500 notel	102	5510	106	nbote 5530 Anbo
3/K	104	5520 And	110	5550	122	5610
potek	108	5540	nbotek 118 And	5590 no 10 10 10 10 10 10 10 10 10 10 10 10 10	Wpo	W Sporek
Anbolek	112	5560	Anbol 126	5630	otek \ Vupor	sk botek
Anbe	tek 116 nboke	5580	134	5670	Tupolek / Vupo	lek / A shotek
<i>b</i> .	nbotek 120 Anbote	5600	Autolok	And	Anborek Ar	100,00
ek.	124 AT	5620	otek / Aupotek	Ando	"up Vek	Aupore, Yun
	128	5640	wotek / Anbol	ek /Anbo	k Inbolek	Vupore
hotek	132	5660	And Mel	ipotek / Aupote	rek I upotek	ANOOLE
Vupote,	136	5680	Augo lek	Anbotek Ank	John I who	ick \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Ant	140	5700	And	Aupo Ack	VIDOSEL VID	opolek Aupole
			- 17			

Operation Band: U-NII Band 3

Aupolek

Anbotek

.V.	Operation band.	o ivii bana o	164	40.	200	Y V
'6	Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
nbotek otootek	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
VIII	otek 149 Anbote	5745	151	5755	nbotel 155 And	5775
. Pr	abotek153 And	5765	159	5795	Work.	YUPOLO Y
40.	157	nbole 5785 And	otek / Aupolek	Nupor	h. Sporek	Augolo, W
oke.	161	5805	lo otek l	otek \ Vupos	ek Japolek	VUP SIE
Yupole.	165	5825	AUD	abolek / Anbo	k / Protein	k Yupoter

Anbolek

Aupol

1.5. Description of Test Modes

Pretest Modes	Descriptions
otek Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM2 Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Rotek Aupotek Aupotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbores Am	Keep the EUT works in normal operating mode and connect to companion device

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB And
Occupied Bandwidth	925Hz Anbotek Anbotek
Conducted Output Power	0.76dB, botek Anbotek An
Power Spectral Density	0.76dB Anbotek Anbotek
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB Anbotek Anbotek
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Anbol

Anbotek

Anboiek

Anbotek

Anborek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

AND

Anboick

Anbotek

Anbolek

'upotek

Aupolek

Anbolek

Anbolek

nbotek

Anbotek

Aupolek

Aupolek

Aupolek

Anbotek

Anbotek

Anbotek

Aupolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Report No.:1812C40008312504 Anbotek FCC ID: 2BKNU-FX2510

Anbotek

1.7. Test Summary

Aupolek

Anbolek

Aupolek

Anboiek

Anboiek

Anbolek

Anbolek

Test Items	Test Modes	Status
Conducted Emission at AC power line	Mode1,2,3	Anbo
Duty Cycle	Mode1,2,3	P _{upo}
Emission bandwidth and occupied bandwidth	Mode1,2,3	P
Maximum conducted output power	Mode1,2,3	potek P
Power spectral density	Mode1,2,3	Aupolick
Channel Move Time, Channel Closing Transmission Time	Mode4	AN Pore
Non-Occupancy Period Test	Mode4	Pant
DFS Detection Thresholds	Mode4	yek P
Band edge emissions (Radiated)	Mode1,2,3	hotek P
Undesirable emission limits (below 1GHz)	Mode1,2,3	Poles.
Undesirable emission limits (above 1GHz)	Mode1,2,3	Ans P

Anbotek

Anbolek

Anbotek

Anborek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Aup,

Anbolek

Anbotek

Anbolek

Anbotek

nbotek

Anbotek

Anbotek

Anbotek

Anboiek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

N: N/A, not applicable

Anbotek

obolek

Anbolek

Aupolek

Aupolek

Anboiek

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

Sogood Industrial Zone Laboratory & 1/F. of Building D, Sogood Science and Technology Park, Sanwei Community, Hangcheng Subdistrict, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- The test report is invalid if there is any evidence and/or falsification. Mr. 2.
 - 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
 - 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
 - Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
 - 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

1.10. Test Equipment List

Conducted Emission at AC power line			Aupolek	Aug. Olek	Anbotek	Aupo
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
o lek	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
¹ 2001	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3 1	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Aur	Aupliek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

DFS Detection Thresholds

Duty Cycle

Emission bandwidth and occupied bandwidth

Maximum conducted output power

Power spectral density

Channel Move Time, Channel Closing Transmission Time

Non-Occupancy Period Test

			-0, h.	160.	V 11.		
Įţė	m	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
Anl	1 0%eV	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	ole N/A	2023-10-16	2024-10-15
	2 ^{Anb}	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
193	3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
yodr	4-	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
	5,00	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
D.	6 AN	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Anboick

Anbotek

Anbolek

nbotek

Aupolek

Anbolek

Anbotek

Anbolek

Anbotek

Aupolek

Aupolek

Aupolek

Anbotek

Anbotek

Anbo

Anbote

Anbotek

Aupok

Anbotek

Anbotek

Anbolek

Aupolek

Anboiek

Aupolek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

	edge emissions (Ra		Anbotek A	upor lek	Vupolek	Aupoles
Item	sirable emission limi Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
,e¥1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
,b.2.k	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
300	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
4 🕟	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Vupole rek	Vup fek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102150	2024-05-06	2025-05-05
7 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2024-05-07	2025-05-06

~ C	by.	76. VU	0000	20.	~60	¥1.
VUD	k hotek	Anbo	19K	Aupole	VI.	apolek
Unde	sirable emission limi	ts (below 1GHz)	Vup.	Anboiek	Auporg	b. spolek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
tet.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2,104	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3 Anb	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5	EMI Test Software EZ-EMC	SHURPLE SHURPLE	N/A	N/A	Vupor	k Anbotek
O!EK	k Votek	Vupojek Vupoje	iek Vupo	tek Wup.	olek Vup.	botek Anbo

Aupolek

Anbolek

nbotek

Anbotek

Anbotek

Anbotek

Anbolek

Aupolek

Anbotek

Anbolek

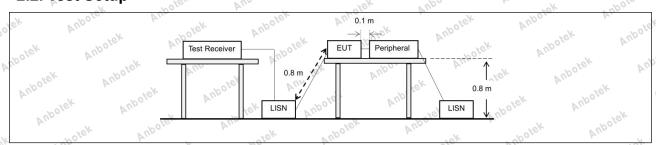
Anbolek

Anbotek

Anborek

Anbotek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510


2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	Aur Olek Aupole	Vup.
Crek D	Frequency of emission (MHz)	Conducted limit (dBµV)	otek Aupo.
VIEW VUDO	otek Auport W.	Quasi-peak	Average
- sek	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56 And	46
Pupore Vupore	5-30 A	60	50×nb
And tek antotel	*Decreases with the logarithm of th	ne frequency.	Aupolek
Test Method:	ANSI C63.10-2020 section 6.2	Aupolek Aupo	ek abolek

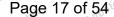
2.1. EUT Operation

10/6,	VIL.	191	upo	-V	holo	br.
Operating Envir	ronment:	Anbo	Polek	Anbore	Vu. Viek	Anb
Anbotek Anb	1: 802.11a mode transmitting mod found the data ra recorded in the re 2: 802.11n mode	e with 802.11a rate @ 6Mbps is eport.	modulation type the worst case.	e. All data rates . Only the data	has been test of worst case	ted and is
Test mode:	transmitting mod been tested and worst case is rec	e with 802.11n r found the data r	modulation type rate @ MCS0 is	e. All bandwidth	n and data rate	es has
Vupotek Vu	3: 802.11ac mode continuously trandata rates has be the data of worst	smitting mode veen tested and f	with 802.11ac n found the data	nodulation type rate @ MCS0 i	. All bandwidth	

2.2. Test Setup

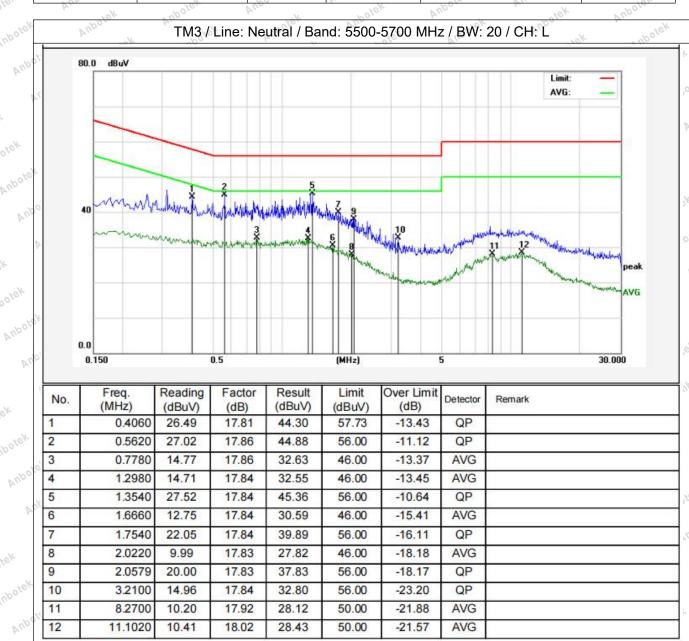


Report No.:1812C40008312504


FCC ID: 2BKNU-FX2510

2.3. Test Data

23.9 °C 50 % Temperature: **Humidity:** Atmospheric Pressure: 101 kPa



Anbotek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

Temperature: 23.9 °C Humidity: 50 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data (802.11ac(HT20)) in the report.

Report No.:1812C40008312504

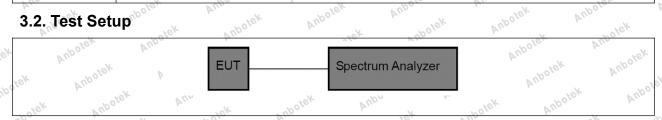
FCC ID: 2BKNU-FX2510

3. Duty Cycle

Tes	t Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Tes	t Limit:	No limits, only for report use.
Tes	t Method:	ANSI C63.10-2020 section 12.2 (b)
6)k	Aupotek Aupote	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Pro	cedure:	iii) Set VBW >= RBW.
Aupol.	Potek Vupotek	iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

Anbotek


Anbotek

Anbotek

Anbol

187	* UN	-V-	.NO.	V.	7/0	V1.
Operating Envi	ronment:	Aupole.	Vun Viek	Aupolek	Aupo	abotek
Aupotek Aupote	1: 802.11a mode transmitting mod found the data ra recorded in the i 2: 802.11n mode	de with 802.11a ate @ 6Mbps is eport.	modulation tyl the worst cas	pe. All data rate e. Only the dat	es has been te a of worst cas	ested and e is
Test mode:	transmitting mod been tested and worst case is red	found the data	rate @ MCS0			
Potek Vupo,	3: 802.11ac mod continuously train	de: Keep the El nsmitting mode	JT connect to A with 802.11ac	modulation type	oe. All bandwid	
*Urek W	data rates has b the data of wors) is the worst o	ase. Only

3.2. Test Setup

3.3. Test Data

Temperature:	24.5 °C	Humidity:	53 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

4. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
sk "polek	A COLOR OF THE COL
Tank Limite 18k	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
ip K KOTEK	Fun Step Pulpo
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5
wek Aupole	KDB 789033 D02, Clause C.2
Anbo	Emission bandwidth:
"poler Aur	a) Set NEW - approximately 170 of the emission bandwidth.
W.	b) Set the VBW > RBW.
ek Yupolek	c) Detector = peak.
r zotek	d) Trace mode = max hold.
poler And	e) Measure the maximum width of the emission that is 26 dB down from the
iek upoler	peak of the emission.
Anbotek Anbote	Compare this with the RBW setting of the instrument. Readjust RBW and
Aupotek Aupot	repeat measurement
And	as needed until the RBW/EBW ratio is approximately 1%.
apolen An	be hotek Andor A. Stek Andores And
VI.	Occupied bandwidth:
tek Aupore	a) The instrument center frequency is set to the nominal EUT channel cente
	frequency. The
'upotek Vupoter,	frequency span for the spectrum analyzer shall be between 1.5 times and
"Un of spokek	5.0 times the OBW.
Anborek Anbore	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
rek Vupo	5% of the OBW,
Aupotek Aupot	and VBW shall be approximately three times the RBW, unless otherwise
hotek A	specified by the
V.	applicable requirement.
Procedure:	c) Set the reference level of the instrument as required, keeping the signal
potek Vupotek	from exceeding the
Anbotek Anbote	maximum input mixer level for linear operation. In general, the peak of the
Yun Polek	spectral envelope
Vupole, Vin	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
H. VIPO	guidance is given
Anbo	in 4.1.5.2. 100 And 10
r polek	d) Step a) through step c) might require iteration to adjust within the
YUR YUR	specified range.
rek upole	e) Video averaging is not permitted. Where practical, a sample detection and
bos W.	single sweep mode
"Olek Vupor	shall be used. Otherwise, peak detection and max hold mode (until the trace
Aupa	stabilizes) shall be
aboten And	used. And the let
W. VOK Up	f) Use the 99% power bandwidth function of the instrument (if available) and
Aupor Air	report the measured
Nek	bandwidth.
Ek Aupo	g) If the instrument does not have a 99% power bandwidth function, then the
rek spokek	trace data points are
Pupole Vue	recovered and directly summed in linear power terms. The recovered
stek supole.	amplitude data points,
Vupo.	beginning at the lowest frequency, are placed in a running sum until 0.5% of

the total is reached;

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

	Vic.	VIII	4.0.1			N.	200	P		
0	"upp offek	Aupolek	EUT	BC 6.	Spectrum	Analyzer	,eV		Aupolek	Va
	Aupo , ek	hotek	A THE STATE OF THE		-			iek.	Anbotek	

4.3. Test Data

Temperature:	24.5 °C	Humidity:	53 % NOTES	Atmospheric Pressure: 101 kPa	1

Please Refer to Appendix for Details.

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

5. Maximum conducted output power

Test Requirement: 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i) For client devices in the 5.15-5,25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.4	And	tek allog k spore All ster
For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Test Limit: For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NIII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. ANSI C63.10-2020, section 12.4	Test Requirement:	47 CFR Part 15.407(a)(2)
output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Test Limit: For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.4	Vek Vupor	47 CFR Part 15.407(a)(3)(i)
maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Test Limit: For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.4	Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.
For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.4	Vipotek Vipote	maximum conducted output power shall be reduced by the amount in dB that
the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.4	Test Limit:	Poter Aug The Contest Augo, I wisk Willow
employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.4	Jek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
All	Aupotek Aupotek	employing high gain directional antennas are used exclusively for fixed,
Procedure: Refer to ANSI C63.10-2020 section 12.4	Test Method:	ANSI C63.10-2020, section 12.4
	Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.1. EUT Operation

Operating Envi	nment: Arbore Andrew Andrew Andrew Andrew Andrew
Anbotek Anbotek Test mode: Anbotek Anbotek Anbotek Anbotek	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Anbotek

Anbolek

Aupolek

Anbotek

Aupolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

Aupolek

Aupolek

Anboiek

Aupolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Page 22 of 54

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Aupolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

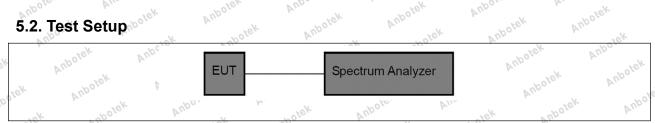
Anbotek

Anbotek

Anboiek

Anbolek

Anbolek


Anbolek

Anbotek

Anbotek

Anbolek

5.2. Test Setup

5.3. Test Data

Anbolek

Anbotek

Anbotek

Anborek

5.3. Test Dat	a _{hotek}	Aupole, b	"Upolek	Anbotek Anbotek	Aupolek Ar
Temperature:	24.5 °C	Humidit	y: 53 %	Atmospheric Pressure:	101 kPa
Anbo	leio.	Aupore	P. F.	anboien And	r hotek
Please Refer to	o Appendix	for Details.	Y VIDOIS	B. Spoke	Yun.

Anborek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Please Refer to Appendix for Details.

Anbotek

Anbotek

Anboiek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

6. Power spectral density

Test Requirement: 47 CFR Part 15.407(a)(2) (47 CFR Part 15.407(a)(2) (47 CFR Part 15.407(a)(2) (47 CFR Part 15.407(a)(3)(i)) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Refer to ANSI C63.10-2020, section 12.6	And	tek hope W. Oley
density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.6	Test Requirement:	47 CFR Part 15.407(a)(2)
If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.6	Aupotek Aupotek Aupotek Aupotek Aupotek Aupotek	density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power
not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.6	Aupotek Aupotek	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.6	Test Limit:	not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that
equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Test Method: ANSI C63.10-2020, section 12.6	Aupotek Aupotek	with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint
The state of the s	ek Vupotek Vupo	transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Procedure: Refer to ANSI C63.10-2020, section 12.6	Test Method:	ANSI C63.10-2020, section 12.6
	Procedure:	Refer to ANSI C63.10-2020, section 12.6

6.1. EUT Operation

Operating Envi	ronment:
ootek Aupotek	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and
aupotek Aup	found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Test mode:	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ek Anbore	3: 802.11ac mode: Keep the EUT connect to AC power line and works in
ikofek Vupote	continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Anbotek

Anbolek

Aupolek

Anbotek

Anbotek

Anbolek

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

Aupolek

Aupolek

Anboiek

Aupolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Page 24 of 54

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

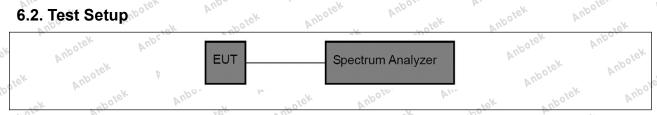
Anbolek

Anbolek

Anbotek

Anbolek

Anbolek


Anbolek

Anbotek

Anbotek

Anbolek

6.2. Test Setup

6.3. Test Data

Anbolek

Anbotek

Anbotek

Anborek

Anbotek

Anbotek

Anboiek

6.3. Test Dat	Anbotek	Vupore,	Augotek	Aupolek Aupo	otek Anbotek	An
Temperature:	24.5 °C	Humid	ity: 53 %	Atmospheric F	ressure: 101 kPa	
Anbo	n'el	k Anboto	P. C.K	aboles	Vup.	N.
Please Refer to	o Appendix	for Details.	sk Vupore	W.	Sporer Aug	V

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

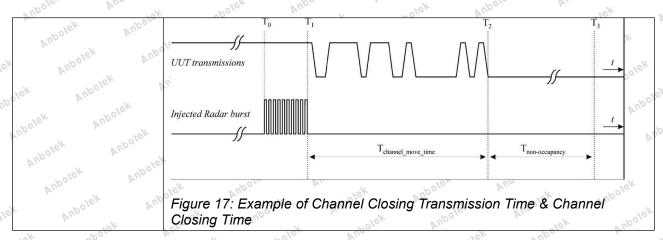
Please Refer to Appendix for Details.

Anboiek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

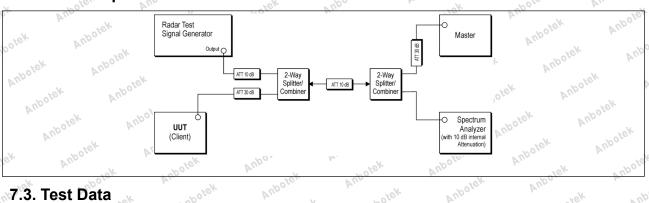
Hotline 400-003-0500 www.anbotek.com


7. Channel Move Time, Channel Closing Transmission Time

Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Vu.	Channel Move Time: within 10 seconds
Kek Wupor	Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60
k holek	milliseconds over remaining 10 second period. (The Channel Closing
Spoier Aug	Transmission Time is comprised of 200 milliseconds starting at the beginning
Test Limit:	of the Channel Move Time plus any additional intermittent control signals
Auporg Ar.	required to facilitate a Channel move (an aggregate of 60 milliseconds)
olek Anbor	during the remainder of the 10 second period. The aggregate duration of
Aup	control signals will not count quiet periods in between transmissions.)
Test Method:	KDB 905462 D02, Clause 7.8.3
100t Motilog:	742 , 74 900, b. 7 948, VIII
John Wille	The steps below define the procedure to determine the above-mentioned
rek vupote.	parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection</i>
Aupo	Threshold + 1dB is generated on the Operating Channel of the U-NII device
Potek Vupo	(In- Service Monitoring).
Yu.	1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices,
Vupore. Vup	
" " " "	the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control
k Anbo	signals are detected, another frequency must be selected within the
-k hotek	
Dole. Vill	emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or
rek "upole"	
Aupo	without DFS), a U-NII device operating as a <i>Master Device</i> will be used to
Kotek Anbo	allow the UUT (Client device) to Associate with the Master Device. In case
And	the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i>
"upoter Vun	will be used and it is assumed that the Client will Associate with the UUT
b.	(Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator
ek Aupo,	will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> .
"Olek	
Procedure:	If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be
rriocedule.	directed toward the radar emitter. Vertical polarization is used for testing.
Anbotek Anbote	3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client</i>
iotek Aupor	Device on the test Channel for the entire period of the test.
And	4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for
upoter Aut	one of the Radar Type 0 in Table 5 at levels defined in Table 3 , on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to
b.,	ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for
tek Vupor	ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.
v zotek	5. Observe the transmissions of the UUT at the end of the radar <i>Burst</i> on
upoter Aup	the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and
Y. "Potek	record the transmissions from the UUT during the observation time (<i>Channel</i>
Aupor Air	Move Time) . Measure and record the Channel Move Time and Channel
"Otek Wupor	Closing Transmission Time if radar detection occurs, Figure 17 illustrates
Aup	Channel Closing Transmission Time.
Apolek An	6. When operating as a <i>Master Device</i> , monitor the UUT for more than 30
V.	minutes following instant T2 to verify that the UUT does not resume any
Olek Vupore	transmissions on this <i>Channel</i> . Perform this test once and record the
rotek	measurement result.
Sporek Vup.	7. In case the UUT is a U-NII device operating as a <i>Client Device</i> with <i>In-</i>
Y. rek "potek	Service Monitoring, perform steps 1 to 6.
Whole VIII	Locivide Monitoring, perioriti steps i to o.

7.1. EUT Operation

Operating Environment:


Test mode:

Anbolek

Aupotek

4: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device

7.2. Test Setup

7.3. Test Data

- V	VVV	The state of the s		17.1.		. 47	
Temperature:	24.5 °C	Humidity:	53 %	ψ	Atmospheric Pressure:	101 kPa	

Please Refer to Appendix for Details.

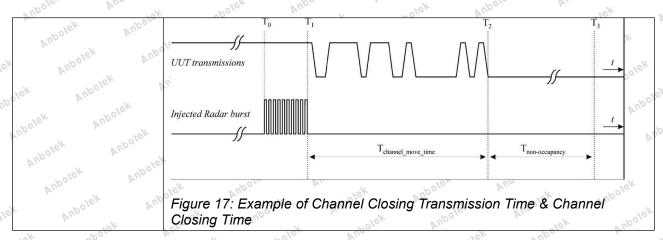
Hotline

www.anbotek.com

400-003-0500

Report No.:1812C40008312504

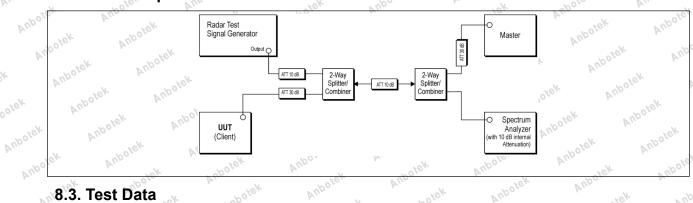
FCC ID: 2BKNU-FX2510


8. Non-Occupancy Period Test

Test Requirement:	47 CFR Part 15.407(h)(2)(iv)
Test Limit:	A channel that has been flagged as containing a radar system, either by a channel availability check or in-service monitoring, is subject to a non-occupancy period of at least 30 minutes. The non-occupancy period starts a the time when the radar system is detected.
Test Method:	KDB 905462 D02, Clause 7.8.3
tek Anbotek	The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> will be used to allow the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator
Procedure:	will be connected to the <i>Master Device</i> . For radiated tests, the emissions of the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> . If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test.
Vuposek Vuposek	4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3 , on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for
Anbotek Anbo	equipment variations/errors. 5. Observe the transmissions of the UUT at the end of the radar <i>Burst</i> on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and record the transmissions from the UUT during the observation time (<i>Channel</i>)
potek Aupolek	Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time. 6. When operating as a Master Device, monitor the UUT for more than 30
Vupor Vipotek	minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the

8.1. EUT Operation

Operating Environment:


Test mode:

Anbolek

Aupotek

4: Normal Operating: Keep the EUT works in normal operating mode and connect to companion device

8.2. Test Setup

8.3. Test Data

_	- V.	VA V			0/2	10.1.	_0.~	. 47	
	Temperature:	24.5 °C	onb	Humidity:	53 %	Ψ-	Atmospheric Pressure:	101 kPa	

Please Refer to Appendix for Details.

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

9. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3	Yur Votek Vupotek
Rotek Anbotek	Table 3: DFS Detection Thresholds for Master Detection Table 3: DFS Detection Thresholds for Master Detection Table 3: DFS Detection Thresholds for Master Devices with Radar Devices	ster Devices
Test Limit: Anbotek Anbotek Anbotek Anbotek	Maximum Transmit Power EIRP ≥ 200 milliwatt EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz EIRP < 200 milliwatt that do not meet the power spectral density requirement Note 1: This is the level at the input of the receiver assuming a 0 dI	Value (See Notes 1, 2, and 3) -64 dBm -62 dBm
Test Method:	Note 2: Throughout these test procedures an additional 1 dB has be test transmission waveforms to account for variations in measurementhe test signal is at or above the detection threshold level to trigger Note3: EIRP is based on the highest antenna gain. For MIMO devided by the Note of the No	ten added to the amplitude of the ent equipment. This will ensure that a DFS response.
Procedure: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	1) A 50 ohm load is connected in place of the spectrum analyzer is connected to place of the 2) The interference Radar Detection Threshold had been taken into account the output power r 3) The following equipment setup was used to a waveform. A vector signal generator was utilized level for radar type 0. During this process, there either the master or client device. The spectrum the zero spans (time domain) at the frequency of generator. Peak detection was used. The spectrum analyzer had offset -1.0dB to compend 4) The vector signal generator amplitude was some measured at the spectrum analyzer was TH + 0 the spectrum analyzer plots on short pulse radar Note: TH=-64 dBm or -62 dBm	master Level is TH+ 0dBi +1dB that range and antenna gain. calibrate the conducted radar d to establish the test signal were no transmissions by a analyzer was switched to of the radar waveform rum analyzer resolution were set to 3 MHz. The isate RF cable loss 1.0dB. et so that the power level odBi +1dB = -63dBm. Capture
9.1. EUT Operation	lek Aupoley Aun Aupolek Aupolek	Votek Vupofek

9.1. EUT Operation

Anbo

Aupolek

Operating Envi	ronment:	Vun Viek	* upotek	Aupo,	botek	Anbole
Test mode:	4: Normal Opera	ting: Keep the EU	T works in	normal operating	g mode and	connect to
rest mode.	companion device	e hotek	Aupo	rek	Aupolo	W

Product Safety

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Aupolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

FCC ID: 2BKNU-FX2510

Anbotek

Anbotek

Aupolek

Aupolek

Page 30 of 54

Anbolek

Aupolek

Anbolek

Anbolek

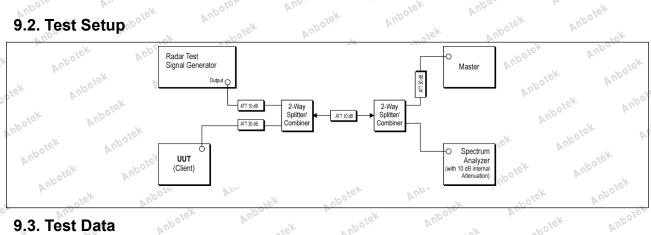
Anbotek

Anbotek

Anbotek

Anbotek

Anbotek


Anbolek

Anboiek

Anbolek

Anbotek

9.2. Test Setup

9.3. Test Data

	9.3. Test Data	Anbore	All	P	upolek	And	Anbot	Ek V	1000
Up	Temperature:	24.5 °C	Humidity:	53 %	Aupole,	Atmospheric Pr	essure:	101 kPa	Aupo
	Please Refer to	Appendix for Det	ails.	nbotek	Anb	otek Aupo	otek	Aupolek	A

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Aupolek

Anbolek

Anbolek

Anbolek

Anbolek

Anboiek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

Anbotek

Anbotek

Test Limit:

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

10. Band edge emissions (Radiated)

	DA.	10.	- N-	-100	0.4	. 0.1
N.	spotek Aup	47 CFR Part 15.407(b)(1)	,010.	Yu.	abotek	Aup
> .	VII.	47 CFR Part 15.407(b)(2)	"Olek	Anbore	W. rek	" upole.
	Test Requirement:	47 CFR Part 15.407(b)(3)	AUD	Potek	Aupo.	A
O,	Otek	47 CFR Part 15.407(b)(4)	"upoler	VUD.	hotek	Anbo
	Sporek Aups	47 CFR Part 15.407(b)(10)	A.	k vuporer	And	.K
1	16.	- VU	2/00		1	

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz Anbo	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-	608-614	5.35-5.46
K Aupor	16.69525	Vur.	Polek
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
Oler Yup	16.80475	ο· γ	Jek Vupole
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
Ann ok	Jek Vupo	1646.5	Anbore
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
ek Aupo	otek Anbor	1722.2	K upoler
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
Anbo	156.52525	V. FEK	" upoler Vi
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) nbole
13.36-13.41	Vue	Polek Vupo	
200	i Oler V		184 40

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall

² Above 38.6

not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

, 18. VID	- K	A. Carrier
Frequency (MHz)	Field strength	Measurement
spotek Aupotek Ar	(microvolts/meter)	distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30,010 A
1.705-30.0	30 Not Auport	30
30-88	100 ** 100	3 Anbor
88-216	150 ** Note: And	3 Solek
216-960 M	200 **	3 And
Above 960	500 Anbo	3r Moles

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna.
- which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified

Procedure:

and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Aupolek

Anbotek

Anbotek

Anbotek

Anborek

Anbotek

Anbotek

Anbotek

Anboiek

Anbotek

Anbolek

Anbotek

Anbolek

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

Anbolek

Aupolek

Anbotek

Aupolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anboiek

Page 34 of 54

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Aupolek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Aupolek

Anbotek

Aupolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

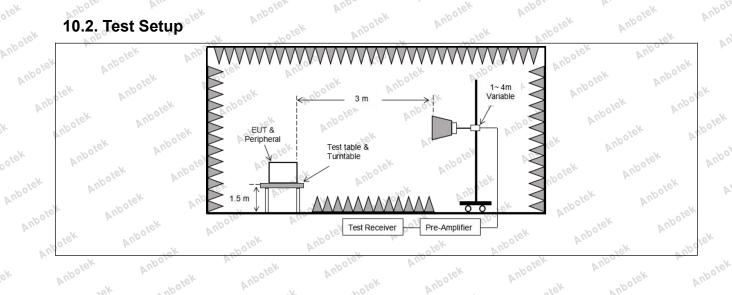
Anbotek

Anbolek

Anbolek

Anbolek

Anbotek


Anbotek

Anbotek

Anbotek

10.2. Test Setup

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Hotline 400-003-0500 www.anbotek.com

Anbolek

AND

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

10.3. Test Data

Temperature:	24.5 °C	Humidity:	53 %	Atmospheric Pressure:	101 kPa	
--------------	---------	-----------	------	-----------------------	---------	--

	10° You) . V	V	10 10	Vi.	101	V UD.			
	TM1 / Band: 5150-5350 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	37.03	15.99	53.02	68.20	-15.18 nbo	Н	Peak			
5150.00	39.12	15.99	55.11 ^{nb0}	68.20	13.09	Upoles A	Peak			
5150.00	26.96	15.99	o ^{vel} 42.95 M	54.00	-11.05	Aupolek	AVG			
5150.00	29.02	15.99	45.01	54.00	-8.99	Notek	AVG			
		TM1 / B	and: 5150-53	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5350.00	37.47	16.43	× 53.90 no	68.20	-14.30	^{upotek} H	Peak			
5350.00	40.45	16.43	56.88	68.20	-11.32	Ž.	Peak			
5350.00	28.81	16.43	45.24	54.00	-8.76	Pup H *Sk	AVG			
5350.00	29.69	16.43	46.12	54.00	-7.88	No.	AVG			

Remark:

1. Result=Reading + Factor

P.		V1.		- 00	, -		~0 °			
	TM2 / Band: 5150-5350 MHz / BW: 20 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Detector				
5150.00	35.96	15.99	51.95	68.20	-16.25	Hupon	Peak			
5150.00	37.37	15.99	53.36	68.20	-14.84	K V Vupo	Peak			
5150.00	26.68	15.99	42.67	54.00	-11.33	olek H A	AVG			
5150.00	27.67	15.99	43.66	54.00 N	-10.34	Votod	AVG			
		TM2 / B	and: 5150-5	350 MHz / BV	V: 20 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5350.00	37.79	16.43	54.22	68.20	-13.98	ek H nabo	Peak An			
5350.00	38.82	16.43	55.25	68.20	-12.95	V	Peak			
5350.00	27.83	16.43	44.26	54.00	010 - 9.74 A	hbota H	AVG			
5350.00	29.30	16.43	45.73	54.00	-8.27	No Off	AVG			
Remark:	otek And	Ofer Vu	"otek	Aupolek	Aupo	, upotek	Anbore			

Remark:

1. Result=Reading + Factor

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

	VII.	-0\	- 00	*		~0. k	*			
	TM2 / Band: 5150-5350 MHz / BW: 40 / L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5150.00	36.53	15.99	52.52	68.20	-15.68	Hobotek	Peak			
5150.00	38.37	15.99	54.36	68.20	-13.84	A	rek Peak Anb			
5150.00	27.11	15.99	43.10	54.00	-10.90 nbo	H	AVG			
5150.00	28.77	15.99	44.76	54.00	9.24	Upoles A	AVG			
6		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
5350.00	38.12	16.43	54.55	68.20	-13.65	HAND	Peak			
5350.00	36.97	16.43	53.40	68.20	-14.80	otek A Vup	Peak			
5350.00	28.36	16.43	44.79	54.00 May	-9.21	Hyar	AVG			
5350.00	29.57	16.43 nbo	46.00	54.00	00.8-10dg	YUD AK	AVG			

Remark:

1. Result=Reading + Factor

TM3 / Band: 5150-5350 MHz / BW: 20 / L									
Reading (dBuV)	Factor (dB/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector				
37.00	15.99 Anbo	52.99	68.20	-15.21	And Hek	Peak			
38.76	15.99	54.75	68.20	-13.45	VubA 16k	Peak			
26.59	15.99	42.58	54.00	-11.42	Hupon	AVG			
28.80	15.99	44.79	54.00	-9.21	K Aupo,	AVG			
	TM3 / Ba	and: 5150-53	350 MHz / BV	V: 20 / H					
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
37.91 And	16.43	54.34	68.20	-13.86	AnH	Peak			
38.16	16.43	54.59	68.20	-13.61	Vupolek	Peak			
27.83	16.43	44.26	54.00	-9.74	H NO	LOK AVG AND			
28.42	16.43	44.85	54.00	ek -9.15 _{Anbo}	A V	AVG			
	(dBuV) 37.00 38.76 26.59 28.80 Reading (dBuV) 37.91 38.16 27.83	Reading (dBuV) (dB/m) 37.00 15.99 38.76 15.99 26.59 15.99 28.80 15.99 TM3 / Barren (dBuV) (dB/m) 37.91 16.43 38.16 16.43 27.83 16.43	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 37.00 15.99 52.99 38.76 15.99 54.75 26.59 15.99 42.58 28.80 15.99 44.79 TM3 / Band: 5150-53 Reading (dBuV) Result (dBuV/m) 37.91 16.43 54.34 38.16 16.43 54.59 27.83 16.43 44.26	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 37.00 15.99 52.99 68.20 38.76 15.99 54.75 68.20 26.59 15.99 42.58 54.00 28.80 15.99 44.79 54.00 TM3 / Band: 5150-5350 MHz / BV Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) 37.91 16.43 54.34 68.20 38.16 16.43 54.59 68.20 27.83 16.43 44.26 54.00	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) 37.00 15.99 52.99 68.20 -15.21 38.76 15.99 54.75 68.20 -13.45 26.59 15.99 42.58 54.00 -11.42 28.80 15.99 44.79 54.00 -9.21 TM3 / Band: 5150-5350 MHz / BW: 20 / H Reading (dBuV) Result (dBuV/m) Umit (dBuV/m) Over limit (dBuV/m) 37.91 16.43 54.34 68.20 -13.86 38.16 16.43 54.59 68.20 -13.61 27.83 16.43 44.26 54.00 -9.74	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 37.00 15.99 52.99 68.20 -15.21 H 38.76 15.99 54.75 68.20 -13.45 V 26.59 15.99 42.58 54.00 -11.42 H 28.80 15.99 44.79 54.00 -9.21 V TM3 / Band: 5150-5350 MHz / BW: 20 / H Reading (dBuV) Factor (dB/m) Result (dBuV/m) Over limit (dB) Antenna Pol. 37.91 16.43 54.34 68.20 -13.86 H 38.16 16.43 54.59 68.20 -13.61 V 27.83 16.43 44.26 54.00 -9.74 H			

Remark:

1. Result=Reading + Factor

requency (MHz) 5150.00	Reading (dBuV) 35.94	Factor (dB/m)	Result (dBuV/m)	Limit	Over limit	Antenna	
h.,	35.94		(abav/III)	(dBuV/m)	(dB)	Pol.	Detector
= 4 = 0 = 0 =	1	15.99	51.93	68.20	-16.27	HOM	Peak
5150.00	36.37	15.99	52.36	68.20	-15.84	Nupole	Peak
5150.00	26.15	15.99	42.14	54.00	-11.86	ick H Anbo	AVG A
5150.00	26.86	15.99	42.85	54.00 nbo	-11.15	Clek V	nb ^{ot®} AVG
		TM3 / B	and: 5150-53	350 MHz / BW	/: 40 / H		
requency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.08	16.43	54.51	68.20	-13.69	H Nove	Peak
5350.00	37.21	16.43	53.64	68.20	-14.56	V	ve Peak
5350.00	27.52	16.43	43.95	54.00	-10.05 mb	H AND	AVG
5050.00	27.54	16.43	43.97	54.00	-10.03	PotekA	AVG
5350.00				upotek b		Aupotek June	Anbolek
VU.	194	67700	43.97	54.00 Anbs	D1.	nbote ^K V	1/2

Remark:

.V. 1	voles. Vi	100	LOK	1400	You	20010	br.
		TM3 / B	and: 5150-53	350 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.05	15.99	52.04	10 68.20 pm	-16.16 And	H	Peak
5150.00	36.50	15.99 _{Απ} ος	52.49	68.20	-15.71	Aupo Alek	Peak
5150.00	26.64	15.99	42.63	54.00	-11.37	And H	AVG
5150.00	26.88	15.99	42.87	54.00	-11.13	Npore	AVG
		TM3 / B	and: 5150-53	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.36	16.43	o ^{vek} 54.79 knh	68.20	-13.41	AnboreH	Peak
5350.00	37.49 And	16.43	53.92	68.20	-14.28	"LINIEK	Peak
5350.00	28.87	16.43	45.30	54.00	-8.70	H hotek	AVG
5350.00	28.15	16.43	44.58	54.00	-9.42	V.	AVG NO

Remark:

Anborek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

V Up.	You	200.	h.	O'T'	VIII		181
	146.1	TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	10 ^k 38.30 km	16.37	54.67	68.20	-13.53	Hick	Peak
5460.00	39.73	16.37	56.10	68.20	-12.10	V Jek	Peak
5470.00	39.23	16.70	55.93	68.20	-12.27	H _{up}	Peak
5470.00	40.02	16.70	56.72	68.20	-11.48	tek V Aupo	Peak
5460.00	28.86	16.37	45.23	54.00 00	-8.77 And	Н	AVG
5460.00	28.74	16.37	45.11	54.00	-8.89	Upor A	AVG
5470.00	29.13	16.70	45.83	54.00	-8.17	Hody	AVG
5470.00	30.25	o ^{ten} 16.70 An	46.95	54.00	A ^{nb} -7.05	Votek	AVG
o'		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	39.27	17.21	56.48	68.20	Lek -11.72 nb	H VUL	Peak
5850.00	39.66	17.21	56.87	68.20	-11.33	Vysion	Peak
5850.00	29.23	17.21 nbo	46.44	54.00	7.56	Hk	AVG
5850.00	29.22	17.21	46.43	54.00	-7.57	Aup €	AVG

Remark:

Anbotek

Anbo

1. Result=Reading + Factor

Dr.	16.	V Ur	40.	- AD-0	¥.		-010 B1.
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.29	16.37	54.66	68.20	-13.54	nbHi ^{er}	Peak
5460.00	38.90	16.37	55.27	68.20	-12.93	V Notek	Peak
5470.00	38.40	16.70	55.10	68.20	-13,10	H	Peak
5470.00	38.85	16.70	55.55	68.20	-12.65	ok A Vupo,	Peak
5460.00	27.23	16.37	43.60	54.00	-10.40	H Yer	AVG N
5460.00	27.69	16.37	44.06	54.00	-9.94 M	V	AVG
5470.00	27.67	16.70	14.37 Ant	54.00	-9.63	AnboleH	AVG
5470.00	28.23 And	16.70	44.93	54.00	-9.07	Rick	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.51	17.21	54.72	68.20	-13.48	Н	Peak
5850.00	38.09	17.21	55.30 00 00 00 00 00 00 00 00 00 00 00 00 0	68.20	-12.90	Polek A b	Peak
5850.00	27.82	17.21	45.03	54.00 N	-8.97	·	AVG
5850.00	28.60	Net 17.21 AN	45.81	54.00	-8.19	Ando	AVG

Remark: 1000

Aupolek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

76.	VIII		400	*	V	more B	*
		TM2 / B	and: 5470-58	850 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.87	16.37	54.24	68.20	-13.96	ATH LOK	Peak
5460.00	38.78	16.37	55.15	68.20	-13.05	Nupote	Peak
5470.00	38.70	16.70	55.40	68.20	-12.80	ek H nbo	Peak And
5470.00	39.39	16.70	56.09	68.20	-12.11\https://doi.org/10.11	V	Peak
5460.00	26.95	16.37	43.32	54.00	10.68	Upole" H	AVG
5460.00	28.79	16.37	45.16	54.00	-8.84	No. A.	AVG
5470.00	27.15	16.70 M	43.85	54.00	10.15	H	AVG
5470.00	28.47	16.70	45.17	54.00	-8.83	PV	AVG
		TM2 / B	and: 5470-58	350 MHz / BW	/: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.23	17.21	55.44	68.20 kg/b ^c	-12.76	H	Peak
5850.00	38.57	17.21	55.78	68.20	12.42	rups A	Peak
5850.00	28.41	17.21	45.62	54.00	-8.38	Hong	AVG
5850.00	29.47 N	17.21	46.68	54.00	-7.32	Potek	AVG

Remark:

1. Result=Reading + Factor

		16.1.		1.0.7		
	TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
37.49	16.37	53.86	68.20	-14.34	H 18k	Peak
37.58	16.37	53.95	68.20	-14.25	N.p.	Peak
38.07	16.70	54.77	68.20	-13.43	K H Anbot	Peak
38.38	16.70	55.08	68.20	-13.12	V	Peak
28.09	16.37	44.46	54.00	-9.54 M	Pole H	AVG
28.78	16.37	45.15 N	54.00	-8.85	Prode	AVG
28.37	16.70 And	45.07	54.00	-8.93	Hyek	AVG
29.24	16.70	45.94	54.00	-8.06	PUN NA	AVG
	TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
38.23	17.21	55.44	68.20	-12.76	hotek H P	Peak
39.09	17.21 ^{1/00}	56.30	68.20	-11.90 A	V	Peak
28.08	17.21 N	45.29 M	54.00	-8.71	AnboH	AVG
o ^{tek} 29.20 km²	17.21	46.41	54.00	-7.59	Noter	AVG
	(dBuV) 37.49 37.58 38.07 38.38 28.09 28.78 28.37 29.24 Reading (dBuV) 38.23 39.09 28.08	Reading (dBuV) (dB/m) 37.49 16.37 37.58 16.37 38.07 16.70 38.38 16.70 28.09 16.37 28.78 16.37 28.37 16.70 29.24 16.70 TM3 / B Reading (dBuV) (dB/m) 38.23 17.21 39.09 17.21 28.08 17.21	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 37.49 16.37 53.86 37.58 16.37 53.95 38.07 16.70 54.77 38.38 16.70 55.08 28.09 16.37 44.46 28.78 16.37 45.15 28.37 16.70 45.07 29.24 16.70 45.94 TM3 / Band: 5470-58 Reading (dBuV) (dB/m) (dBuV/m) 38.23 17.21 55.44 39.09 17.21 56.30 28.08 17.21 45.29	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 37.49 16.37 53.86 68.20 37.58 16.37 53.95 68.20 38.07 16.70 54.77 68.20 38.38 16.70 55.08 68.20 28.09 16.37 44.46 54.00 28.78 16.37 45.15 54.00 28.37 16.70 45.07 54.00 29.24 16.70 45.94 54.00 TM3 / Band: 5470-5850 MHz / BV Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) 38.23 17.21 55.44 68.20 39.09 17.21 56.30 68.20 28.08 17.21 45.29 54.00	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 37.49 16.37 53.86 68.20 -14.34 37.58 16.37 53.95 68.20 -14.25 38.07 16.70 54.77 68.20 -13.43 38.38 16.70 55.08 68.20 -13.12 28.09 16.37 44.46 54.00 -9.54 28.78 16.37 45.15 54.00 -8.85 28.37 16.70 45.07 54.00 -8.93 29.24 16.70 45.94 54.00 -8.06 TM3 / Band: 5470-5850 MHz / BW: 20 / H Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 38.23 17.21 55.44 68.20 -12.76 39.09 17.21 56.30 68.20 -11.90 28.08 17.21 45.29 54.00 -8.71	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 37.49 16.37 53.86 68.20 -14.34 H 37.58 16.37 53.95 68.20 -14.25 V 38.07 16.70 54.77 68.20 -13.43 H 38.38 16.70 55.08 68.20 -13.12 V 28.09 16.37 44.46 54.00 -9.54 H 28.78 16.37 45.15 54.00 -8.85 V 28.37 16.70 45.07 54.00 -8.93 H 29.24 16.70 45.94 54.00 -8.06 V TM3 / Band: 5470-5850 MHz / BW: 20 / H Reading (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Antenna Pol. 38.23 17.21 55.44 68.20 -12.76 H 39.09 17.21 56.30 68.20 -11.90 V 28.08

Remark:

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

*upotek	Aupo	Potek	Anbore	VII.	k Aupor	EK AUD	. rek
15.	3461	TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	36.42 And	16.37	52.79	68.20	-15.41	Hick	Peak
5460.00	37.91	16.37	54.28	68.20	-13.92	N OFEK	Peak
5470.00	36.85	16.70	53.55	68.20	-14.65	Hall	Peak
5470.00	38.25	16.70	54.95	68.20	-13.25	ick A Pupo	Peak
5460.00	27.40	16.37	43.77	54.00	-10.23	H	AVG
5460.00	27.52	16.37	43.89	54.00	10.11	Upor A	AVG
5470.00	27.65	16.70	44.35	54.00	-9.65	Hodge	AVG
5470.00	28.33	16.70 AT	45.03	54.00	-8.97	Votek	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.76	17.21	54.97	68.20		Pron H And	Peak
5850.00	38.64	17.21	55.85	68.20 And	-12.35	hotekV	Peak
5850.00	27.77	17.21 nbo	44.98	54.00	,001-9.02	H/k	AVG
5850.00	27.43	17.21	100 ¹⁰ 44.64	54.00	-9.36	<i>Pup</i> ∧	AVG

Remark:

Anbotek

1. Result=Reading + Factor

V0.		~ ~ ~	W.L.	LO3	- 40		V
		TM3 / B	and: 5470-58	850 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	35.69	16.37 And	52.06	68.20	-16.14	Her	Peak
5460.00	37.25	16.37	53.62	68.20	-14.58	Nubo of	Peak
5470.00	36.05	16.70	52.75	68.20	-15.45	Hipote	Peak
5470.00	38.20	16.70	54.90	68.20	-13.30	V NOON	Peak Peak
5460.00	26.01	16.37	42.38	54.00	-11.62	Н	AVG
5460.00	27.07	16.37	43.44	54.00	-10.56	Polek A V	AVG
5470.00	26.76	16.70	43.46	54.00 M	-10.54	, okdH	AVG
5470.00	27.28	16.70 pm	43.98	54.00	-10.02	And V.K	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.81	17.21	55.02	68.20	-13.18	ick H Aupo	Peak
5850.00	38.06	17.21	55.27	68.20	-12.93	, _e , V	Peak
5850.00	28.26	17.21,bote	45.47	54.00	1001eX-8.53	Wood H	AVG
5850.00	28.42	17.21	45.63 N	54.00	-8,37	Nupo Ch	AVG
Remark:	otek Ant	Jose Yu	"O'tek	Aupolek	Anbo	, upotek	Auporg

Remark:

11. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	pore Viek	Anbore And
tek Aupotek	Unwanted emissions below strength limits set forth in §		h the general field
Whotek Whotek	Except as provided elsewh intentional radiator shall no following table:		
Aupolek Aur	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
ofek Vupolek	0.009-0.490 0.490-1.705 1.705-30.0	2400/F(kHz) 24000/F(kHz) 30	300 30 30
Test Limit:	30-88 88-216	100 ** 150 ** 200 **	nbotek 3 Ambotek
Aupolek Aupor	216-960 Above 960	500	Anbotel 3 Anbote
Dotek Aupotek Yupotek	** Except as provided in paintentional radiators operation frequency bands 54-72 MH However, operation within sections of this part, e.g., §	ting under this section sha Hz, 76-88 MHz, 174-216 M these frequency bands is	all not be located in the MHz or 470-806 MHz.
			-V
Aupotek Aupotek	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are base	e, the tighter limit applies in the above table are ba peak detector except for above 1000 MHz. Radiate	ased on measurements the frequency bands 9– ed emission limits in
ek Aupotek Aupotek	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are based etector.	e, the tighter limit applies in the above table are ba peak detector except for above 1000 MHz. Radiate ed on measurements emp	ased on measurements the frequency bands 9– ed emission limits in
Test Method:	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are bas detector. ANSI C63.10-2020, section	e, the tighter limit applies in the above table are ba peak detector except for above 1000 MHz. Radiate ed on measurements emp	ased on measurements the frequency bands 9– ed emission limits in
Anbotek	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are based etector.	e, the tighter limit applies in the above table are bath peak detector except for above 1000 MHz. Radiated on measurements empty 12.7.4, 12.7.5 JT was placed on the top at a 3 meter semi-anechoice.	ased on measurements the frequency bands 9— ed emission limits in ploying an average of a rotating table 0.8 ic chamber. The table
Anbotek	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are based etector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mounted the section of the experience of the section of the experience of the experienc	e, the tighter limit applies in the above table are bath peak detector except for above 1000 MHz. Radiated on measurements empty of the table at a 3 meter semi-anechoicologo determine the position of meters away from the inted on the top of a variable.	ased on measurements the frequency bands 9– ed emission limits in ploying an average of a rotating table 0.8 ic chamber. The table of the highest radiation. Interference-receiving le-height antenna tower.
Aupotek Vipotek	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are based detector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is varied ground to determine the mand vertical polarizations of	e, the tighter limit applies in the above table are bath peak detector except for above 1000 MHz. Radiated on measurements empty of the area of the top of a variable aried from one meter to for aximum value of the field of the antenna are set to not peak and the set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the antenna are set to make the control of the field of the control	of a rotating table 0.8 ic chamber. The table of the highest radiation. Interference-receiving le-height antenna tower. Sur meters above the strength. Both horizontanake the measurement.
Aupotek Aupotek Aupotek Aupotek	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are based detector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is vaground to determine the mission of the section of the secti	e, the tighter limit applies in the above table are bath peak detector except for above 1000 MHz. Radiated on measurements empty of the area as meter semi-anechoic determine the position of the top at a 3 meter semi-anechoic determine the position of the meters away from the intended on the top of a variable aried from one meter to for aximum value of the field of the antenna are set to not ission, the EUT was arrangituned to heights from 1 meters and the service of	of a rotating table 0.8 ic chamber. The table of the highest radiation. Interference-receiving le-height antenna tower. Bur meters above the strength. Both horizonta make the measurement. Inged to its worst case meter to 4 meters (for the
Tek Aupotek Aupotek Aupotek Aupotek Aupotek Aupotek	In the emission table above The emission limits shown employing a CISPR quasi-90 kHz, 110–490 kHz and these three bands are based etector. ANSI C63.10-2020, section Below 1GHz: a. For below 1GHz, the EU meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is varied ground to determine the mand vertical polarizations of d. For each suspected emiand then the antenna was	e, the tighter limit applies in the above table are bath peak detector except for above 1000 MHz. Radiated on measurements empty of the area as meter semi-anechoic determine the position of the antenna are set to not a sturned to heights from 1 mMHz, the antenna was turned in was set to Peak Detect on the above to Peak Detect on was set to Peak Detect on the above table and the peak Detect on was set to Peak Detect on the above table and the peak Detect on was set to Peak Detect on the above table and the peak Detect on the above table are table and the peak Detect on the above table are table and the peak Detect on the above table are table and the peak Detect on the above table are table and the peak Detect of the above table are table and the peak Detect of the above table are table are table and the peak Detect of the above table are	of a rotating table 0.8 ic chamber. The table of the highest radiation. Interference-receiving de-height antenna tower. Our meters above the strength. Both horizontal make the measurement. Inged to its worst case meter to 4 meters (for the ned to heights 1 meter) of 360 degrees to find the

then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

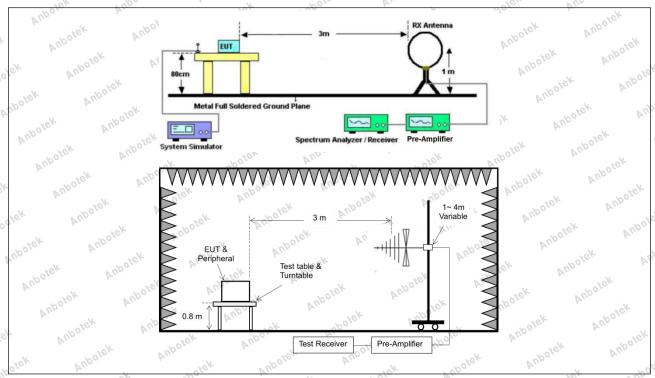
Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength

limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

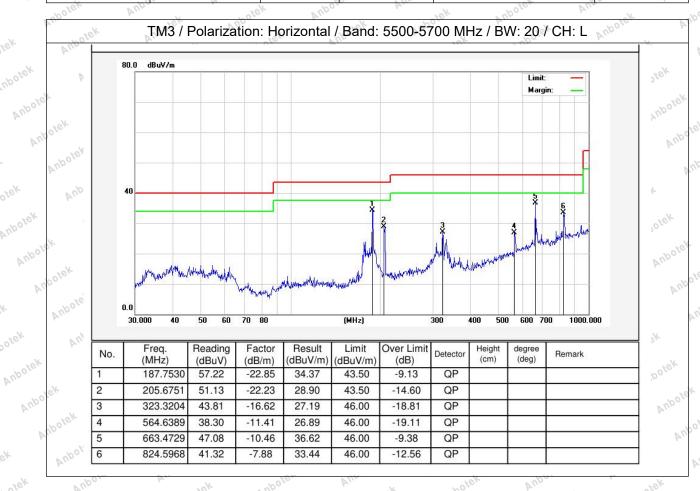

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

- 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

11.2. Test Setup

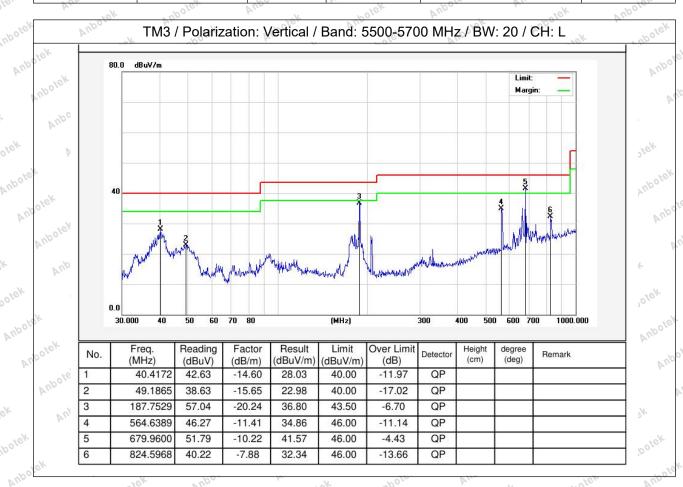

Aupolek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

11.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa



Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data (802.11ac(HT20)) in the report.

Test Limit:

Report No.:1812C40008312504

FCC ID: 2BKNU-FX2510

12. Undesirable emission limits (above 1GHz)

V	hotek Anb	47 CFR Part 15.407(b)(1)	Vun	"polek Vupo
300	Ann	47 CFR Part 15.407(b)(2)	ek Aupore	VII.
	Test Requirement:	47 CFR Part 15.407(b)(3)	, polek	Aupor
Ò,	Stek	47 CFR Part 15.407(b)(4)	POISE VIDE	Polek Vupo
	Sporter Aupo	47 CFR Part 15.407(b)(10)	rek upoter	And
1	V. Ver	- Vun	5 3 5 5 5 5 5 1 1	Au Note A

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

MHz	MHz Anbote	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
k Aupor	16.69525	Ann	-polek
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
ore, Aur	16.80475	,	stek Anbore
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
Vur.	lek Aupo	1646.5	Anbore
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
ek Aupo	otek Anbore	1722.2	k apoler
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
Ande	156.52525	P. rek	* upole, Vi
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) Moote
13.36-13.41	Vu.	POICK VUDE	

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

The field strength of emissions appearing within these frequency bands shall

² Above 38.6

not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Tollowing tables	-K 20,	Px.
Frequency (MHz)	Field strength	Measurement
hotek Anbotek A	(microvolts/meter)	distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30,010 P
1.705-30.0	30 Stek Anbore	30
30-88	100 **	3 Anbor
88-216	150 ** Nover And	3 Jokek
216-960	200 **	3 And
Above 960	500	3. Moles

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:

Procedure:

ANSI C63.10-2020, section 12.7.4, 12.7.6, 12.7.7

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified

and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

12.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Aupolek

Aupolek

Anbolek

Aupolek

Anbotek

Anbotek

Aupolek

Anbotek

Anbotek

Anboiek

Anbolek

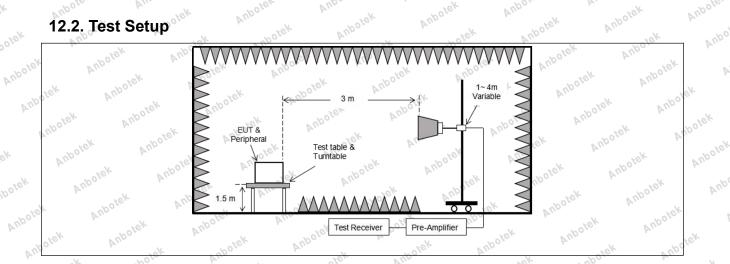
Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

Anbotek

Aupolek

Anboiek

Aupolek


Anboiek

Anbolek

Anbolek

Anbotek

12.2. Test Setup

12.3. Test Data

Temperature:	24.5 °C	Humidity:	53 %	Atmospheric Pressure:	101 kPa	
. omporataro.	=	Moi rairii aity.	00 100	Managhierion recedie.	1011110	1

Anbotek

Anbotek

Anbolek

Anbolek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Aupolek

Anbolek

Anbotek

Anboiek

rek	Vupo,	b.	hole	V. Ville	V	"Olek b	upo	
TM3 / Band: 5150-5250 MHz / BW: 20 / CH: L								
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10360.00	31.45	23.81	55.26	68.20	-12.94	V Votek	Peak	
15540.00	32.75	28.68	61.43	68.20	-6.77	VARIA	Peak	
10360.00	31.80	23.81	55.61	68.20	-12.59 ₃₀ 0	ick H Aup	Peak	
15540.00	32.85	28.68	61.53	68.20 nbo	-6.67	-otek H	no Peak	
10360.00	20.804	23.81	44.61	54.00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iun Kr	AVG	
15540.00	21.862	28.68	50.54	54.00	-3.46	Anbov	AVG	
10360.00	20.988	23.81	44.80	54.00	-9.20	V Poler	AVG	
15540.00	21.546	28.68	50.23	54.00	-3.77	H noote	AVG nbox	
P		TM3 / Ban	d: 5150-5250	MHz / BW:	20 / CH: M			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10400.00	30.81	23.81,100	54.62	68.20	-13.58	And Vek	Peak	
15600.00	32.28	29.13	61.41	68.20	-6.79	Anb P	Peak	
10400.00	o ^{telk} 31.29 km	23.81	55.10	68.20	-13.10	Hoten	Peak	
15600.00	32.37	29.13	61.50	68.20	-6.70	H NON	Peak noo	
10400.00	21.074	23.81	44.88	54.00	-9.12 h	V	AVG	
15600.00	21.982	29.13	51.11	54.00	10 -2.89 NO	oter A Vi	AVG	
10400.00	20.978	23.81	44.79 _{Mb}	54.00 M	-9.21	Herodo	ANG	
15600.00	21.626	29.13	50.76	54.00	-3.24	Hick	AVG	
2		TM3 / Ban	d: 5150-5250	MHz / BW:	20 / CH: H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
10480.00	30.38	23.80	54.18	68.20	-14.02	V	Peak	
15720.00	31.76	30.03	61.79	68.20	-6.41	poler A	Peak	
10480.00	30.93	23.80	54.73	otek 68.20 kg	-13.47	Hioda.	Peak	
15720.00	31.28	30.03 knb	61.31	68.20	-6.89	H'sk	Peak	
10480.00	19.74	23.80	43.54	54.00	-10.46	AND LOK	AVG	
15720.00	20.74	30.03	50.77	54.00	-3.23	Nupole	AVG	
10480.00	20.19	23.80	43.99	54.00	-10.01	ek H and	AVG And	
15720.00	20.42	30.03	50.45	54.00 00	-3.55 And	Н	AVG	

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(HT20)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

VU	100	- 20		v ~ ~ ~	12.		76.			
	TM3 / Band: 5250-5350 MHz / BW: 20 / CH: L									
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10520.00	27.74 And	23.81	51.55	68.20	-16.65	V. Asher	Peak			
15780.00	29.11	30.48	59.59	68.20	-8.61	Vaporek	Peak			
10520.00	28.67	23.81	52.48	68.20	-15.72	H	rek Peak who			
15780.00	27.76	30.48	58.24	68.20	ek -9.96 m	H And	Peak			
10520.00	17.601	23.81	41.41,00 ¹	54.00	-12.59	10016KV	AVG			
15780.00	19.294	30.48	49.77	54.00	-4.23	N.	AVG			
10520.00	19.052	23.81 M	42.86	54.00	-11.14	And H .ok	AVG			
15780.00	18.484	30.48	48.96	54.00	-5.04	AH C	AVG			
		TM3 / Ban	d: 5250-5350	MHz / BW:	20 / CH: M					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10600.00	28.93	23.87	× 52.80 0	68.20	-15.40	Valorek	Peak			
15900.00	28.16	31.38	59.54	68.20	-8.66	N.	Peak			
10600.00	27.97	23.87	51.84	68.20	-16.36	Anod H	Peak			
15900.00	28.18	31.38	59.56	68.20	-8.64	Hpore	Peak			
10600.00	18.271	23.87	42.14	54.00	-11.86	k V Aupol	AVG			
15900.00	19.044	31.38	50.42	54.00	-3.58	V	AVG N			
10600.00	18.332	23.87	42.20	54.00	otek-11.80 kg	H	AVG			
15900.00	18.634	31.38	tek 50.01 And	54.00	-3.99	nboleH	AVG			
		TM3 / Ban	d: 5250-5350	MHz / BW:	20 / CH: H					
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector			
10640.00	28.27	23.90	52.17	68.20	-16.03	ok V NO	Peak Mill			
15960.00	27.66	31.83	59.49	68.20	-8.71 h	V	Peak			
10640.00	28.34	23.90	52.24	68.20	ove [¥] -15.96 №	pole H	Peak			
15960.00	27.74	31.83	59.57 An	68.20	-8.63	Aloga H	Peak			
10640.00	ek 17.01 noc	23.90	40.91	54.00	-13.09	Potek	AVG			
15960.00	18.00	31.83	49.83	54.00	-4.17	Vunn Viek	AVG 0000			
10640.00	17.50	23.90	41.40	54.00	-12.60	H _{V/po} ,	AVG			
15960.00	18.95	31.83	50.78	54.00	-3.22	iek H And	AVG			

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(HT20)) is recorded in the report.
- est frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

VUpo.	Yar	20010	VII.	, , , o/s	YUD.	*	iek.
		TM3 / Ban	d: 5470-572	5 MHz / BW:	20 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11000.00	26.95	24.15	51.10	68.20	-17.10	V_{i} A_{i} A_{i}	Peak
16500.00	29.04	33.05	62.09	68.20	-6.11	V abotek	Peak
11000.00	28.73	24.15	52.88	68.20	-15.32	H	Peak w
16500.00	29.13	33.05	62.18	68.20	-6.02 no	H AUD	Peak
11000.00	16.606	24.15	40.76	54.00	-13.24	"polekV	AVG
16500.00	17.919	33.05	50.97	54.00	-3.03	N.	AVG
11000.00	16.802	24.15 M	40.95	54.00	-13.05	Ano H .e.k	AVG
16500.00	16.722	33.05	49.77	54.00	-4.23	PP°	AVG
		TM3 / Ban	d: 5470-5725	MHz / BW:	20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11200.000	26.63	23.83	50.46	68.20	-17.74	Votek	Peak
16800.000	27.21	32.16	59.37	68.20	-8.83	No.	Peak
11200.000	27.66	23.83	51.49	68.20	-16.71	And H	Peak
16800.000	27.74	32.16	59.90	68.20	-8.30	Hport	Peak
11200.000	16.856	23.83	40.69	54.00	-13.31	k V Anboli	AVG
16800.000	18.319	32.16	50.48	54.00	-3.52	V	ove ^K AVG N
11200.000	17.302	23.83	41.13	54.00	ove ^k -12.87 №	H	AVG
16800.000	18.582	32.16	50.74 And	54.00	-3.26	AnboreH	AVG
		TM3 / Ban	d: 5470-572	MHz / BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11400.000	25.72	23.51	49.23	68.20	-18.97	ek V Nobo	Peak
17100.000	27.10	31.73	58.83	68.20,000	-9.37	V	Peak
11400.000	26.56	23.51	50.07	68.20	ove¥-18.13 №	Pole H	Peak
17100.000	27.74	31.73	10 59.47 An	68.20	-8.73	Hoote	Peak
11400.000	ek 16.24 M	23.51	39.75	54.00	-14.25	Polek	AVG
17100.000	17.53	31.73	49.26	54.00	-4.74	And Nek	AVG 0010
11400.000	20.09	23.51	43.60	54.00	-10.40	H _{upo} ,	AVG
17100.000	18.37	31.73	50.10	54.00	-3.90	iek H Anb	AVG

Remark

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(HT20)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Vupore	N.	Spoler	VUD.	, word	3k Vupo.		Yer
		TM3 / Ban	d: 5725-5850	MHz / BW:	20 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11490.000	28.44	23.36	51.80	68.20	-16.40	V_{i} \mathbf{A}_{i} \mathbf{A}_{i}	Peak
17235.000	29.73	31.97	61.70	68.20	-6.50	Vapotek	Peak
11490.000	28.80	23.36	52.16	68.20	-16.04	H	rek Peak 🕅
17235.000	29.98	31.97	61.95	68.20	-6.25 NO	H Ans	Peak
11490.000	17.68	23.36	41.04 nbot	54.00	-12.96	npotek V	AVG
17235.000	18.38	31.97	50.35	54.00	-3.65	The State of the S	AVG
11490.000	17.83	23.36 ph	41.19	54.00	-12.81	And H *ek	AVG
17235.000	17.97	31.97	49.94	54.00	-4.06	PH C	AVG
		TM3 / Ban	d: 5725-5850	MHz / BW:	20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11570.000	29.02	23.42	52.44	68.20 M	-15.76	Votek	Peak
17355.000	29.61	32.18	61.79	68.20	-6.41	No.	Peak
11570.000	29.00	23.42	52.42	68.20	-15.78	And H	Peak
17355.000	30.07	32.18	62.25	68.20	-5.95	HIPOLO	Peak
11570.000	18.945	23.42	42.37	54.00	-11.63	k V Anboli	AVG
17355.000	18.696	32.18	50.88	54.00	-3.12	V	ove ^K AVG
11570.000	18.821	23.42	42.24	54.00	w ^k -11.76 km	H	AVG
17355.000	18.354	32.18	10 ^k 50.53 And	54.00	-3.47	AnboreH	AVG
		TM3 / Ban	d: 5725-5850	MHz / BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11650.000	28.53	23.49	52.02	68.20	-16.18	odna V 48	Peak And
17475.000	29.85	32.39	62.24	68.20,000	-5.96	V	Peak
11650.000	28.74	23.49	52.23	68.20	ove¥15.97 №	hole H	Peak
17475.000	29.68	32.39	ne* 62.07 Ant	68.20	-6.13	Anboi H	Peak
11650.000	18.02 NO	23.49	41.51	54.00	-12.49	Polek	AVG
17475.000	18.50	32.39	50.89	54.00	-3.11	No Nek	AVG
11650.000	18.00	23.49	41.49	54.00	-12.51	H _{upo}	AVG
17475.000	18.32	32.39	50.71	54.00	-3.29	ick H Aup	AVG

Remark:

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(HT20)) is recorded in the report.
- 3. Test frequency are from 1GHz to 40GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

Anbotek

Anbolek

Anboick

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Aupotek

Aupolek

Anbotek

Aupolek

Anbolek

Anbotek

Anbotek

Anbotek

Aupolek

Report No.:1812C40008312504 FCC ID: 2BKNU-FX2510

APPENDIX I -- TEST SETUP PHOTOGRAPH

Aupolek

Anbotek

Anboiek

Please refer to separated files Appendix I -- Test Setup Photograph RF

Anbolek

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

Anbotek

Anbolek

Anbolek

Anboiek

----- End of Report

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Aupolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Anboiek

