

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202501563F01

TEST Report

Applicant: Dongguan Ruige Electronics Co., LTD

Address of Applicant: 2F, Building 3, No. 24, Puxinhu Xincheng Road, Tangxia Town,

Dongguan City, Guangdong Province China

Manufacturer: Dongguan Ruige Electronics Co., LTD

Address of 2F, Building 3, No. 24, Puxinhu Xincheng Road, Tangxia Town,

Manufacturer: Dongguan City, Guangdong Province China

Equipment Under Test (EUT)

Product Name: Bluetooth headphones

Model No.: M111

Series model: N/A

Trade Mark: N/A

FCC ID: 2BC8W-M111

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jan. 13, 2025

Date of Test: Jan. 13, 2025 ~ Jan. 17, 2025

Date of report issued: Jan. 17, 2025

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Jan. 17, 2025	Original

Tested/ Prepared By	Heber He	Date:	Jan. 17, 2025
	Project Engineer		
Check By:	Bruce Zhu	Date:	Jan. 17, 2025
	Reviewer	_	
Approved By :	Kein Yang HT	Date:	Jan. 17, 2025
	Authorized Signature		

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST6. TEST RESULTS AND MEASUREMENT DATA	8
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 6.3. 20DB EMISSION BANDWIDTH 6.4. FREQUENCIES SEPARATION 6.5. HOPPING CHANNEL NUMBER 6.6. DWELL TIME 6.7. BAND EDGE 6.7.1. Conducted Emission Method 6.7.2. Radiated Emission Method 6.8. SPURIOUS EMISSION 6.8.1. Conducted Emission Method 6.8.2. Radiated Emission Method 6.9. ANTENNA REQUIREMENT	9 12 13 13 17 19 21 26 26 30 32 32 32 37
7. TEST SETUP PHOTO	45
8 FUT CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.37 dB	(1)
Radiated Emission	1~18GHz	5.40 dB	(1)
Radiated Emission	18-40GHz	5.45 dB	(1)
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)
Note (1): The measurement unce	rtainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

4. General Information

4.1. General Description of EUT

Product Name:	Bluetooth headphones
Model No.:	M111
Series model:	N/A
Test sample(s) ID:	HTT202501563-1(Engineer sample)
	HTT202501563-2(Normal sample)
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Chip Antenna
Antenna gain:	3.35 dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 0.3A max
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The lowest channel	2402MHz		
The middle channel	2441MHz		
The Highest channel	2480MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

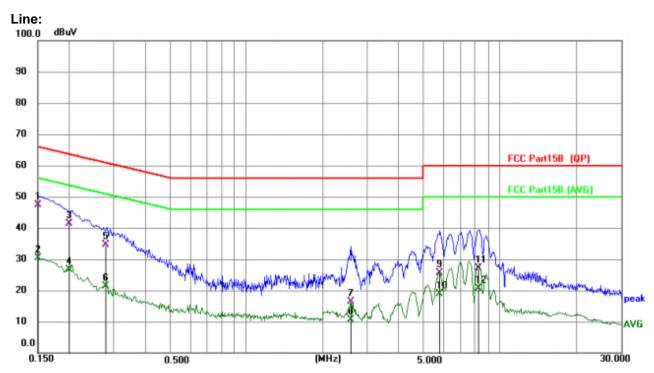
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

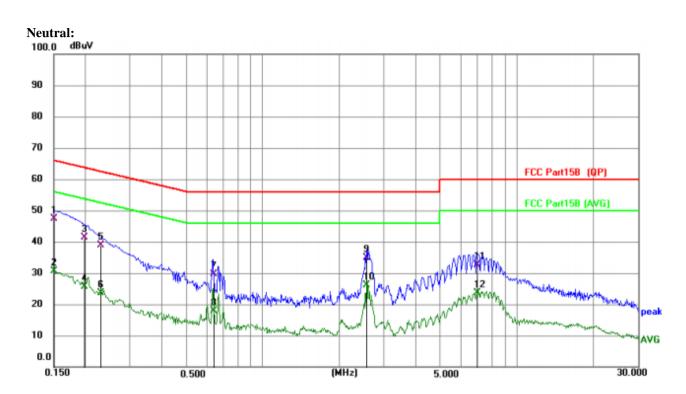
<u>J.</u>	rest manuments nat						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027	
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027	
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025	
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025	
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025	
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025	
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025	
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025	
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025	
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025	
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025	
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025	
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025	
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025	
15	Variable frequency power supply	ariable frequency power Shenzhen Anbiao		HTT-082	Apr. 26 2024	Apr. 25 2025	
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025	
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025	
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025	
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025	
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025	
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025	
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027	
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025	
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025	
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025	
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025	
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025	
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025	
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A	
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A	
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A	
_		· · · · · · · · · · · · · · · · · · ·					

6. Test results and Measurement Data


6.1. Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto				
Limit:	Frequency range (MHz)	Quasi-peak Average				
	0.15-0.5					
	0.5-5	56		6		
	5-30	60	5	50		
	* Decreases with the logarithr	n of the frequency.		_		
Test procedure:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN LISN EMI Receiver					
Test procedure:	 The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling important importa	n network (L.I.S.N.). edance for the measuralso connected to the m/50uH coupling imported the block diagram of the checked for maximum difference call of the interface call of the interface call of the maximum emisuralso call of the interface	This provides uring equipmose main power edance with of the test seem conducted sion, the related by the sion of the sion o	s a sent. er through a 500hm stup and lative be changed		
Test Instruments:	Refer to section 6.0 for details	5				
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Hur	nid.: 52%	Press.:	1012mbar		
Test voltage:	AC 120V, 60Hz	l	1	1		
Test results:	Pass					

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:



Measurement data:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1501	37.33	10.16	47.49	65.99	-18.50	QP
2	0.1501	20.24	10.16	30.40	55.99	-25.59	AVG
3	0.1995	31.27	10.21	41.48	63.63	-22.15	QP
4	0.1995	16.40	10.21	26.61	53.63	-27.02	AVG
5	0.2793	24.29	10.23	34.52	60.84	-26.32	QP
6	0.2793	11.10	10.23	21.33	50.84	-29.51	AVG
7	2.5876	5.94	10.46	16.40	56.00	-39.60	QP
8	2.5876	0.12	10.46	10.58	46.00	-35.42	AVG
9	5.7930	15.05	10.61	25.66	60.00	-34.34	QP
10	5.7930	8.16	10.61	18.77	50.00	-31.23	AVG
11	8.2356	16.39	10.65	27.04	60.00	-32.96	QP
12	8.2356	10.06	10.65	20.71	50.00	-29.29	AVG

No. N	Mk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1505	37.26	10.16	47.42	65.97	-18.55	QP
2	0.1505	20.41	10.16	30.57	55.97	-25.40	AVG
3	0.1980	31.14	10.21	41.35	63.69	-22.34	QP
4	0.1980	15.36	10.21	25.57	53.69	-28.12	AVG
5	0.2291	28.71	10.22	38.93	62.48	-23.55	QP
6	0.2291	13.29	10.22	23.51	52.48	-28.97	AVG
7	0.6411	19.38	10.36	29.74	56.00	-26.26	QP
8	0.6411	7.44	10.36	17.80	46.00	-28.20	AVG
9	2.5697	24.36	10.43	34.79	56.00	-21.21	QP
10	2.5697	15.59	10.43	26.02	46.00	-19.98	AVG
11	7.0323	22.01	10.69	32.70	60.00	-27.30	QP
12	7.0323	12.83	10.69	23.52	50.00	-26.48	AVG

Notes:

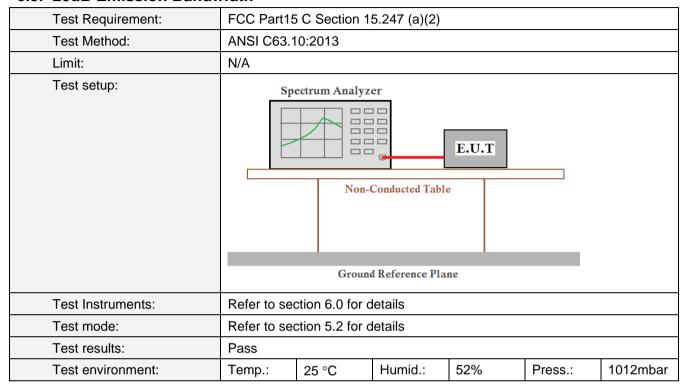
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Los

6.2. Conducted Peak Output Power

Test Requirement:	FCC Part15	C Section 1	5.247 (b)(3)					
Test Method:	ANSI C63.1	10:2013						
Limit:	30dBm(for	30dBm(for GFSK),20.97dBm(for EDR)						
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to see	ction 6.0 for c	details					
Test mode:	Refer to sec	ction 5.2 for c	details					
Test results:	Pass							
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Measurement Data

Left:

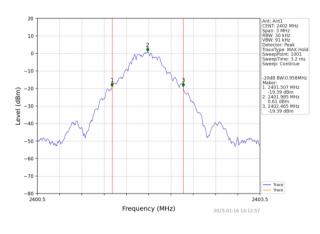

Mode	TX	Frequency	Packet Type		ducted Output Power 3m)	Verdict
	Туре	(MHz)		ANT1	Limit	
GFSK		2402	DH5	3.25	<=30	Pass
	SISO	2441	DH5	3.02	<=30	Pass
		2480	DH5	2.32	<=30	Pass
		2402	2DH5	3.84	<=20.97	Pass
Pi/4DQPSK	SISO	2441	2DH5	3.72	<=20.97	Pass
		2480	2DH5	3.03	<=20.97	Pass
		2402	3DH5	4.33	<=20.97	Pass
8DPSK	SISO	2441	3DH5	4.21	<=20.97	Pass
		2480	3DH5	3.55	<=20.97	Pass

Right:

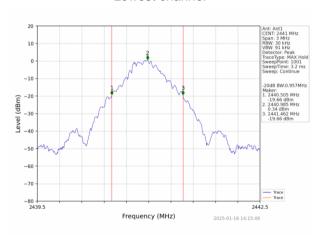
Mode	TX	Frequency (MHz)	Packet Type		ducted Output Power 3m)	Verdict
	Type			ANT1	Limit	
GFSK		2402	DH5	3.01	<=30	Pass
	SISO	2441	DH5	2.94	<=30	Pass
		2480	DH5	2.08	<=30	Pass
		2402	2DH5	3.16	<=20.97	Pass
Pi/4DQPSK	SISO	2441	2DH5	3.34	<=20.97	Pass
		2480	2DH5	2.74	<=20.97	Pass
		2402	3DH5	3.97	<=20.97	Pass
8DPSK	SISO	2441	3DH5	4.06	<=20.97	Pass
		2480	3DH5	2.75	<=20.97	Pass

6.3. 20dB Emission Bandwidth

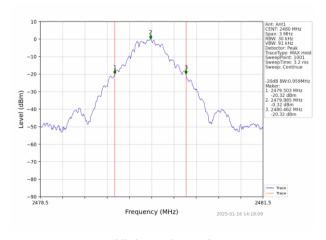
Measurement Data


Mode	TX	Frequency	Packet	ANT	20dB Bandy	width (MHz)	Verdict
iviode	Type	(MHz)	Type	AINT	Result	Limit	verdict
		2402	DH5	1	0.958	/	Pass
GFSK	SISO	2441	DH5	1	0.957	/	Pass
		2480	DH5	1	0.959	/	Pass
		2402	2DH5	1	1.282	/	Pass
Pi/4DQPSK	SISO	2441	2DH5	1	1.280	/	Pass
		2480	2DH5	1	1.280	/	Pass
		2402	3DH5	1	1.296	/	Pass
8DPSK	SISO	2441	3DH5	1	1.295	/	Pass
		2480	3DH5	1	1.298	/	Pass

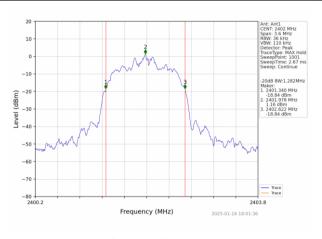
Note: Left and Right earphones were tested, only recorded the worst case data in the test report.

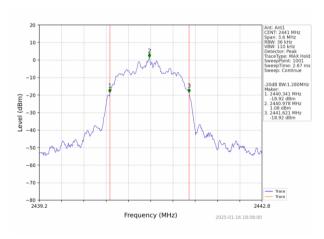


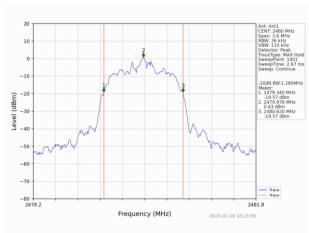
Test plot as follows:


Test mode: GFSK mode

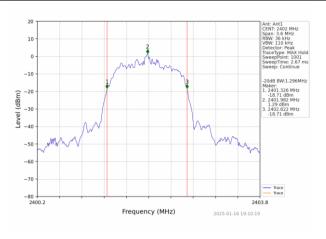
Lowest channel

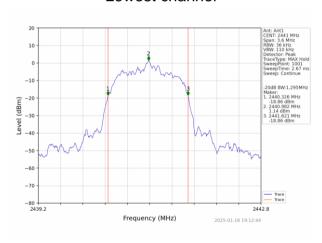

Middle channel

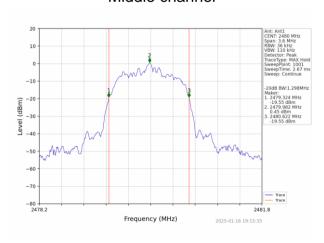

Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

Middle channel

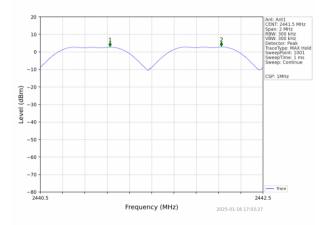
Highest channel

6.4. Frequencies Separation

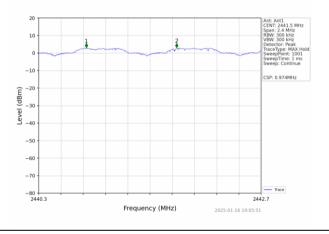
Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)						
Test Method:	ANSI C63.	10:2013							
Receiver setup:	RBW=100k	KHz, VBW=3	00KHz, dete	ctor=Peak					
Limit:		GFSK: 20dB bandwidth $\pi/4$ -DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)							
Test setup:	Sp								
Test Instruments:	Refer to se	ction 6.0 for	details						
Test mode:	Refer to se	ction 5.2 for	details						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

Measurement Data

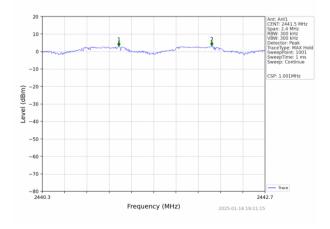
moacar cirror	mode and more bata								
	Ant1								
Mode	TX	Frequency	Packet	Channel Separation	20dB Bandwidth	Limit	Verdict		
Mode	Type	(MHz)	Type	(MHz)	(MHz)	(MHz)	verdict		
GFSK	SISO	HOPP	DH5	1.000	0.959	>=0.959	Pass		
Pi/4DQPSK	SISO	HOPP	2DH5	0.974	1.282	>=0.855	Pass		
8DPSK	SISO	HOPP	3DH5	1.001	1.298	>=0.865	Pass		


Remark:

- 1.We have tested all mode at high, middle and low channel, and recorded worst case at middle
- 2.Left and Right earphones were tested, only recorded the worst case data in the test report.



Test plot as follows:


Modulation mode: GFSK

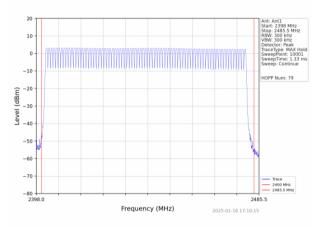
Test mode: $\pi/4$ -DQPSK

Modulation mode: 8-DPSK

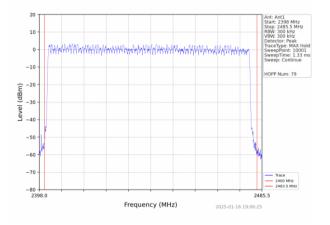
6.5. Hopping Channel Number

Test Requirement:	FCC Part15	C Section 1	5.247 (a)(1)(iii)					
Test Method:	ANSI C63.	10:2013							
Receiver setup:		RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak							
Limit:	15 channel	S							
Test setup:	Spe	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	ction 6.0 for o	details						
Test mode:	Refer to se	ction 5.2 for o	details						
Test results:	Pass								
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

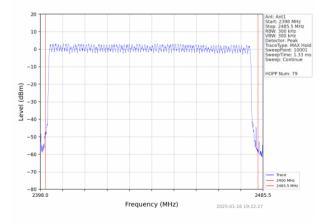
Measurement Data:


Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass

Note: Left and Right earphones were tested, only recorded the worst case data in the test report.



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

6.6. Dwell Time

Test Requirement:	FCC Part1	FCC Part15 C Section 15.247 (a)(1)(iii)							
Test Method:	ANSI C63.	10:2013							
Receiver setup:	RBW=1MH	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak							
Limit:	0.4 Second	0.4 Second							
Test setup:	Sp								
Test Instruments:	Refer to se	ction 6.0 for c	letails						
Test mode:	Refer to se	ction 5.2 for c	letails						
Test results:	Pass	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			

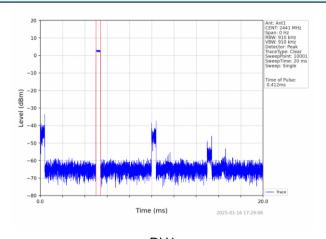
Measurement Data

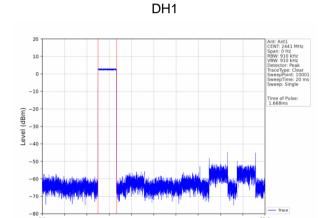
Modulation	Packet	Burst time (ms)	Dwell time (ms)	Limit (ms)	Result	
	DH1	0.412	130.604		Pass	
GFSK	DH3	1.668	276.888	400		
	DH5	2.916	312.012			
	2-DH1	0.422	135.040			
π/4DQPSK	2-DH3	1.670	260.520	400	Pass	
	2-DH5	2.924	339.184			
	3-DH1	0.424	136.104			
8DPSK	3-DH3	1.676	256.428	400	Pass	
	3-DH5	2.926	275.044			

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

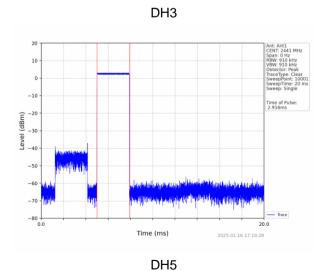
Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

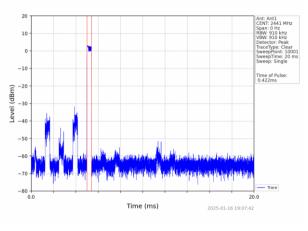
Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3


Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

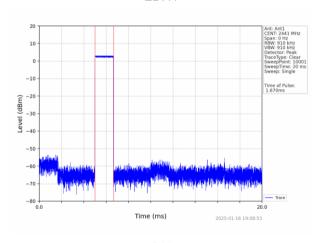

Note: Left and Right earphones were tested, only recorded the worst case data in the test report.

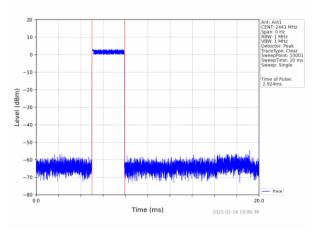
Test plot as follows:


GFSK mode

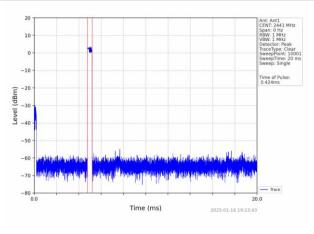

Time (ms)

2025-01-16 17:38:16

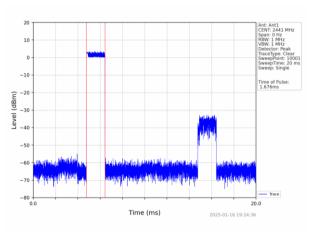


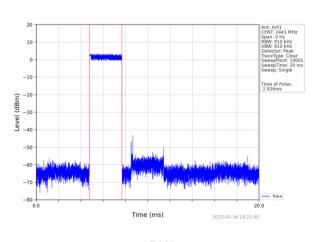

π/4-DQPSK mode

2DH1



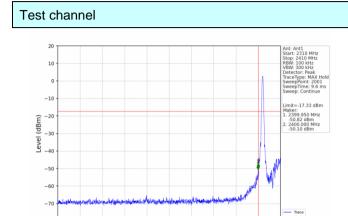
2DH3



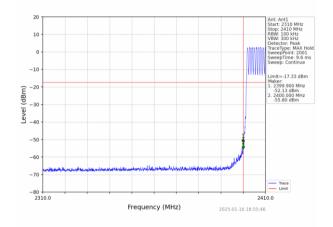

8-DPSK mode

3DH3

6.7. Band Edge


6.7.1. Conducted Emission Method

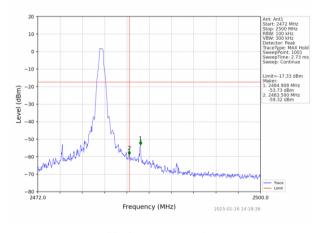
Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.1	0:2013						
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to sec	ction 6.0 for d	etails					
Test mode:	Refer to sec	ction 5.2 for d	etails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		


Note: Left and Right earphones were tested, only recorded the worst case data in the test report.

Test plot as follows: GFSK Mode:

Lowest channel

No-hopping mode

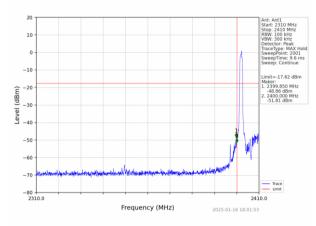

2025-01-16 14:13:20

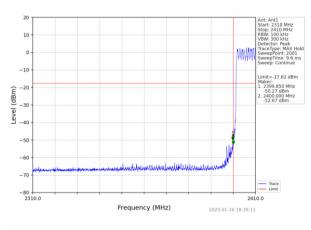
Hopping mode

Test channel:

-80 2310.0

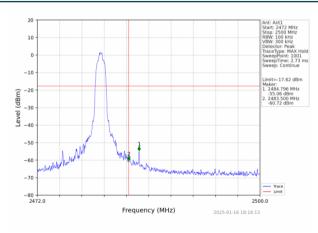
Highest channel

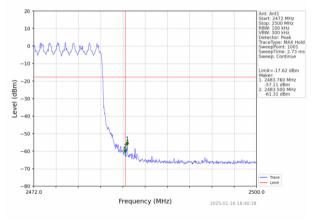

No-hopping mode


Hopping mode

π/4-DQPSK Mode:

Test channel Lowest channel

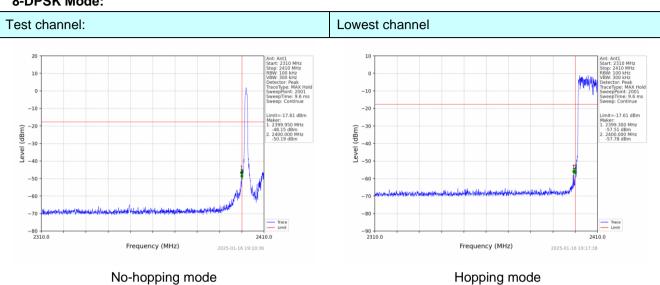



No-hopping mode

Hopping mode

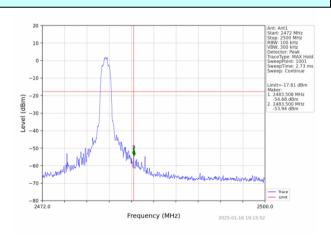
Test channel:

Highest channel

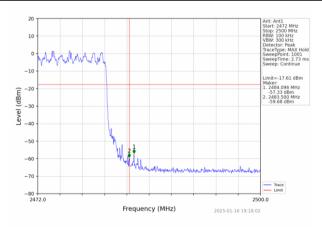


No-hopping mode

Hopping mode



8-DPSK Mode:



Test channel:

Highest channel

Hopping mode

6.7.2. Radiated Emission Method

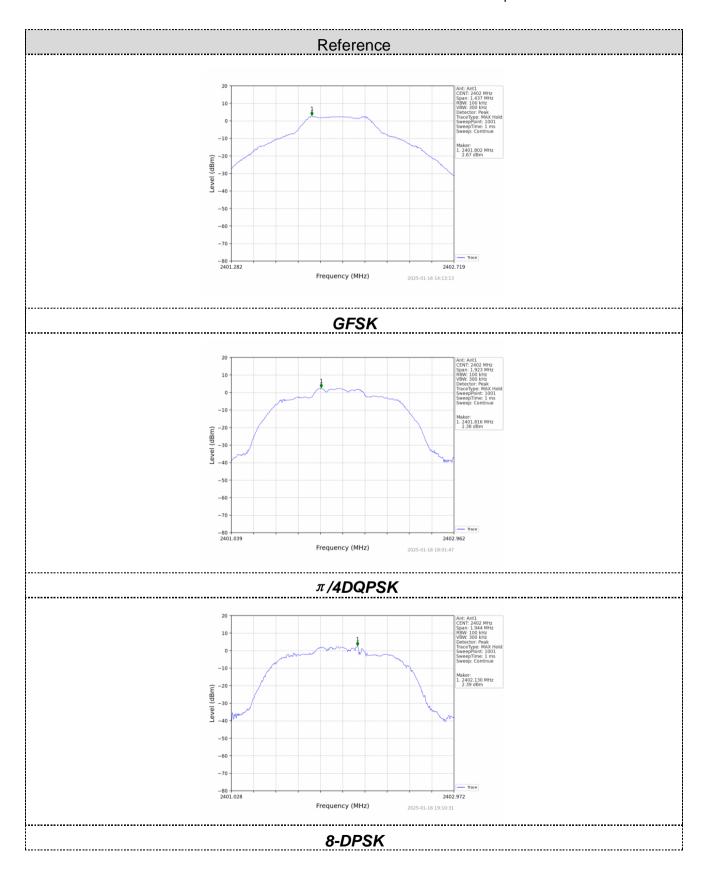
6.7.2.	6.7.2. Radiated Emission Method											
Te	st Requirement:	FCC Part15 C Section 15.209 and 15.205										
Te	st Method:	ANSI C63.1	0:201	3								
Те	st Frequency Range:	All of the re 2500MHz) of				ested, o	only the w	orst I	band's (2	2310MHz to		
Te	st site:	Measureme	ent Dist	tance: 3	3m							
Re	eceiver setup:	Frequenc	су	Detec	tor	RBW	/ VBV	٧	Re	mark		
	·	Above 1GI	H ₇ —	Peal		1MH:				Value		
				Peal		1MH:				ge Value		
Lin	nit:	Fre	equenc	СУ	L	•	3uV/m @3r	n)		mark		
		Abo	ve 1G	Hz			54.00 74.00			ge Value k Value		
Т.	st setup:						4.00			Value		
	ot ootap.	Turn Tables	1	UT+	< 3m >	Test Ant	?		MANAGEMENTALISMENT			
т.	st Procedure:	1. The EUT	•	. 1 1 -					5			
		ground a determin 2. The EUT antenna, tower. 3. The ante ground to horizonta measure 4. For each and then and then and the rest-Specified 6. If the em limit spece EUT wou 10dB ma	t a 3 n e the p was s which enna he determent. It is suspected the arrota taken readission cified, fuld be argin w	neter ca position set 3 me was m eight is rmine th vertical ected er ntenna vole was ing. er syste lwidth w level of then tes reported ould be	ember. of the eters a counted varied as max polarizem was turned the Electing cod. Other re-tes	The table highest way from or imum varions of the from 0 s set to ximum UT in personal bearwise the done	ole was rotal radiation. In the intertop of a value of the alue of the ante of the ante of the alue of	ferenariable four field nna a ange n 1 m a 360 ct Fuel nod then s the ing p	360 degrance-receivale-height meters and strength are set to degrees unction are set to degrees 10dB lower to degrees 10dB lower to degrees and did no beak, qua	ving antenna above the Both make the vorst case meters to find the alues of the thave si-peak or		
Te	st Instruments:	Refer to sec										
Te	st mode:	Refer to sec	ction 5	.2 for de	etails	-						
Те	st results:	Pass										
Те	st environment:	Temp.:	25 °C		Humid	d.: 5	52%	Pre	ess.:	1012mbar		

Measurement Data

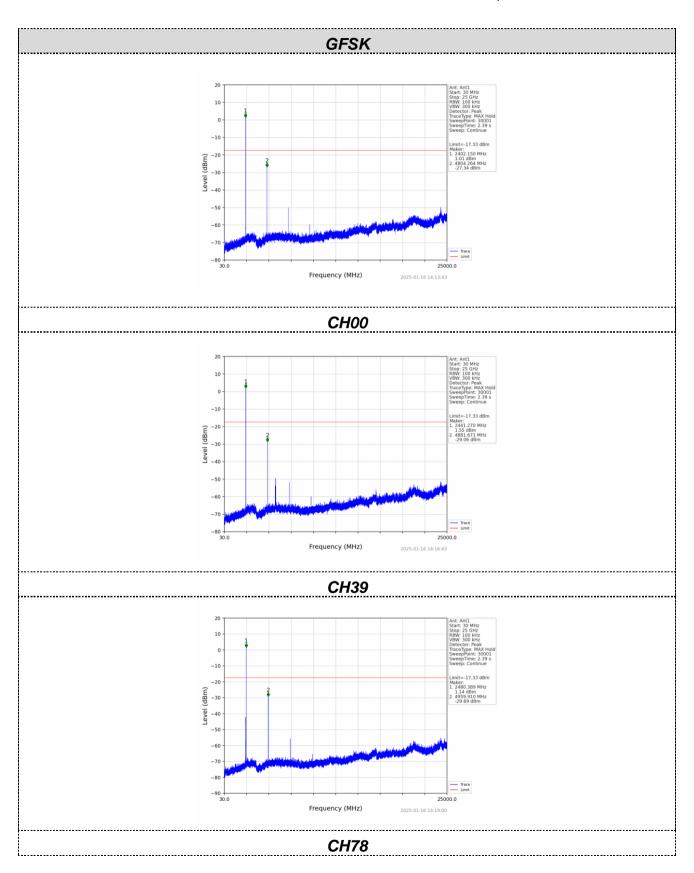
Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

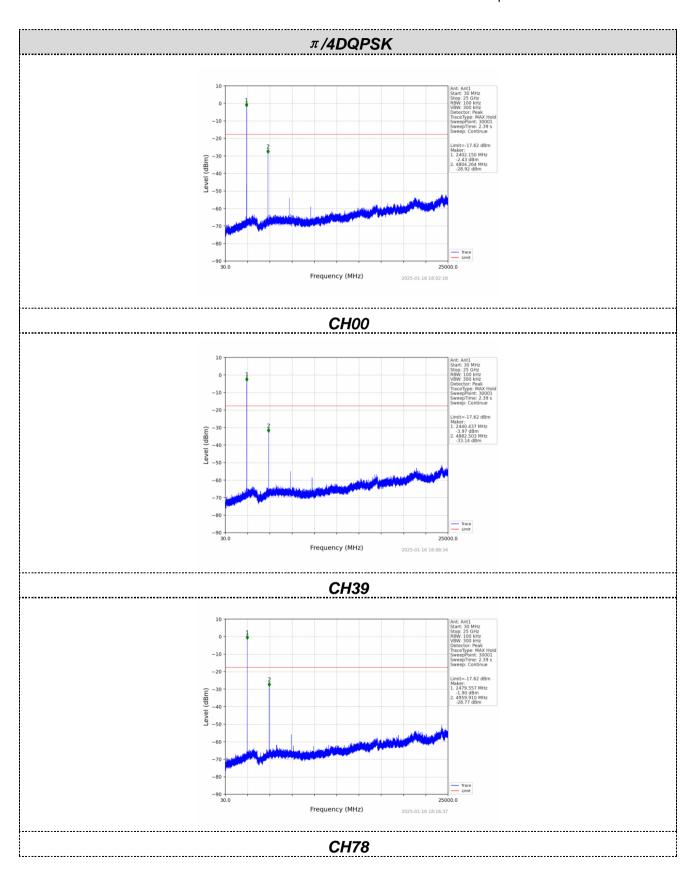
Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	۱L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.11	PK	74	13.89	61.50	27.2	4.31	32.9	-1.39
2390.00	45.24	AV	54	8.76	46.63	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.64	PK	74	14.36	61.03	27.2	4.31	32.9	-1.39
2390.00	46.03	AV	54	7.97	47.42	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P ola	arity:	н	ORIZONTA	۸L
Frequency (MHz)	Emis Le	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.08	PK	74	17.92	57.01	27.4	4.47	32.8	-0.93
2483.50	44.51	AV	54	9.49	45.44	27.4	4.47	32.8	-0.93
Freque	ency(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.58	PK	74	19.42	55.51	27.4	4.47	32.8	-0.93
2483.50	45.03	AV	54	8.97	45.96	27.4	4.47	32.8	-0.93

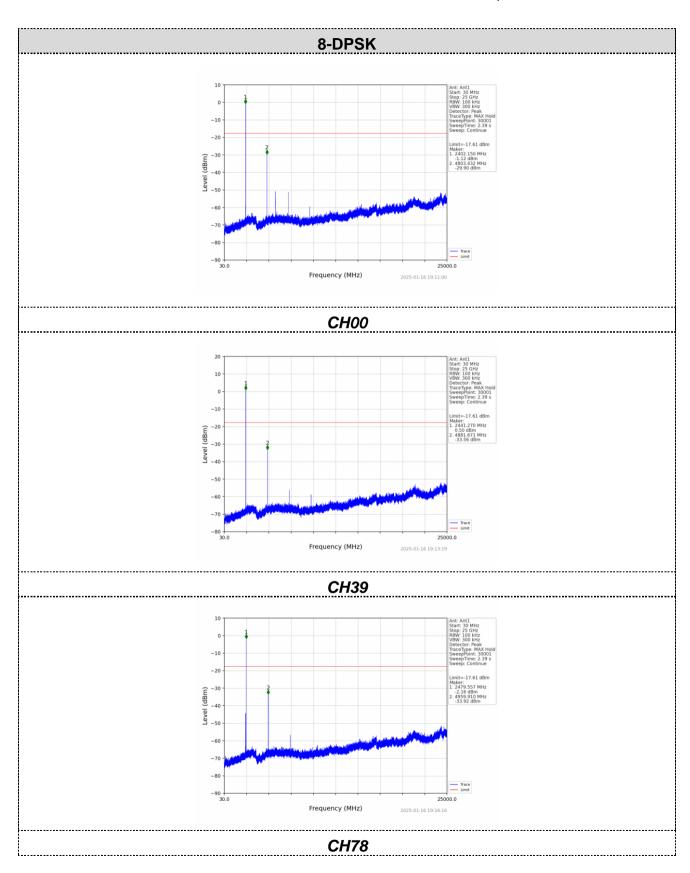

6.8. Spurious Emission

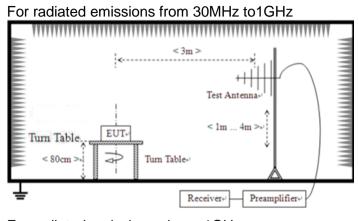
6.8.1. Conducted Emission Method

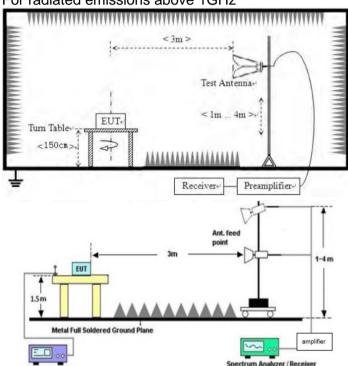

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

Note: Left and Right earphones were tested, only recorded the worst case data in the test report.








6.8.2. Radiated Emission Method

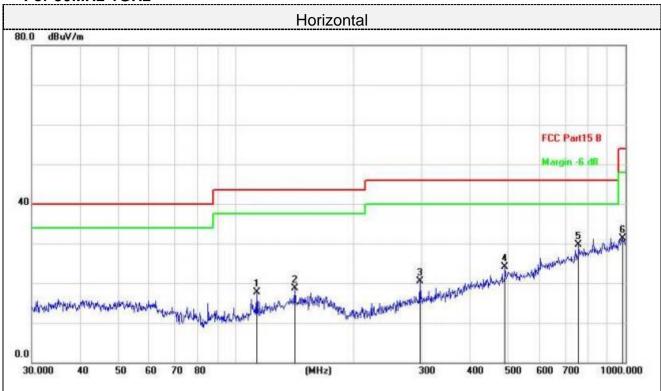
0.0.2. Nadiated L	illission wethou								
Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector	RB\	Ν	VBW	'	Value	
	9KHz-150KHz	Qι	ıasi-peak	200H	Ηz	600Hz	Z	Quasi-peak	
	150KHz-30MHz Quasi-peak		9KF	lz	30KH:	Z	Quasi-peak		
	30MHz-1GHz	Qı	ıasi-peak	120K	Ήz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	<u> </u>	Peak	
	Above 1GHz		Peak	1MF	Ηz	10Hz		Average	
Limit:	Frequency		Limit (u\	//m)	V	alue	N	Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)	1	QP		30m	
	1.705MHz-30MH	lz	30			QP		30m	
	30MHz-88MHz	100			QP				
	88MHz-216MHz	<u> </u>	150			QP			
	216MHz-960MH	Z	200		ı	QP		3m	
	960MHz-1GHz	500			QP		Sili		
	Above 1GHz		500		Αv	erage			
	Above Toriz		5000)	F	eak			
Test setup:	For radiated emiss	sions	from 9kH	z to 30)MH	Z			
	**********	11111	*******	*******	111111	77777777			
	Turn Table Turn Table Im Receiver								

For radiated emissions above 1GHz

Test Procedure:

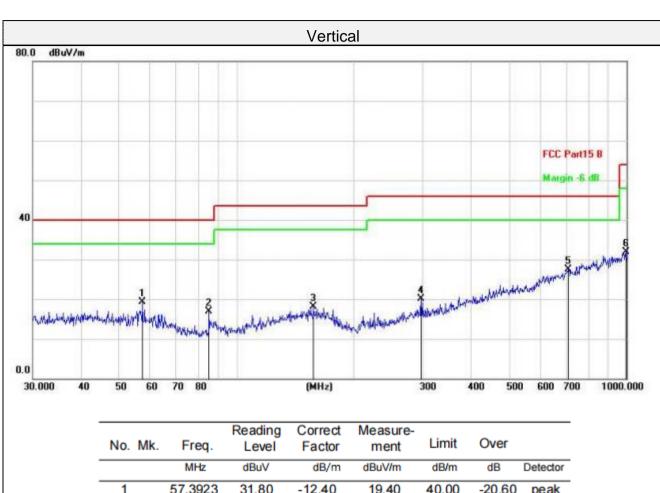
- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

				-				
		5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.						
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							
Test Instruments:	Refer to se	ection 6.0 for	details					
Test mode:	Refer to se	ection 5.2 for	details					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							
Test voltage:	AC 120V,	AC 120V, 60Hz						
Test results:	Pass	Pass						


Measurement data:

Remarks:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as DH5 2402MHz as below:


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		113.3161	31.69	-13.92	17.77	43.50	-25.73	peak
2		141.8262	30.09	-11.39	18.70	43.50	-24.80	peak
3		297.2241	31.22	-10.76	20.46	46.00	-25.54	peak
4		490.7447	29.64	-5.53	24.11	46.00	-21.89	peak
5	*	758.0407	30.27	-0.47	29.80	46.00	-16.20	peak
6		982.6200	28.07	3.22	31.29	54.00	-22.71	peak

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		57.3923	31.80	-12.40	19.40	40.00	-20.60	peak
2		84.9995	32.68	-15.79	16.89	40.00	-23.11	peak
3		157.5588	28.89	-10.71	18.18	43.50	-25.32	peak
4		297.2241	30.80	-10.76	20.04	46.00	-25.96	peak
5	*	709.1823	28.91	-1.42	27.49	46.00	-18.51	peak
6		996.4996	28.38	3.52	31.90	54.00	-22.10	peak

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and High channel; only the worst result of GFSK was reported as below:

Freque	ncy(MHz)):	2402		Polarity:		Н	HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.74	PK	74	14.26	54.04	31	6.5	31.8	5.7	
4804.00	42.88	AV	54	11.12	37.18	31	6.5	31.8	5.7	
7206.00	53.16	PK	74	20.84	40.51	36	8.15	31.5	12.65	
7206.00	43.49	AV	54	10.51	30.84	36	8.15	31.5	12.65	

Freque	ncy(MHz)):	2402		Polarity:			VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	59.23	PK	74	14.77	53.53	31	6.5	31.8	5.7	
4804.00	44.09	AV	54	9.91	38.39	31	6.5	31.8	5.7	
7206.00	53.27	PK	74	20.73	40.62	36	8.15	31.5	12.65	
7206.00	42.90	AV	54	11.10	30.25	36	8.15	31.5	12.65	

Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor	
4882.00	60.14	PK	74	13.86	(dBuV) 53.98	(dB/m) 31.2	(dB) 6.61	(dB) 31.65	(dB/m) 6.16	
4882.00	45.06	AV	54	8.94	38.90	31.2	6.61	31.65	6.16	
7323.00	52.11	PK	74	21.89	39.16	36.2	8.23	31.48	12.95	
7323.00	43.82	AV	54	10.18	30.87	36.2	8.23	31.48	12.95	

Freque	ncy(MHz)	:	2441		Polarity:			VERTICAL		
Frequency (MHz)	Emission Level		Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor	
(IVITZ)	(dBu	V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4882.00	61.20	PK	74	12.80	55.04	31.2	6.61	31.65	6.16	
4882.00	43.98	AV	54	10.02	37.82	31.2	6.61	31.65	6.16	
7323.00	53.80	PK	74	20.20	40.85	36.2	8.23	31.48	12.95	
7323.00	44.38	AV	54	9.62	31.43	36.2	8.23	31.48	12.95	

Freque	ncy(MHz)):	2480		Polarity:		Н	HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	62.17	PK	74	11.83	55.51	31.4	6.76	31.5	6.66	
4960.00	42.59	AV	54	11.41	35.93	31.4	6.76	31.5	6.66	
7440.00	54.18	PK	74	19.82	40.88	36.4	8.35	31.45	13.3	
7440.00	45.52	AV	54	8.48	32.22	36.4	8.35	31.45	13.3	

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw	Antenna	Cable	Pre-	Correction
					Value	Factor	Factor	amplifier	Factor
					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4960.00	62.56	PK	74	11.44	55.90	31.4	6.76	31.5	6.66
4960.00	43.01	AV	54	10.99	36.35	31.4	6.76	31.5	6.66
7440.00	55.05	PK	74	18.95	41.75	36.4	8.35	31.45	13.3
7440.00	45.10	AV	54	8.90	31.80	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.9. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 3.35 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----