

Report No.:STS2412170W04

Issued for

GODOX PHOTO EQUIPMENT CO.,LTD

1st to 4th Floor, Building 2/1st to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, 518103 China

Product Name: Godox Magnetic Charging Full Color LED

Light

Brand Name: Godox

Model Name: MA5R

Series Model(s): N/A

FCC ID: 2ABYN133

Test Standards: FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Page 2 of 57 Report No.: STS2412170W04

TEST REPORT

Applicant's Name...... GODOX PHOTO EQUIPMENT CO..LTD

1st to 4th Floor, Building 2/1st to 4th Floor, Building 4, Yaochuan Address:

Industrial Zone, Tangwei Community, Fuhai Street, Baoan District,

Shenzhen, 518103 China

Manufacturer's Name: GODOX Photo Equipment Co.,Ltd.

4th Floor of Building 1, 1st to 4th Floor of Building 2, 4th Floor of Address:

Building 3, 1st to 4th Floor of Building 4, Yaochuan Industrial Zone,

Tangwei Community, Fuhai Street, Bao'an District, Shenzhen 518103.

China

Product Description

Product Name Godox Magnetic Charging Full Color LED Light

Godox Brand Name:

Model Name: MA5R

Series Model(s): N/A

Test Standards FCC Part15.247

Test Procedure: ANSI C63.10-2020

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test:

Date of receipt of test item: 23 Dec. 2024

Date (s) of performance of tests.....: 23 Dec. 2024 ~ 28 Dec. 2024

Date of Issue: 28 Dec. 2024

Test Result....: **Pass**

Testing Engineer

Technical Manager

(Tony Liu)

Authorized Signatory:

(Bovey Yang)

Page 3 of 57 Report No.: STS2412170W04

Table of Contents

1.	SUMMARY OF TEST RESULTS	6
	1.1 TEST FACTORY	7
	1.2 MEASUREMENT UNCERTAINTY	7
2.	GENERAL INFORMATION	8
	2.1 GENERAL DESCRIPTION OF THE EUT	8
	2.2 DESCRIPTION OF THE TEST MODES	9
	2.3 TEST SOFTWARE AND POWER LEVEL	9
	2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
	2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS	11
	2.6 EQUIPMENTS LIST	12
3.	EMC EMISSION TEST	13
	3.1 CONDUCTED EMISSION MEASUREMENT	13
	3.2 TEST PROCEDURE	14
	3.3 TEST SETUP	14
	3.4 EUT OPERATING CONDITIONS	14
	3.5 TEST RESULTS	15
4.	RADIATED EMISSION MEASUREMENT	17
	4.1 RADIATED EMISSION LIMITS	17
	4.2 TEST PROCEDURE	19
	4.3 TEST SETUP	20
	4.4 EUT OPERATING CONDITIONS	20
	4.5 FIELD STRENGTH CALCULATION	20
	4.6 TEST RESULTS	22
5.	CONDUCTED SPURIOUS & BAND EDGE EMISSION	29
	5.1 LIMIT	29
	5.2 TEST PROCEDURE	29
	5.3 TEST SETUP	29
	5.4 EUT OPERATION CONDITIONS	29
	5.5 TEST RESULTS	29
6.	POWER SPECTRAL DENSITY TEST	30
	6.1 LIMIT	30
	6.2 TEST PROCEDURE	30
	6.3 TEST SETUP	30

Page 4 of 57

Report No.: STS2412170W04

Table of Contents

6.4 EUT OPERATION CONDITIONS	30
6.5 TEST RESULTS	30
7. BANDWIDTH TEST	31
7.1 LIMIT	31
7.2 TEST PROCEDURE	31
7.3 TEST SETUP	31
7.4 EUT OPERATION CONDITIONS	31
7.5 TEST RESULTS	31
8. PEAK OUTPUT POWER TEST	32
8.1 LIMIT	32
8.2 TEST PROCEDURE	32
8.3 TEST SETUP	33
8.4 EUT OPERATION CONDITIONS	33
8.5 TEST RESULTS	33
9. ANTENNA REQUIREMENT	34
9.1 STANDARD REQUIREMENT	34
9.2 EUT ANTENNA	34
APPENDIX 1-TEST DATA	35
1. DUTY CYCLE	35
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	38
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	41
46DB BANDWIDTH	44
5. MAXIMUM POWER SPECTRAL DENSITY LEVEL	47
6. BAND EDGE	50
7. CONDUCTED RF SPURIOUS EMISSION	53
ADDENDIV 2 FUT TEST DUOTO	57

Page 5 of 57

Report No.: STS2412170W04

Revision History

Rev. Issue Date		Report No.	Effect Page	Contents
00	28 Dec. 2024	STS2412170W04	ALL	Initial Issue
		1		

Page 6 of 57 Report No.: STS2412170W04

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.209	Radiated Spurious Emission	PASS			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.205	Restricted bands of operation	PASS			
Part 15.247(d)/ Part 15.209(a)	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.

Page 7 of 57 Report No.: STS2412170W04

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD

Add.: 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ,

Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration Number: 625569 IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated>6G	±5.24dB
7	Conducted Emission (9KHz-150KHz)	±2.19dB
8	Conducted Emission (150KHz-30MHz)	±2.53dB
9	Occupied Channel Bandwidth	±3.5%
10	Power Spectral Density, conducted	±1.245dB
11	Duty Cycle	±3.2%

Page 8 of 57 Report No.: STS2412170W04

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

MA5R N/A N/A		
N/A		
N/A		
Light	Magnetic Charging Full Color LED	
Frequency:	2402~2480 MHz	
Modulation Type:	GFSK	
Radio Technology:	BLE	
Bluetooth Configuration:	LE(Support 1M PHY)	
Number Of Channel:	40	
Antenna Type:	FPC	
Antenna Gain (dBi)	0.36dBi	
Please refer to the N	Note 3.	
N/A		
Rated Voltage: 3.7V Charge Limit Voltage: 4.35V Capacity: 4900mAh		
20240531D01		
V1.0		
Please refer to the N	Note 1.	
	Light Operation Frequency: Modulation Type: Radio Technology: Bluetooth Configuration: Number Of Channel: Antenna Type: Antenna Gain (dBi) Please refer to the N Input: DC5V 3A, DC Output: DC5V 3A, DC Output: DC5V 3A, DC Output: DC5V 3A, DC NABINATION ON THE STANK	

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.
- 2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

Page 9 of 57 Report No.: STS2412170W04

3

	Channel List							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	10	2422	20	2442	30	2462	
01	2404	11	2424	21	2444	31	2464	
02	2406	12	2426	22	2446	32	2466	
03	2408	13	2428	23	2448	33	2468	
04	2410	14	2430	24	2450	34	2470	
05	2412	15	2432	25	2452	35	2472	
06	2414	16	2434	26	2454	36	2474	
07	2416	17	2436	27	2456	37	2476	
08	2418	18	2438	28	2458	38	2478	
09	2420	19	2440	29	2460	39	2480	

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Mode Description Data/Modulation	
Mode 1 TX CH00(2402MHz) 1 Mbps/G		1 Mbps/GFSK
Mode 2	TX CH19(2440MHz)	1 Mbps/GFSK
Mode 3	TX CH39(2480MHz)	1 Mbps/GFSK

Note:

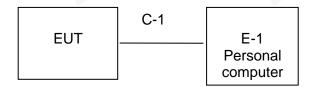
- (1) We tested for all available U.S. voltage and frequencies (For 120V, 50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/ 60Hz is shown in the report.
- (2) The battery is fully-charged during the radiated and RF conducted test.

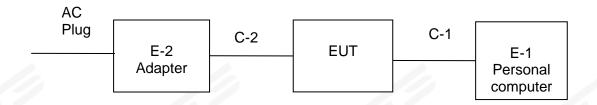
For AC Conducted Emission

1 01710 Coridacted Ethiosion	
	Test Case
AC Conducted Emission	Mode 4 : Keeping BT TX

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.


RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
BLE	BLE	GFSK	0.36	0	Non_Signaling_Test_Tool


Page 10 of 57 Report No.: STS2412170W04

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

Page 11 of 57 Report No.: STS2412170W04

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test

configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Note
E-1	Personal computer	DELL	Inspiron 3501	N/A
E-2	Adapter	ZTC	NB-A515A	N/A
C-1	Serial port board	XES	WTYZK	N/A
C-2	USB Cable	ZTC	NB-A515A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-2	Shielded	NO	150cm	N/A
			2	

Note:

- (1) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.
- (2) "YES" is means "with core"; "NO" is means "without core".

Report No.: STS2412170W04 Page 12 of 57

	RF Rad	diation Test Equipme	nt		RF Radiation Test Equipment					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until					
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14					
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2024.02.23	2025.02.22					
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2024.09.23	2025.09.22					
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2024.02.23	2025.02.22					
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2025.02.27					
Bilog Antenna	TESEQ	CBL6111D	34678	2024.09.30	2025.09.29					
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23					
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.10	2025.10.09					
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A					
Signal Analyzer	R&S	FSV 40-N	101823	2024.09.23	2025.09.22					
Switch Control Box	N/A	N/A	N/A	N/A	N/A					
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A					
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A					
Turn Table	MF	SC100_1	60531	N/A	N/A					
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A					
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2024.09.23	2025.09.22					
Test SW	EZ-EMC		Ver.STSLAB-03A	1 RE						
	Condu	uction Test equipmen	ıt							
Kind of Equipment	Manufacturer	Type No. Serial No.		Last calibration	Calibrated until					
Test Receiver	R&S	ESCI	101427	2024.09.24	2025.09.23					
Limtter	CYBERTEK	EM5010	N/A	2024.09.24	2025.09.23					
LISN	R&S	ENV216	101242	2024.09.24	2025.09.23					
LISN	EMCO	3810/2NM	23625	2024.09.24	2025.09.23					
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14					
Test SW	EZ-EMC Ver.STSLAB-03A1 CE		1 CE							
	RI	F Connected Test								
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until					
Signal Analyzer	Agilent	N9020A	MY51510623	2024.02.23	2025.02.22					
Power Sensor	Keysight	U2021XA	MY56120038	2024.09.23	2025.09.22					
Temperature & Humidity	SW-108			2025.03.14						
Test SW	MW	MTS 8310_2.0.0.0								

Page 13 of 57 Report No.: STS2412170W04

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

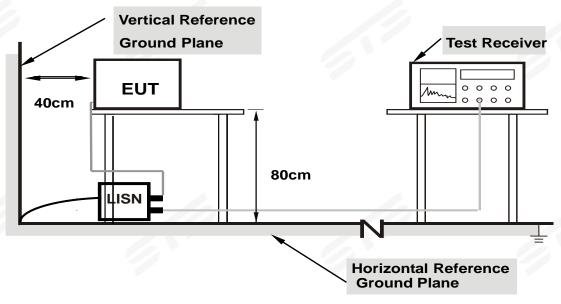
The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

EDECLIENCY (MLI-)	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

Page 14 of 57 Report No.: STS2412170W04

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

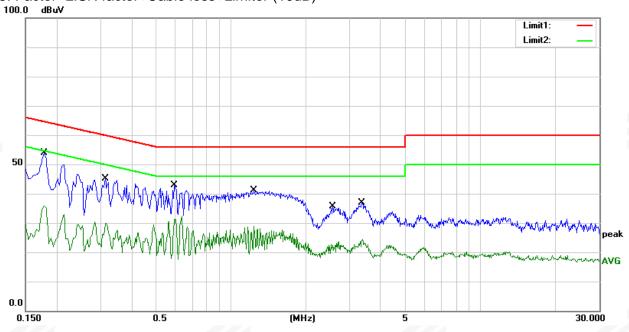
Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Page 15 of 57 Report No.: STS2412170W04

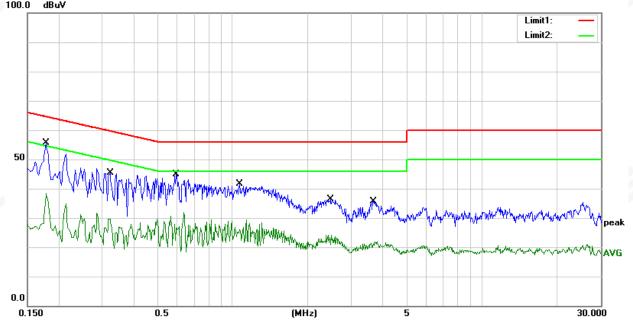

3.5 TEST RESULTS

Temperature:	25.1°C	Relative Humidity:	59%
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 4		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1780	34.12	19.77	53.89	64.58	-10.69	QP
2	0.1780	16.11	19.77	35.88	54.58	-18.70	AVG
3	0.3140	25.00	20.19	45.19	59.86	-14.67	QP
4	0.3140	10.15	20.19	30.34	49.86	-19.52	AVG
5	0.5940	22.86	19.92	42.78	56.00	-13.22	QP
6	0.5940	12.37	19.92	32.29	46.00	-13.71	AVG
7	1.2420	21.30	19.78	41.08	56.00	-14.92	QP
8	1.2420	9.11	19.78	28.89	46.00	-17.11	AVG
9	2.5620	15.77	19.81	35.58	56.00	-20.42	QP
10	2.5620	3.80	19.81	23.61	46.00	-22.39	AVG
11	3.3500	17.08	19.84	36.92	56.00	-19.08	QP
12	3.3500	4.48	19.84	24.32	46.00	-21.68	AVG

Remark:

- All readings are Quasi-Peak and Average values
 Margin = Result (Result = Reading + Factor)—Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)


Page 16 of 57 Report No.: STS2412170W04

Temperature:	25.1℃	Relative Humidity:	59%
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 4		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1780	35.87	19.81	55.68	64.58	-8.90	QP
2	0.1780	18.45	19.81	38.26	54.58	-16.32	AVG
3	0.3220	25.10	20.21	45.31	59.66	-14.35	QP
4	0.3220	11.10	20.21	31.31	49.66	-18.35	AVG
5	0.5940	25.00	19.90	44.90	56.00	-11.10	QP
6	0.5940	11.87	19.90	31.77	46.00	-14.23	AVG
7	1.0660	21.90	19.77	41.67	56.00	-14.33	QP
8	1.0660	9.61	19.77	29.38	46.00	-16.62	AVG
9	2.4620	16.44	19.90	36.34	56.00	-19.66	QP
10	2.4620	4.29	19.90	24.19	46.00	-21.81	AVG
11	3.6740	15.76	19.94	35.70	56.00	-20.30	QP
12	3.6740	1.84	19.94	21.78	46.00	-24.22	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values
- 2. Margin = Result (Result =Reading + Factor)–Limit
 3. Factor=LISN factor+Cable loss+Limiter (10dB)

Page 17 of 57 Report No.: STS2412170W04

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

	Eliving of the living of the l				
Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(KHz)	300			
0.490~1.705	24000/F(KHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960 500		3			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

EDECLIENCY (MHz)	EDECLIENCY (MHz)		EDECLIENCY (CUz)
FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41		_	

Page 18 of 57 Report No.: STS2412170W04

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP
Start Frequency	30 MHz(Peak/QP)
Stop Frequency	1000 MHz (Peak/QP)
RB / VB (emission in restricted	120 KHz / 200 KHz
band)	120 KHz / 300 KHz

Spectrum Parameter	Setting			
Attenuation	Auto			
Detector	Peak/AV			
Start Frequency	1000 MHz(Peak/AV)			
Stop Frequency	10th carrier hamonic(Peak/AV)			
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)			
band)	1 MHz/1/T MHz(AVG)			

For Restricted band

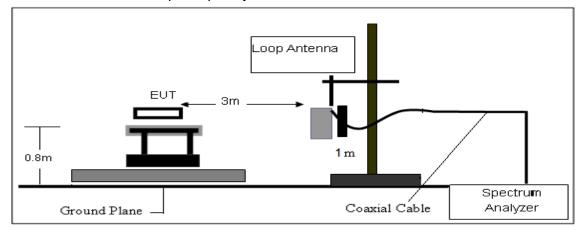
Spectrum Parameter	Setting			
Detector	Peak/AV			
Stort/Ston Fraguency	Lower Band Edge: 2310 to 2410 MHz			
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz			
DD /VD	1 MHz / 3 MHz(Peak)			
RB / VB	1 MHz/1/T MHz(AVG)			

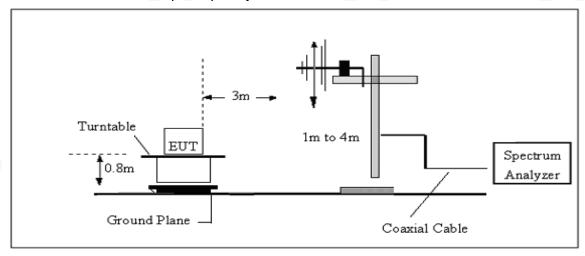
Page 19 of 57 Report No.: STS2412170W04

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

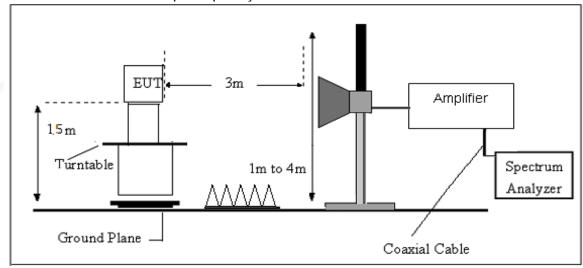
4.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.


Page 20 of 57 Report No.: STS2412170W04

4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

Page 21 of 57 Report No.: STS2412170W04

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

 $F\dot{S} = RA + AF + CL - AG$

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Page 22 of 57 Report No.: STS2412170W04

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

Temperature:	23.4℃	Relative Humidtity:	60%
Test Voltage:	DC 3.7V From Battery	Polarization:	
Test Mode:	TX Mode		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Page 23 of 57 Report No.: STS2412170W04

(30MHz -1000MHz)

Temperature:	23.4 ℃	Relative Humidity:	60%				
Test Voltage:	DC 3.7V From Battery	Phase:	Horizontal				
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)						

No.	Frequency	Reading	eading Correct Result Limit		Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	96.9300	48.46	-20.57	27.89	43.50	-15.61	peak
2	198.7800	56.72	-21.12	35.60	43.50	-7.90	peak
3	249.2200	50.50	-16.27	34.23	46.00	-11.77	peak
4	397.6300	48.82	-11.24	37.58	46.00	-8.42	peak
5	631.4000	43.33	-5.01	38.32	46.00	-7.68	peak
6	816.6700	41.54	-1.97	39.57	46.00	-6.43	peak

Remark:

- Margin = Result (Result = Reading + Factor) Limit
 Factor = Antenna factor + Cable attenuation factor (cable loss) Amplifier gain
- All modes have been tested, only show the worst case.

Page 24 of 57 Report No.: STS2412170W04

Temperature:	23.4℃	Relative Humidity:	60%				
Test Voltage:	DC 3.7V From Battery	Phase:	Vertical				
Test Mode:	Mode 1/2/3 (Mode 1 worst mode)						

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	35.8200	49.92	-15.91	34.01	40.00	-5.99	peak
2	96.9300	42.71	-20.57	22.14	43.50	-21.36	peak
3	198.7800	57.74	-21.12	36.62	43.50	-6.88	peak
4	249.2200	48.40	-16.27	32.13	46.00	-13.87	peak
5	398.6000	43.37	-11.20	32.17	46.00	-13.83	peak
6	780.7800	41.64	-2.20	39.44	46.00	-6.56	peak

Remark:

- 1. Margin = Result (Result = Reading + Factor)-Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

Page 25 of 57 Report No.: STS2412170W04

(1GHz-25GHz) Spurious emission Requirements

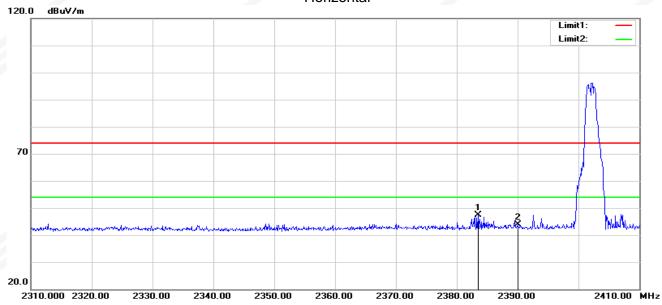
GFSK

OI OIL										
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
			<i>6</i> 1	Low Ch	nannel (GFSK/	2402 MHz)				
3264.82	62.01	44.70	6.70	28.20	-9.80	52.21	74.00	-21.79	PK	Vertical
3264.82	50.73	44.70	6.70	28.20	-9.80	40.93	54.00	-13.07	AV	Vertical
3264.77	61.84	44.70	6.70	28.20	-9.80	52.04	74.00	-21.96	PK	Horizontal
3264.77	51.22	44.70	6.70	28.20	-9.80	41.42	54.00	-12.58	AV	Horizontal
4804.47	58.12	44.20	9.04	31.60	-3.56	54.56	74.00	-19.44	PK	Vertical
4804.47	49.14	44.20	9.04	31.60	-3.56	45.58	54.00	-8.42	AV	Vertical
4804.47	58.25	44.20	9.04	31.60	-3.56	54.69	74.00	-19.31	PK	Horizontal
4804.47	50.48	44.20	9.04	31.60	-3.56	46.92	54.00	-7.08	AV	Horizontal
5359.88	49.04	44.20	9.86	32.00	-2.34	46.70	74.00	-27.30	PK	Vertical
5359.88	39.64	44.20	9.86	32.00	-2.34	37.30	54.00	-16.70	AV	Vertical
5359.87	48.38	44.20	9.86	32.00	-2.34	46.04	74.00	-27.96	PK	Horizontal
5359.87	39.30	44.20	9.86	32.00	-2.34	36.96	54.00	-17.04	AV	Horizontal
7205.93	54.86	43.50	11.40	35.50	3.40	58.26	74.00	-15.74	PK	Vertical
7205.93	44.37	43.50	11.40	35.50	3.40	47.77	54.00	-6.23	AV	Vertical
7205.76	54.67	43.50	11.40	35.50	3.40	58.07	74.00	-15.93	PK	Horizontal
7205.76	44.52	43.50	11.40	35.50	3.40	47.92	54.00	-6.08	AV	Horizontal
				Middle C	Channel (GFSK	/2440 MHz)				
3263.01	61.30	44.70	6.70	28.20	-9.80	51.50	74.00	-22.50	PK	Vertical
3263.01	51.40	44.70	6.70	28.20	-9.80	41.60	54.00	-12.40	AV	Vertical
3262.95	61.80	44.70	6.70	28.20	-9.80	52.00	74.00	-22.00	PK	Horizontal
3262.95	50.45	44.70	6.70	28.20	-9.80	40.65	54.00	-13.35	AV	Horizontal
4880.03	58.31	44.20	9.04	31.60	-3.56	54.75	74.00	-19.25	PK	Vertical
4880.03	50.51	44.20	9.04	31.60	-3.56	46.95	54.00	-7.05	AV	Vertical
4879.97	59.63	44.20	9.04	31.60	-3.56	56.07	74.00	-17.93	PK	Horizontal
4879.97	49.99	44.20	9.04	31.60	-3.56	46.43	54.00	-7.57	AV	Horizontal
5357.32	48.25	44.20	9.86	32.00	-2.34	45.91	74.00	-28.09	PK	Vertical
5357.32	40.25	44.20	9.86	32.00	-2.34	37.91	54.00	-16.09	AV	Vertical
5357.39	48.49	44.20	9.86	32.00	-2.34	46.15	74.00	-27.85	PK	Horizontal
5356.95	39.52	44.20	9.86	32.00	-2.34	37.18	54.00	-16.82	AV	Horizontal
7320.85	54.95	43.50	11.40	35.50	3.40	58.35	74.00	-15.65	PK	Vertical
7320.85	43.50	43.50	11.40	35.50	3.40	46.90	54.00	-7.10	AV	Vertical
7320.55	54.24	43.50	11.40	35.50	3.40	57.64	74.00	-16.36	PK	Horizontal
7320.55	44.45	43.50	11.40	35.50	3.40	47.85	54.00	-6.15	AV	Horizontal

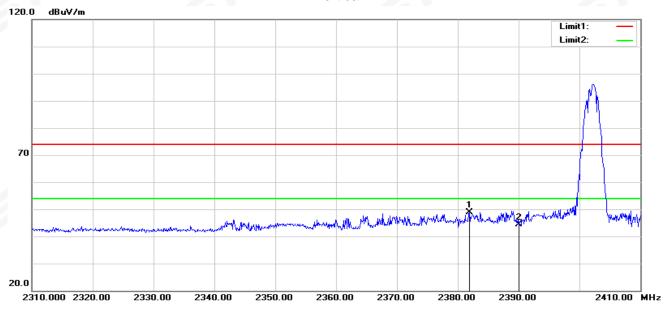
Page 26 of 57 Report No.: STS2412170W04

	High Channel (GFSK/2480 MHz)									
3264.82	62.09	44.70	6.70	28.20	-9.80	52.29	74.00	-21.71	PK	Vertical
3264.82	51.49	44.70	6.70	28.20	-9.80	41.69	54.00	-12.31	AV	Vertical
3264.78	61.12	44.70	6.70	28.20	-9.80	51.32	74.00	-22.68	PK	Horizontal
3264.78	50.25	44.70	6.70	28.20	-9.80	40.45	54.00	-13.55	AV	Horizontal
4960.33	59.57	44.20	9.04	31.60	-3.56	56.01	74.00	-17.99	PK	Vertical
4960.33	50.14	44.20	9.04	31.60	-3.56	46.58	54.00	-7.42	AV	Vertical
4960.38	59.37	44.20	9.04	31.60	-3.56	55.81	74.00	-18.19	PK	Horizontal
4960.38	49.32	44.20	9.04	31.60	-3.56	45.76	54.00	-8.24	AV	Horizontal
5359.64	49.42	44.20	9.86	32.00	-2.34	47.08	74.00	-26.92	PK	Vertical
5359.64	39.29	44.20	9.86	32.00	-2.34	36.95	54.00	-17.05	AV	Vertical
5359.60	48.24	44.20	9.86	32.00	-2.34	45.90	74.00	-28.10	PK	Horizontal
5359.60	38.85	44.20	9.86	32.00	-2.34	36.51	54.00	-17.49	AV	Horizontal
7439.83	54.64	43.50	11.40	35.50	3.40	58.04	74.00	-15.96	PK	Vertical
7439.83	44.05	43.50	11.40	35.50	3.40	47.45	54.00	-6.55	AV	Vertical
7439.79	53.86	43.50	11.40	35.50	3.40	57.26	74.00	-16.74	PK	Horizontal
7439.79	44.32	43.50	11.40	35.50	3.40	47.72	54.00	-6.28	AV	Horizontal

Note:


- Factor = Antenna Factor + Cable Loss Pre-amplifier.
 Emission Level = Reading + Factor
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

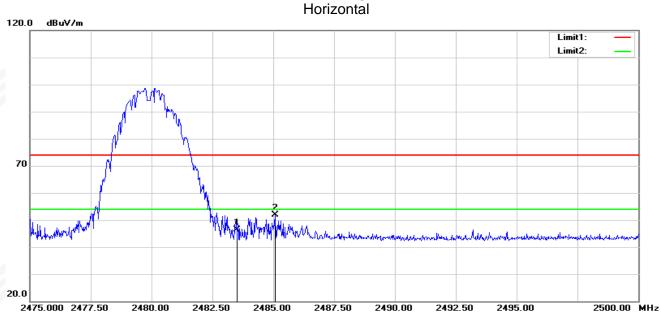
Page 27 of 57 Report No.: STS2412170W04


4.6 TEST RESULTS (Restricted Bands Requirements)

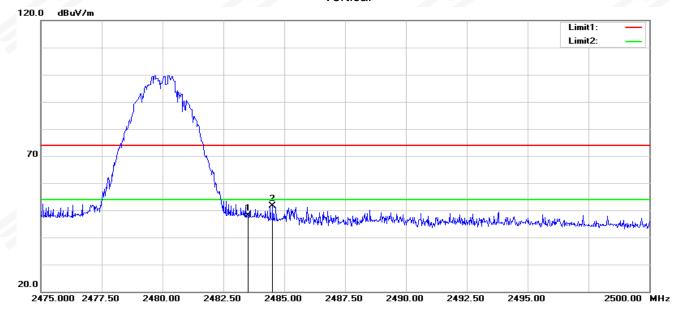
GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2383.500	43.09	4.24	47.33	74.00	-26.67	peak
2	2390.000	39.52	4.34	43.86	74.00	-30.14	peak

Vertical


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2381.900	44.74	4.22	48.96	74.00	-25.04	peak
2	2390.000	39.93	4.34	44.27	74.00	-29.73	peak

Page 28 of 57


Report No.: STS2412170W04

GFSK-High

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	41.69	4.60	46.29	74.00	-27.71	peak
2	2485.075	47.30	4.61	51.91	74.00	-22.09	peak

Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	43.54	4.60	48.14	74.00	-25.86	peak
2	2484.525	47.07	4.61	51.68	74.00	-22.32	peak

Page 29 of 57 Report No.: STS2412170W04

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Chart/Chan Fraguency	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

Page 30 of 57 Report No.: STS2412170W04

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS				

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: $100 \text{ kHz} \ge \text{RBW} \ge 3 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

6.5 TEST RESULTS

Page 31 of 57 Report No.: STS2412170W04

7. BANDWIDTH TEST

7.1 LIMIT

FCC Part 15.247,Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS			

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

Page 32 of 57 Report No.: STS2412170W04

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

FCC Part 15.247,Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result		
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS		

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output power of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction. The procedure for this method is as follows:

- a) Measure the duty cycle D of the transmitter output signal as described in 11.6.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- d) Set VBW ≥ [3 x RBW].
- e) Number of points in sweep \geq [2 x span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so th at narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode . h) Do not use sweep triggering. Allow the sweep to "free run."
- i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of trac es to be averaged shall be increased above 100 as needed such that the average accurately re presents the true average over the ON and OFF periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the in strument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average o ver both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

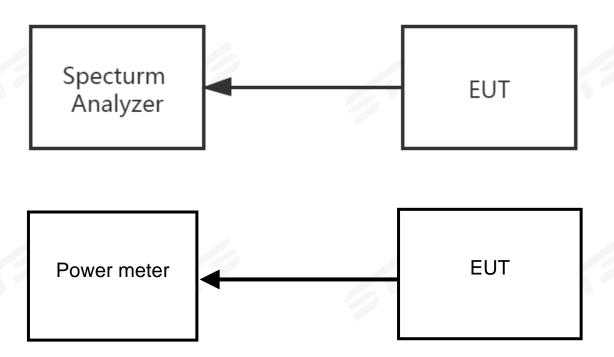
The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW ≥ [3 × RBW].
- c) Set span ≥ [3 × RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Page 33 of 57 Report No.: STS2412170W04

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the


DTS bandwidth:

- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq [3 \times RBW].
- c) Set the span ≥ [1.5 × DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

Please refer to section 3.4 of this report.

8.5 TEST RESULTS

Page 34 of 57 Report No.: STS2412170W04

9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

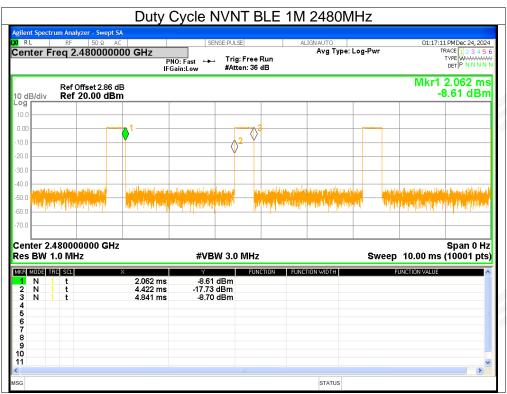
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is FPC Antenna. It comply with the standard requirement.

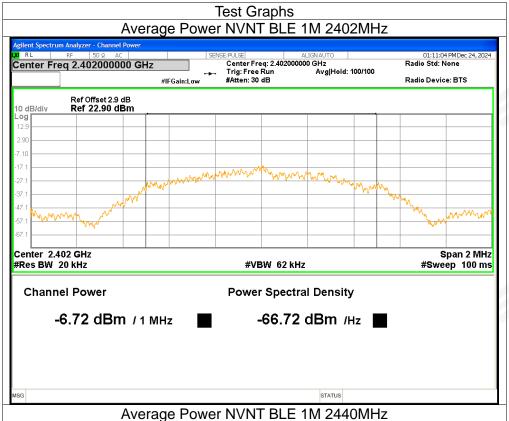
Page 35 of 57 Report No.: STS2412170W04

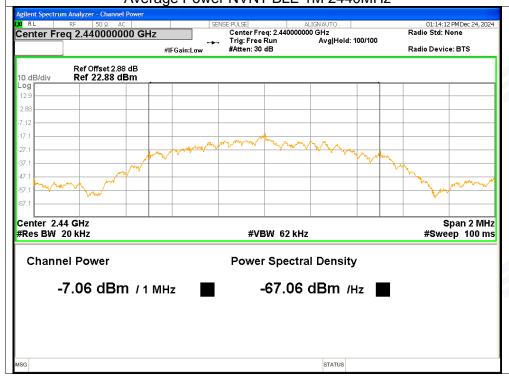
1. Duty Cycle


Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	15.04	8.23	2.39
NVNT	BLE 1M	2440	15.04	8.23	2.39
NVNT	BLE 1M	2480	15.08	8.22	2.39

Page 36 of 57 Report No.: STS2412170W04

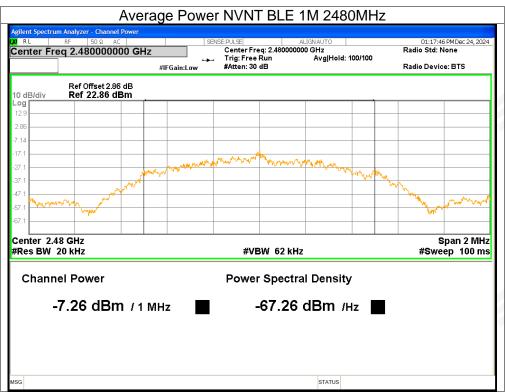
Page 37 of 57 Report No.: STS2412170W04



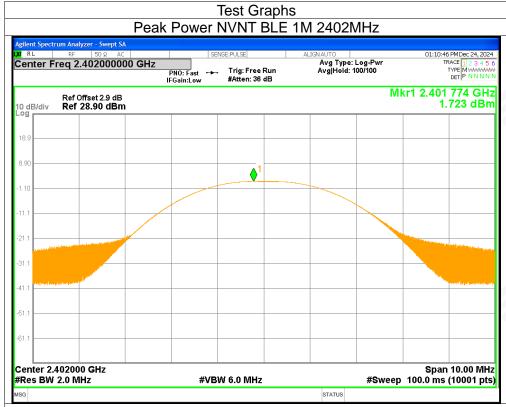

Page 38 of 57 Report No.: STS2412170W04

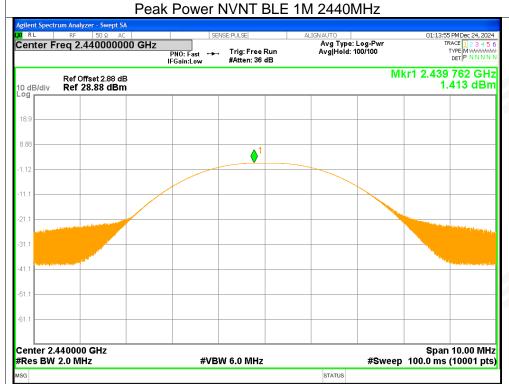
2. Maximum Average Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	-6.72	8.23	1.51	<=30	Pass
NVNT	BLE 1M	2440	-7.06	8.23	1.17	<=30	Pass
NVNT	BLE 1M	2480	-7.26	8.22	0.96	<=30	Pass


Page 39 of 57 Report No.: STS2412170W04

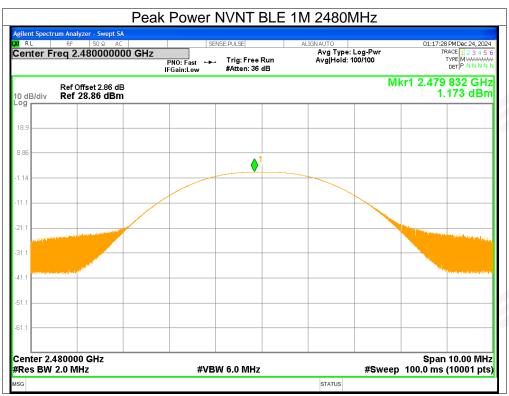
Page 40 of 57 Report No.: STS2412170W04



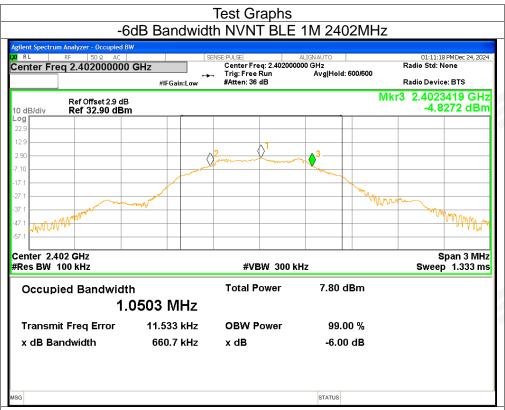


Page 41 of 57 Report No.: STS2412170W04

3. Maximum Peak Conducted Output Power


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	1.72	<=30	Pass
NVNT	BLE 1M	2440	1.41	<=30	Pass
NVNT	BLE 1M	2480	1.17	<=30	Pass

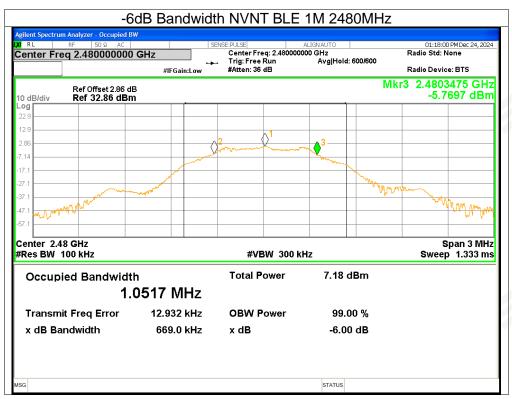
Page 43 of 57 Report No.: STS2412170W04



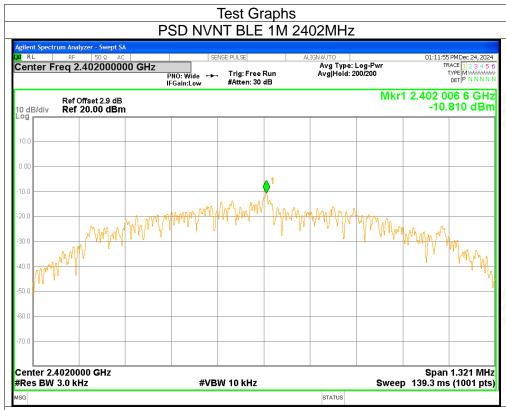
Page 44 of 57 Report No.: STS2412170W04

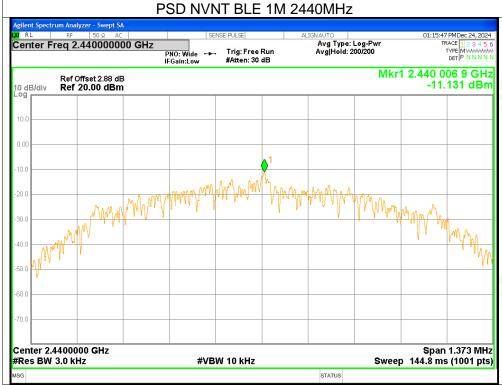
4. -6dB Bandwidth

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.6607	>=0.5	Pass
NVNT	BLE 1M	2440	0.6864	>=0.5	Pass
NVNT	BLE 1M	2480	0.669	>=0.5	Pass


Page 45 of 57 Report No.: STS2412170W04

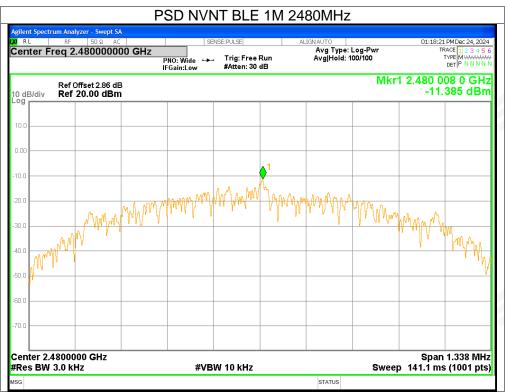
Page 46 of 57 Report No.: STS2412170W04



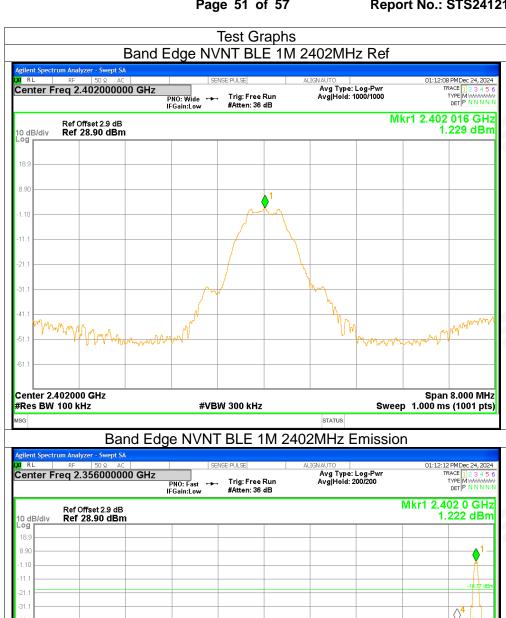

Page 47 of 57 Report No.: STS2412170W04

5. Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-10.81	<=8	Pass
NVNT	BLE 1M	2440	-11.13	<=8	Pass
NVNT	BLE 1M	2480	-11.39	<=8	Pass


Page 48 of 57 Report No.: STS2412170W04

Page 49 of 57 Report No.: STS2412170W04



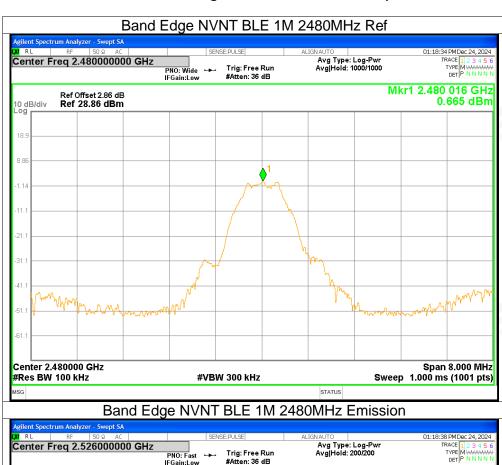
Page 50 of 57 Report No.: STS2412170W04

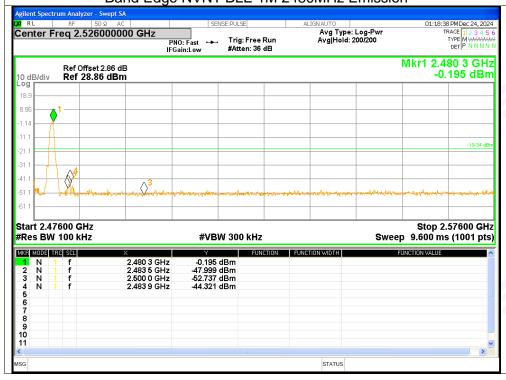
6. Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-43.38	<=-20	Pass
NVNT	BLE 1M	2480	-44.99	<=-20	Pass

Page 51 of 57 Report No.: STS2412170W04

#VBW 300 kHz

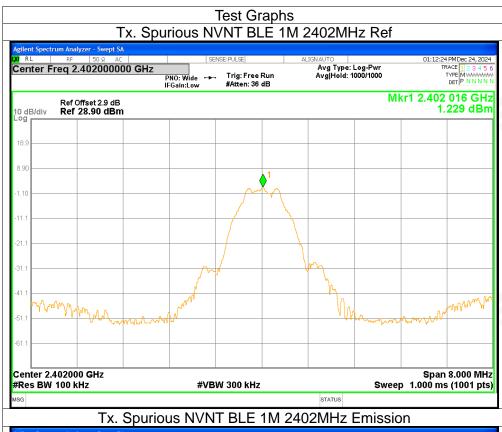

1.222 dBm -50.878 dBm -50.878 dBm -42.150 dBm

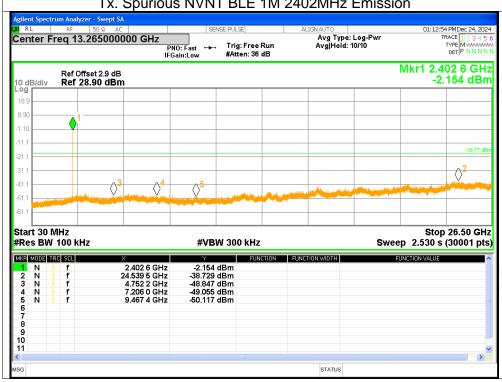

Stop 2.40600 GHz Sweep 9.600 ms (1001 pts)

Start 2.30600 GHz

#Res BW 100 kHz

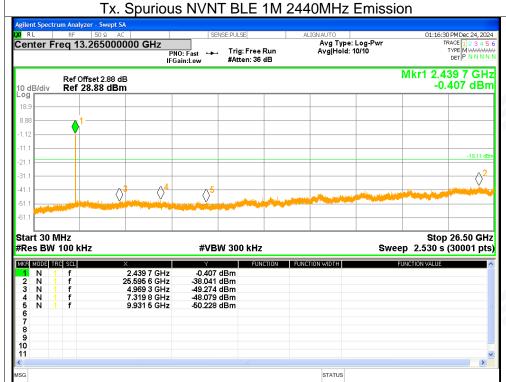
Page 52 of 57 Report No.: STS2412170W04

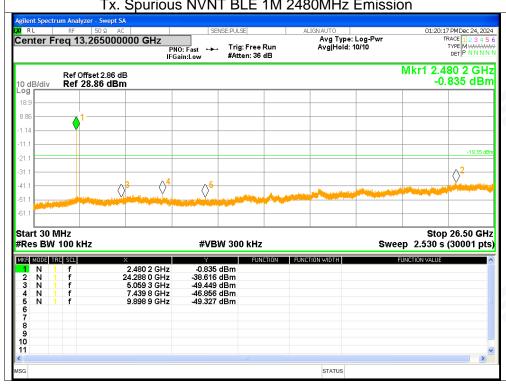



Page 53 of 57 Report No.: STS2412170W04

7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-39.95	<=-20	Pass
NVNT	BLE 1M	2440	-38.93	<=-20	Pass
NVNT	BLE 1M	2480	-39.26	<=-20	Pass


Page 54 of 57 Report No.: STS2412170W04


Page 55 of 57 Report No.: STS2412170W04

Page 56 of 57 Report No.: STS2412170W04

Page 57 of 57 Report No.: STS2412170W04

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.

* * * * * END OF THE REPORT * * * *