

TEST REPORT

No. B15D30010-SAR

For

- Client : Asiatelco Technologies Co.
- Production : LTE Mobile hotspot
- Model Name : ALM-N245
 - FCC ID: XYOALM-N245
- Hardware Version: KF1030
- Software Version: N245V1.0.0B03
 - Issued date: 2015-06-17

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of ECIT Shanghai.

Test Laboratory:

ECIT Shanghai, East China Institute of Telecommunications

Add: 7-8F, G Area, No.668, Beijing East Road, Huangpu District, Shanghai, P. R. China

Tel: (+86)-021-63843300, E-Mail: welcome@ecit.org.cn

SAR Test Report

Revisio	on Version

Report Number	Revision	Date	Memo
B15D30010-SAR	00	2015-06-17	Initial creation of test report

CONTENTS

1.	TEST LABORATORY			6
1.1.	TESTING LOCATION			
1.2.	TESTING ENVIRONMENT 6			
1.3.	PROJECT DATA			6
1.4.	SIGNATURE			6
2.	STATEMENT OF COMPLIANCE			7
3.	CLIENT INFORMATION			9
3.1.	APPLICANT INFORMATION			9
3.2.	MANUFACTURER INFORMATION			9
4.	EQUIPMENT UNDER TEST (EUT) AND ANCILLAR	Y EQUIPMENT (AE)	. 10
4.1.	ABOUT EUT			. 10
4.2.	INTERNAL IDENTIFICATION OF EUT USED DURING THE TEST			
4.3.	INTERNAL IDENTIFICATION OF AE USED DURING THE TEST11			
5.	TEST METHODOLOGY 12			
5.1.	APPLICABLE LIMIT REGULATIONS			
5.2.	APPLICABLE MEASUREMENT STANDARDS 12			
6.	SPECIFIC ABSORPTION RATE (SAR)			13
6.1.				13
6.2.	SAR DEFINITION			13
7.	TISSUE SIMULATING LIQUIDS			14
7.1.	TARGETS FOR TISSUE SIMULATING LIQUID			. 14
7.2.	DIELECTRIC PERFORMANCE			. 14
8.	SYSTEM VERIFICATION			18
8.1.	SYSTEM SETUP			. 18
8.2.	SYSTEM VERIFICATION			. 18
9.	MEASUREMENT PROCEDURES			20
	China Institute of Telecommunications +86 21 63843300FAX:+86 21 63843301	Page Number Report Issued Date	: 3 of 108 : Jun 17, 2015	

9.1.	TESTS	TO BE PERFORMED		20
9.2.	GENER	AL MEASUREMENT PROCEDURE		21
9.3.	WCDM	A MEASUREMENT PROCEDURES FOR SAR		22
9.4.	CDMA	MEASUREMENT PROCEDURES FOR SAR		24
9.5.	SAR ME	EASUREMENT FOR LTE		24
9.6.	BLUET	OOTH & WI-FI MEASUREMENT PROCEDURES	FOR SAR	25
9.7.	POWER	R DRIFT		26
10.	AREA S	SCAN BASED 1-G SAR		27
11.	CONDU	ICTED OUTPUT POWER		28
11.1.	MANUF	ACTURING TOLERANCE		28
11.2.		MEASUREMENT RESULT		31
11.3.	WI-FI M	EASUREMENT RESULT		33
12.	SIMULT	ANEOUS TX SAR CONSIDERATIONS		35
12.1.	INTRO	DUCTION		35
12.2.	TRANS	MIT ANTENNA SEPARATION DISTANCES		35
12.3.	STAND	ALONE SAR TEST EXCLUSION CONSIDERATI	ONS	36
12.4.	SAR ME	EASUREMENT POSITIONS		36
13.	EVALU	ATION OF SIMULTANEOUS		37
14.	SAR TE	ST RESULT		38
15.	SAR ME	EASUREMENT VARIABILITY		42
16.	MEASU	REMENT UNCERTAINTY		43
17.	MAIN T	EST INSTRUMENT		44
ANNE	XA.	GRAPH RESULTS		45
ANNE	ХΒ.	SYSTEM VALIDATION RESULTS		51
ANNE	X C.	SAR MEASUREMENT SETUP		54
ANNE	X D.	POSITION OF THE WIRELESS DEVICE IN REL	ATION TO THE	PHANTOM 63
ANNE	X E.	EQUIVALENT MEDIA RECIPES		
			ge Number port Issued Date	

ANNEX F.	SYSTEM VALIDATION	. 68
ANNEX G.	PROBE AND DAE CALIBRATION CERTIFICATE	. 69
ANNEX H.	DIPOLECALIBRATION CERTIFICATE	. 83

1. Test Laboratory

1.1. Testing Location

Company Name:	ECIT Shanghai, East China Institute of Telecommunications
Address:	7-8F, G Area,No. 668, Beijing East Road, Huangpu District, Shanghai, P. R. China
Postal Code:	200001
Telephone:	(+86)-021-63843300
Fax:	(+86)-021-63843301

1.2. Testing Environment

NormalTemperature:	18-25℃
Relative Humidity:	10-90%
Ambient noise & Reflection:	< 0.012 W/kg

1.3. Project Data

Project Leader:	Chen Kan
Testing Start Date:	2015-05-28
Testing End Date:	2015-05-30

1.4. Signature

Hu Jiajing (Prepared this test report)

Yu Naiping (Reviewed this test report)

Zheng Zhongbin Director of the laboratory (Approved this test report)

2. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for ALM-N245 are as follows (with expanded uncertainty 22.4%)

	I (U /
Band	Position/Distance	Reported SAR
Danu	F USITION/DIStance	1g(W/Kg)
CDMA 800	Body/10mm	1.28
CDMA 1900	Body/10mm	1.05
Wi-Fi	Body/10mm	0.140

Table 2.1: Max. Reported SAR (1g)

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The measurement together with the test system set-up is described in chapter 7 of this test report. A detailed description of the equipment under test can be found in chapter 3 of this test report. The maximum reported SAR value is obtained at the case of **(Table 2.1)**, and the values are: **1.28 W/kg (1g)**.

NOTE:

1.Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg 2.Body Mode include Body-worn Mode and Hotspot Mode,The measurement of Body-worn Mode include hotspot mode test.

The sample has three antennas. One is main antenna for CDMA, and the other is for WiFi. So simultaneous transmission is CDMA and WiFi.

Simultaneous Transmission SAR(W/Kg)					
Test Po	sition	CDMA 800	CDMA 1900	WIFI	SUM
	Phantom Side	1.28	0.884	0.034	1.314
Body	Ground Side	1.26	0.626	0.031	1.291
	Left Side	0.044	0.076	0.00	0.076
Douy	Right Side	0.297	1.05	0.00	1.05
	Bottom Side	0.533	0.159	0.00	0.533
	Top Side	0.667	0.212	0.156	0.823

Table 2.2:	Simultaneous	SAR	(1a)
TUDIC LIL.	onnancous		('9/

According to the above table, the maximum sum of reported SAR values for CDMA and WiFi is **1.314 W/kg (1g)**. The detail for simultaneous transmission consideration is described in chapter 12.

3. Client Information

3.1. Applicant Information

Company Name:	Asiatelco Technologies Co.
Addroool	#289 Bisheng Road, Building-8, 3F, Zhangjiang Hi-Tech Park, Pudong,
Address:	Shanghai 201204, China
Telephone:	021-51688806-192
Contact:	Yang Zhan

3.2. Manufacturer Information

Company Name:	HUIZHOU QIAOXING TELECOMMUNICATION INDUSTRY CO., LTD					
Address:	Huizhou Qiaoxing Industrial Park, Tangquan, Huizhou City, Guangdong					
Audress.	Province,P.R.C					
Telephone:	0752-2820345 2820322					
Contact:	Liang Xiaohua					

4. Equipment Under Test (EUT) and Ancillary Equipment (AE)

4.1. About EUT

Description:	LTE Mobile hotspot
Model name:	ALM-N245
Operation Model(s):	CDMA800/1900,Wifi2450
Tx Frequency:	824.7-848.3 MHz, 1851.2-1908.7MHz (CDMA) 2412-2462 MHz (Wi-Fi)
Test device Production	Production unit
information:	
Device type:	Portable device
UE category:	3
Antenna type:	Inner antenna
Accessories/Body-worn	N/A
configurations:	
Dimensions:	9.5cm×6.0cm
FCC ID:	XYOALM-N245

4.2. Internal Identification of EUT used during the test

EUT ID*	SN or IMEI	HW Version	SW Version
N12	863867020575286	KF1030	N245V1.0.0B03

*EUT ID: is used to identify the test sample in the lab internally.

4.3. Internal Identification of AE used during the test

AE ID*	Description	Model	SN	Manufacturer
B04	Battery	N-1800	N/A	N/A

*AE ID: is used to identify the test sample in the lab internally.

5. TEST METHODOLOGY

5.1. Applicable Limit Regulations

ANSI C95.1–1992:IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

5.2. Applicable Measurement Standards

IC RSS-102 ISSUE4: Radio Frequency (RF) Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

IEEE 1528–2003: Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques.

IEEE1528a-2005:Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head From Wireless Communications Devices: Measurement Techniques.

KDB648474 D04 SAR Handsets Multi Xmiter and Ant v01r02:SAR Evaluation Considerations for Wireless Handsets.

KDB248227 D01 802 11 Wi-Fi SAR V02: SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters.

KDB447498 D01 General RF Exposure Guidance v05r02:Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB865664 D01 v01r03:SAR Measurement Requirements for 100 MHz to 6 GHz

KDB865664 D02 RF Exposure Reporting v01r03:provides general reporting requirements as well as certain specific information required to support MPE and SAR compliance.

KDB941225 D06 hotspot SAR v01r01:SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities.

6. Specific Absorption Rate (SAR)

6.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

6.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

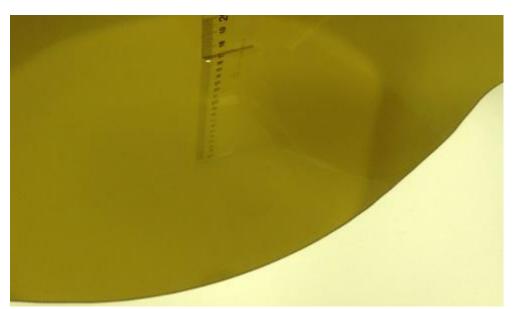
$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of tissue and *E* is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

7. Tissue Simulating Liquids

7.1. Targets for tissue simulating liquid

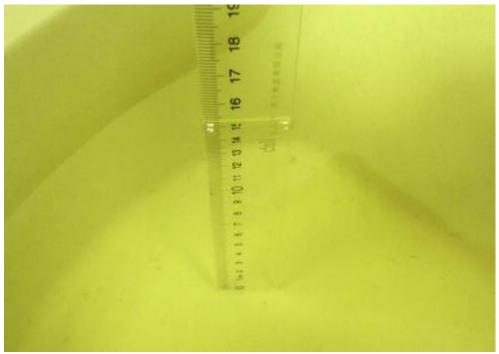

Frequency (MHz)	Liquid Type	Conductivity(o)	± 5% Range	Permittivity(ε)	± 5% Range
835	Head	0.90	0.86~0.95	41.5	39.4~43.6
835	Body	0.97	0.92~1.02	55.2	52.4~58.0
1900	Head	1.40	1.33~1.47	40.0	38.0~42.0
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2
2450	Body	1.95	1.85~2.05	52.7	50.1~55.3

7.2. Dielectric Performance


Table 7.2: Dielectric Performance of Tissue Simulating Liquid

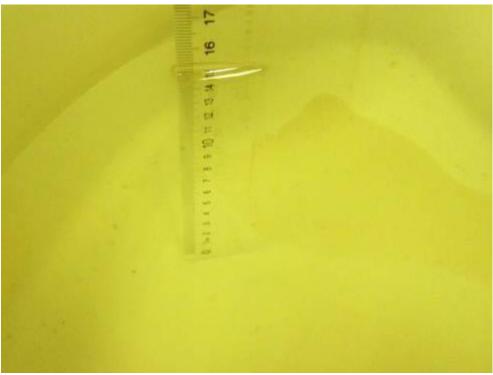
Measurement Value							
Liquid Temperature: 21.0 °C							
Туре	Frequency	Permittivity ε	Drift (%)	Conductivity σ	Drift (%)	Test Date	
Body	835 MHz	55.14	-0.10%	0.998	2.88%	2015-5-28	
Body	1900 MHz	53.16	-0.26%	1.438	2.71%	2015-5-29	
Body	2450 MHz	53.93	2.33%	1.923	-1.38%	2015-5-29	


Picture 7-1: Liquid depth in the Flat Phantom (835 MHz Head)


Picture 7-2: Liquid depth in the Flat Phantom (1900 MHz Head)

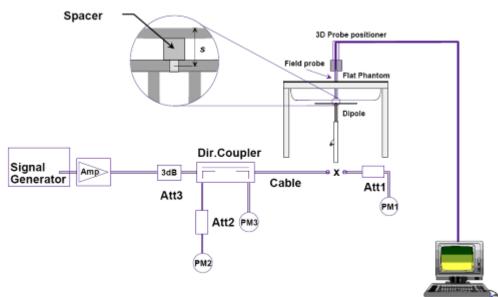
SAR Test Report

Picture 7-3: Liquid depth in the Flat Phantom (835 MHz Body)


Picture 7-4: Liquid depth in the Flat Phantom (1900 MHz Body)

SAR Test Report

Picture 7-5: Liquid depth in the Flat Phantom (2450 MHz Head)


Picture 7-6: Liquid depth in the Flat Phantom (2450 MHz Body)

8. System verification

8.1. System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

Picture 8.1 System Setup for System Evaluation

Picture 8.2 Photo of Dipole Setup

8.2. System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of

test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device.

Verification Results								
Input power level: 250mW								
	Target value (W/kg) Measured value (W/kg) Deviation						Test	
Frequency	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	date	
835 MHz	6.32	9.45	6.28	9.64	-0.63%	2.01%	2015-5-28	
1900 MHz	21.3	40.7	21.48	40.8	0.85%	0.25%	2015-5-29	
2450 MHz	24.4	51.6	24.64	52.4	0.98%	1.55%	2015-5-29	

Table 8.1: System Verification of Body

9. Measurement Procedures

9.1. Tests to be performed

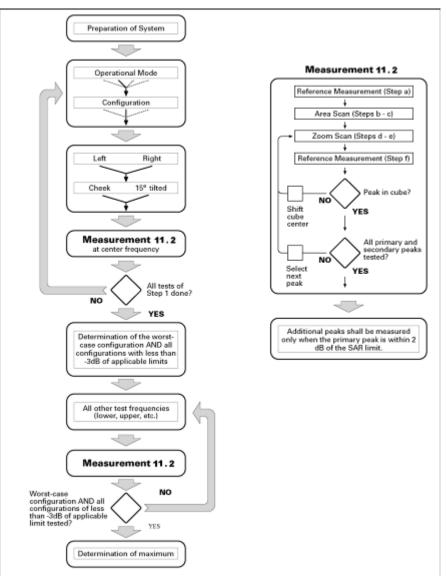
In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.

Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in Chapter 8),

b) all configurations for each device position in a), e.g., antenna extended and retracted, and

c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.


If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies,

configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 9.1Block diagram of the tests to be performed

9.2. General Measurement Procedure

The following procedure shall be performed for each of the test conditions (see Picture 11.1) described in 11.1:

a) Measure the local SAR at a test point within 8 mm or less in the normal direction from the inner surface of the phantom.

b) Measure the two-dimensional SAR distribution within the phantom (area scan procedure). The boundary of the measurement area shall not be closer than 20 mm from the phantom side walls. The distance between the measurement points should enable the detection of the location of local maximum with an accuracy of better than half the linear dimension of the tissue cube after interpolation. A maximum grip spacing of 20 mm for frequencies below 3 GHz and (60/f [GHz]) mm for frequencies of 3GHz and greater is recommended. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and $\ln(x)$ is the natural logarithm. The maximum variation of the sensor-phantom surface shall be ± 1 mm for frequencies below 3 GHz and

 $\pm\,0.5$ mm for frequencies of 3 GHz and greater. At all measurement points the angle of the probe with respect to the line normal to the surface should be less than 5° . If this cannot be achieved for a measurement distance to the phantom inner surface shorter than the probe diameter, additional uncertainty evaluation is needed.

c) From the scanned SAR distribution, identify the position of the maximum SAR value, in addition identify the positions of any local maxima with SAR values within 2 dB of the maximum value that are not within the zoom-scan volume; additional peaks shall be measured only when the primary peak is within 2 dB of the SAR limit. This is consistent with the 2 dB threshold already stated;

d) Measure the three-dimensional SAR distribution at the local maxima locations identified in step c). The horizontal grid step shall be (24/f[GHz]) mm or less but not more than 8 mm. The minimum zoom size of 30 mm by 30 mm and 30 mm for frequencies below 3 GHz. For higher frequencies, the minimum zoom size of 22 mm by 22 mm and 22 mm. The grip step in the vertical direction shall be (8-f[GHz]) mm or less but not more than 5 mm, if uniform spacing is used. If variable spacing is used in the vertical direction, the maximum spacing between the two closest measured points to the phantom shell shall be (12 / f[GHz]) mm or less but not more than 4 mm, and the spacing between father points shall increase by an incremental factor not exceeding 1.5. When variable spacing is used, extrapolation routines shall be tested with the same spacing as used in measurements. The maximum distance between the geometrical centre of the probe detectors and the inner surface of the phantom shall be 5 mm for frequencies below 3 GHz and $\delta \ln(2)/2$ mm for frequencies of 3 GHz and greater, where δ is the plane wave skin depth and In(x) is the natural logarithm. Separate grids shall be centered on each of the local SAR maxima found in step c). Uncertainties due to field distortion between the media boundary and the dielectric enclosure of the probe should also be minimized, which is achieved is the distance between the phantom surface and physical tip of the probe is larger than probe tip diameter. Other methods may utilize correction procedures for these boundary effects that enable high precision measurements closer than half the probe diameter. For all measurement points, the angle of the probe with respect to the flat phantom surface shall be less than 5°. If this cannot be achieved an additional uncertainty evaluation is needed. e) Use post processing(e.g. interpolation and extrapolation) procedures to determine the local SAR values at the spatial resolution needed for mass averaging.

9.3. WCDMA Measurement Procedures for SAR

The following procedures are applicable to WCDMA handsets operating under 3GPP Release99, Release 5 and Release 6. The default test configuration is to measure SAR with an established radio link between the DUT and a communication test set using a 12.2kbps RMC (reference measurement channel) configured in Test Loop Mode 1. SAR is selectively confirmed for other physical channel configurations (DPCCH &DPDCH_n), HSDPA and HSPA (HSUPA/HSDPA) modes according to output power, exposure conditions and device operating capabilities. Both uplink and downlink should be configured with the same RMC or AMR, when required. SAR for Release 5 HSDPA and Release 6 HSPA are measured using the applicable FRC (fixed reference channel) and E-DCH reference channel configurations. Maximum output power is verified according to applicable versions of 3GPP TS 34.121 and SAR must be measured according to these maximum output conditions. When Maximum Power Reduction (MPR) is not implemented according to Cubic Metric (CM) requirements for Release 6 HSPA, the following procedures do not apply.

For Release 5 HSDPA Data Devices:

SAR Test Report

Sub-test	β_c	eta_d	β_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	CM/dB
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15	15/15	64	12/15	24/25	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

For Release 6 HSDPA Data Devices

Sub- test	eta_{c}	eta_{d}	eta_d (SF)	eta_c / eta_d	$eta_{\scriptscriptstyle hs}$	$eta_{_{ec}}$	$eta_{_{ed}}$	eta_{ed} (SF)	eta_{ed} (codes)	CM (dB)	MPR (dB)	AG Index	E-TFCI
1	11/15	15/15	64	11/15	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	12/15	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$egin{aligned} &m{eta}_{ed1} {}^{:\!47/\!15} \ &m{eta}_{ed2} {}^{:\!47/\!15} \end{aligned}$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	4/15	56/75	4	1	3.0	2.0	17	71
5	15/15	15/15	64	15/15	24/15	30/15	134/15	4	1	1.0	0.0	21	81

9.4. CDMA Measurement Procedures for SAR

SAR is measured using FTAP/RTAP and FETAP/RETAP respectively for Rev. 0 and Rev. A devices. The AT is tested with a Reverse Data Channel rate of 153.6 kbps in Subtype 0/1 Physical Layer configurations; and a Reverse Data Channel payload size of 4096 bits and Termination Target of 16 slots in Subtype 2 Physical Layer configurations. Both FTAP and FETAP are configured with a Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots. AT power control should be in "All Bits Up" conditions for TAP/ETAP.

Body SAR is measured using Subtype 0/1 Physical Layer configurations for Rev. 0. SAR for Subtype 2 Physical layer configurations is not required for Rev. A when the maximum average output of each RF channels is less than that measured in Subtype 0/1 Physical layer configurations. Otherwise, SAR is measured on the maximum output channel for Rev. A using the exposure configuration that results in the highest SAR for that RF channels in Rev. 0. Head SAR is required for Ev-Do devices that support operations next to the ear; for example, with VOIP, using Subtype 2 Physical Layer configurations according to the required handset configurations.

For Ev-Do devices that also support 1x RTT voice and/or data operations, SAR is not required for 1x RTT when the maximum average output of each channel is less than ¼ dB higher than that measured in Subtype 0/1 Physical Layer configurations for Rev. 0. Otherwise, the 'Body SAR Measurements' procedures in the 'CDMA 2000 1x Handsets' section should be applied.

9.5. SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band

1) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

2) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.

3) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are $\leq 0.8W/kg$. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

9.6. Bluetooth & Wi-Fi Measurement Procedures for SAR

Normal network operating configurations are not suitable for measuring the SAR of 802.11 transmitters in general. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure that the results are consistent and reliable.

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in a test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each

SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.7. Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

10. Area Scan Based 1-g SAR

10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is \leq 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required fo simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

10.2 Fast SAR Algorithms

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.

11. Conducted Output Power

11.1. Manufacturing tolerance

Table 10.1: CDMA 800						
	1xRTT	RC1 SO2				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			
	1xRTT F	RC1 SO55				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			
	1xRTT RC1 S	O32+FCH-SCH				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			
	1xRTT RC1	SO32+SCH				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			
	1xRTT F	RC3 SO55				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			
	1xRTT F	RC3 SO32				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			
	EVDO Rev.0	RTAP 153.6K				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			
	EVDO Rev.A S	Subtest2 RETAP				
Channel	Channel 1013	Channel 384	Channel 777			
Maximum Target Value (dBm)	23.5	23.5	23.5			

1xRTT RC1 SO2								
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)	23.5	20.0	20.0					
	1xRTT F	RC1 SO55						
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)	23.5	23.5	23.5					
	1xRTT RC1 S	O32+FCH-SCH						
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)			20.0					
	1xRTT RC	I SO32+SCH	T					
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)	20.0	20.0	20.0					
	1xRTT F	RC3 SO55						
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)	20.0	20.0	20.0					
	1xRTT F	RC3 SO32						
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)	20.0	23.5	20.0					
	EVDO Rev.0	RTAP 153.6K						
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)	23.0	20.0	20.0					
EVDO Rev.A Subtest2 RETAP								
Channel	Channel 25	Channel 600	Channel 1175					
Maximum Target	23.5	23.5	23.5					
Value (dBm)	20.0	20.0	23.0					

Table 10.2: CDMA 1900

	WiFi 802.11b									
Channel	Channel 1	Channel 6	Channel 11							
Maximum Target Value (dBm)	9.5	9.5	9.5							
	WiFi 802.11g									
Channel	Channel 1	Channel 6	Channel 11							
Maximum Target Value (dBm)	9.5	9.5	9.5							
	WiFi 8	302.11n								
Channel	Channel 1	Channel 6	Channel 11							
Maximum Target Value (dBm)	9.5	9.5	9.5							

Table 10.3: WiFi

11.2. CDMA Measurement result

Table 10.4: The conducted power measurement results for CDMA 800

		Tes	t case	BC0 (800MHz) Channel					
Mode	No.	FWD	REV	Conducted Power (dBm)					
	INU.	RC/TAP	RC/TAP	1013	384	777			
	1	RC1	SO2	23.46	23.43	23.28			
		SO55	23.49	23.43	23.35				
4 577		SO32+FCH-SCH	23.50	23.38	23.30				
1xRTT	4	RC1	SO32+SCH	23.50	23.40	23.37			
	5	RC3	SO55	23.39	23.35	23.24			
	6 RC3	SO32	23.29	23.21	23.21				
EVDO	1	Rev.0	RTAP 153.6K	23.49	23.44	23.38			
EVDO	2	Rev.A	Subtest2 RETAP	23.39	23.35	23.22			

		Test	case	BC1 (1900MHz) Channel						
Mode	No	FWD	REV	Conducted Power (dBm)						
	No. RC/TAP RC/TAP		25	600	1175					
	1	RC1	SO2	23.38	23.45	23.38				
1xRTT	2	RC1	SO55	23.38	23.48	23.37				
	3	RC1	SO32+FCH-SCH	23.29	23.41	23.38				
	4	RC1	SO32+SCH	23.31	23.45	23.37				
	5	RC3	SO55	23.30	23.37	23.31				
6	6	RC3	SO32	23.11	23.19	23.21				
EVDO	1	Rev.0	RTAP 153.6K	23.34	23.43	23.39				
EVDO	2	Rev.A	Subtest2 RETAP	23.28	23.37	23.31				

Table 10.5: The conducted pov	wer measurement results for CDMA 1900
-------------------------------	---------------------------------------

NOTE: According to the Table of conducted power, SAR measurement is required for EVDO mode Rev. 0.

11.3. Wi-Fi Measurement result

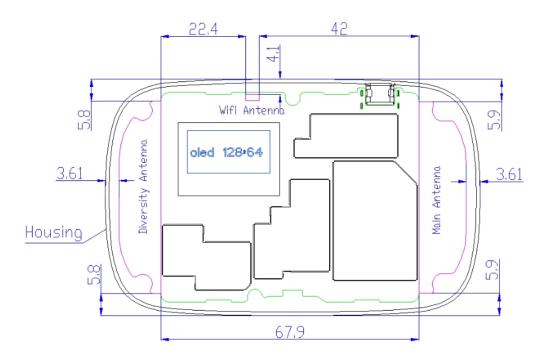
		Tap	ne i	0.4:	ine	Peak	con	aucted	a p	ower to	or vv	ITI			
					Wit	i Res	ults	s (dBm))						
802.11b (dBm)															
Channel\data rate		1Mb	ops			2Mb	2Mbps 5.			5.5Mb	ps		11	Mbps	5
1		13.1	13			12.5	9			12.64			12	2.71	
6		13.2	20			/				/			/		
11		13.2	23			/				/			/		
802.11g (dBm)															
Channel\data rate	6N	1	9N	Λ	12	M	18	BM	24	24M 36M		М	48N	Λ	54M
	bp	s	bp	S	bps	5	bp	os	s bps		bps		bps	;	bps
1	17	.08	17	.51	16.	80 16.51 1		1	5.12 15.40		15.	10	15.03		
6	/		17	.26	/	/			/		/		/		/
11	/		17	.34	/		/ /		/	/		/		/	
20M 802.11n (dB	m)														
Channel\data rate	Channel\data rate MCS0 MCS		S1	1 MCS		MCS3	3	MCS4	ſ	MCS5	Μ	CS6	MCS7		
1		15.95 16.71		16.19	16.19			15.29	1	14.32	13	3.74	12.78		
6		/	/ 16.34		/	/ /		/		/		/		/	
11		/		16.5	3	/	/			/	/	,	/		/

Table 10.4: The Peak conducted power for Wifi

		Table 10	J. THE	avei	aye ci	muu	lcieu	home						
			١	Nifi R	esults	s (dB	Sm)							
802.11b (d	Bm)													
Channel\dat	a rate	1Mbps		2	Mbps			5.5	Mbp	S		11Mb	ps	
1		9.35		8	.72			8.80)			8.98		
6		9.28		/				/				/		
11		9.41		/				/				/		
802.11g(d	Bm)	-										-		
Channel\	6Mbps	9Mbps	12N	1bps	18M	ops	24N	1bps	lbps 36Mbps		48Mbps		5	4Mbps
data rate														
1	8.84	9.12	8.73	3	8.64		8.32	.32		8.43		8.13		.99
6	/	9.38	/		/		/	/		/		/		
11	/	9.25	/		/		/	/		/				
20M 802.1	1n (dBm)													
Channel\dat	a rate	MCS0	MCS1	Μ	MCS2 M		S3	S3 MCS		MCS5		MCS6		MCS7
1		8.84 9.09 8.92 8.02		2	7.98		7.86		7.45		6.99			
6	/ 8.96 /		/	/ /			/		/		/		/	
11		/	9.19	/		/		/	/ /		/ /			/

Table 10.5:	The average	conducted	power for	Wifi

SAR is not required for 802.11g/n channels if the output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels, and for each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 0.25dB higher than those measured at the lowest data rate. According to the above conducted power, the EUT should be tested for "802.11b, 1Mbps, channel 11".



12. Simultaneous TX SAR Considerations

12.1. Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g and Bluetooth devices which may simultaneously transmit with the licensed transmitter. For this device, the BT and Wi-Fi can transmit simultaneous with other transmitters.

12.2. Transmit Antenna Separation Distances

Picture 12.1 Antenna Locations

12.3. Standalone SAR Test Exclusion Considerations

Standalone 1-g head or body SAR evaluation by measurement or numerical simulation is not required when the corresponding SAR Exclusion Threshold condition, listed below, is satisfied. The 1-g SAR test exclusion threshold for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f}(GHz)$] \leq 3.0 for 1-g SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

According to the KDB447498 appendix A, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 10mW.

Based on the above equation, WiFi SAR was not required:

Evaluation=2.80<3.0

12.4. SAR Measurement Positions

According to the KDB941225 D06 Hot Spot SAR v01, the edges with less than 2.5 cm distance to the antennas need to be tested for SAR.

SAR Measurement Positions										
Antenna Mode	Phantom	Ground	Left	Right	Тор	Bottom				
Main	Yes	Yes	Yes	Yes	Yes	Yes				
WLAN	Yes	Yes	Yes	Yes	Yes	Yes				

13. Evaluation of Simultaneous

Table 13.1: Summary of Transmitters									
Band/Mode	Frequency (GHz)	SAR test exclusion threshold(mW)	RF output power (mW)						
2.4GHz WLAN 802.11 b/g/n 2.45 10 8.913									

Table13.2 Simultaneous transmission SAR

Simultaneous Transmission SAR(W/Kg) **CDMA** CDMA **Test Position** WIFI SUM 800 1900 Phantom Side 1.28 0.884 0.034 1.314 Ground Side 1.27 0.626 0.031 1.301 Left Side 0.044 0.076 0.00 0.076 Body **Right Side** 0.297 1.05 0.00 1.05 **Bottom Side** 0.159 0.533 0.533 0.00 Top Side 0.667 0.212 0.156 0.823

According to the conducted power measurement result, we can draw the conclusion that: stand-alone SAR for WiFi should be performed. Then, simultaneous transmission SAR for WiFi is considered with measurement results of CDMA and WiFi. According to the above table, the sum of reported SAR values for CDMA and WiFi<1.6W/kg. So the simultaneous transmission SAR is not required for WiFi transmitter.

14. SAR Test Result

14.1. SAR results for Fast SAR

Table 1	4.1: Duty Cycle
D	Outy Cycle
CDMA800/1900	1:1
WiFi	1:1

Frequ	ency	Mode	Test	Figuro	Maximum allowed	Measured	Sociera	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	Figure No.	Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.5	384	EVDO	Phantom	Fig.1	23.5	23.44	1.014	1.26	1.28	0.04
836.5	384	EVDO	Ground	/	23.5	23.44	1.014	1.24	1.26	0.12
836.5	384	EVDO	Left	/	23.5	23.44	1.014	0.0432	0.044	-0.03
836.5	384	EVDO	Right	/	23.5	23.44	1.014	0.293	0.297	-0.11
836.5	384	EVDO	Bottom	/	23.5	23.44	1.014	0.526	0.533	0.04
836.5	384	EVDO	Тор		23.5	23.44	1.014	0.658	0.667	0.12
848.3	777	EVDO	Phantom	/	23.5	23.38	1.028	0.876	0.901	-0.05
824.7	1013	EVDO	Phantom	/	23.5	23.49	1.002	0.820	0.822	0.12

Table 14.2: SAR Values (CDMA800 MHz Band-Body)

Note: The distance between the EUT and the phantom bottom is 10mm.

Freque	ency	Mode	Test	Figuro	Maximum	Measured	Sociera	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	Figure No.	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
1880	600	EVDO	Phantom	/	23.5	23.43	1.016	0.870	0.884	-0.07
1880	600	EVDO	Ground	/	23.5	23.43	1.016	0.616	0.626	-0.11
1880	600	EVDO	Left	/	23.5	23.43	1.016	0.0745	0.076	0.04
1880	600	EVDO	Right	Fig.2	23.5	23.43	1.016	1.03	1.05	0.15
1880	600	EVDO	Bottom	/	23.5	23.43	1.016	0.156	0.159	0.18
1880	600	EVDO	Тор	/	23.5	23.43	1.016	0.209	0.212	0.19
1908.75	1175	EVDO	Right	/	23.5	23.39	1.026	0.921	0.945	-0.02
1851.25	25	EVDO	Right	/	23.5	23.34	1.038	0.869	0.902	-0.13

Table 14.3: SAR Values (CDMA1900 MHz Band-Body))

Note: The distance between the EUT and the phantom bottom is 10mm.

SAR Test Report

Freque	ency	Test	Firmer	Maximum	Measured	Q a a line re	Measured	Reported	Power
MHz	Ch.	Test Position	Figure No.	allowed Power (dBm)	average power (dBm)	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2462	11	Phantom	/	9.50	9.41	1.021	0.0334	0.034	0.17
2462	11	Ground	/	9.50	9.41	1.021	0.0306	0.031	-0.09
2462	11	Left	/	9.50	9.41	1.021	0.00	0.00	0.00
2462	11	Right	/	9.50	9.41	1.021	0.00	0.00	0.00
2462	11	Bottom	/	9.50	9.41	1.021	0.00	0.00	0.00
2462	2462 11 Top Fig.3 9.50		9.41	1.021	0.137	0.140	-0.18		

Table 14.4: SAR Values (Wi-Fi 802.11b - Body)

Note: The distance between the EUT and the phantom bottom is 10mm.

SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

				NO. OAN VU)		
Frequ	ency	Mode	Test	Figure	Maximum allowed	Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Position	No.	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
836.5	384	EVDO	Phantom	Fig.1	23.5	23.44	1.014	1.26	1.28	0.04

Table 14.5: SAR Values (CDMA800 MHz Band-Body)

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.6: SAR Values (CDMA1900 MHz Band-Body))

Freque	ency	Mode	_		Maximum	Measured		Measured	Reported	Power
MHz	Ch.	(number of timeslots)	Test Position	Figure No.	allowed Power	average power	Scaling factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
					(dBm)	(dBm)				
1880	600	EVDO	Right	Fig.2	23.5	23.43	1.016	1.03	1.05	0.15

Note: The distance between the EUT and the phantom bottom is 10mm.

Table 14.7: SAR Values (Wi-Fi 802.11b - Body)

Freque	ency	Test	MaximumFigureallowed		Measured average	Scaling	Measured	Reported	Power
MHz	Ch.	Position	No.	Power (dBm)	power (dBm)	factor	SAR(1g) (W/kg)	SAR(1g) (W/kg)	Drift (dB)
2462	2462 11	Тор	Fig.3	9.50	9.41	1.021	0.137	0.140	-0.18

Note: The distance between the EUT and the phantom bottom is 10mm.

Fr	eaue	encv		Poperted			Scaled
	Frequency		Test	Reported Actual Duty Maximum		Reported	
MH	z	Ch. Position		SAR(1g) (W/kg)	Factor	Duty Factor	SAR(1g)
				(3)			(W/kg)
246	2462 11 To		Тор	0.140	90%	100%	0.156

Note: According to the KDB248227 D01, The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

Note: SAR is not required for OFDM because the 802.11b adjusted SAR \leqslant 1.2 W/kg.

15. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SARprobe calibration point and tissue-equivalent medium used for the device measurements. When both headand body tissue-equivalent media are required for SAR measurements in a frequency band, the variabilitymeasurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeatedmeasurements are required. 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once. 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the originaland first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45W/kg (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeatedmeasurements is > 1.20.

Freque	ncy	Mode(number of	Test	Spacing	Original	First	Reported	The
MHz	Ch.	timeslots)	Position	5		Repeated SAR (W/kg)	SAR(1g)(W/kg)	Ratio
836.5	384	EVDO	Phantom	10	1.26	1.25	/	1.01
836.5	384	EVDO	Ground	10	1.24	1.25	1.27	1.01
848.3	777	EVDO	Phantom	10	0.876	0.833	/	1.05
824.7	1013	EVDO	Phantom	10	0.820	0.803	/	1.02
1880	600	EVDO	Phantom	10	0.870	0.811	/	1.07
1880	600	EVDO	Right	10	1.03	1.01	/	1.02
1908.75	1175	EVDO	Right	10	0.921	0.923	0.842	1.00
1851.25	25	EVDO	Right	10	0.869	0.879	0.912	1.01

Table 15.1: SAR Measurement Variability for Body Value (1g)

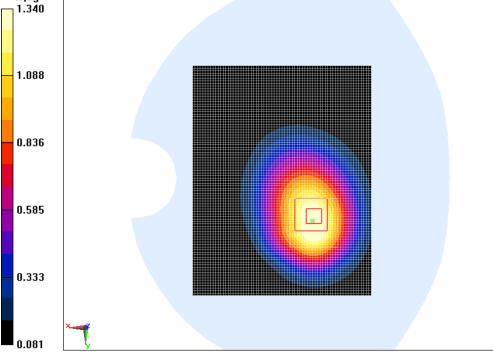
Note: According to the KDB 865664 D01, repeated measurement is not required when the original highest measured SAR is < 0.8 W/kg.

16. Measurement Uncertainty

Error Description	Unc.	Prob.	Div.	Ci	Ci	Std.Unc	Std.Unc	Vi
	value,	Dist.		1g	10g			V _{eff}
	±%					±%,1g	±%,10g	
Measurement System								
Probe Calibration	6.0	N	1	1	1	6.0	6.0	ω
Axial Isotropy	0.5	R	$\sqrt{3}$	0.7	0.7	0.2	0.2	ω
Hemispherical Isotropy	2.6	R	$\sqrt{3}$	0.7	0.7	1.1	1.1	ω
Boundary Effects	0.8	R	$\sqrt{3}$	1	1	0.5	0.5	ø
Linearity	0.6	R	$\sqrt{3}$	1	1	0.3	0.3	ω
System Detection Limits	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	ω
Readout Electronics	0.7	N	1	1	1	0.7	0.7	ø
Response Time	0	R	$\sqrt{3}$	1	1	0	0	ω
Integration Time	2.6	R	$\sqrt{3}$	1	1	1.5	1.5	ø
RF Ambient Noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	ω
RF Ambient Reflections	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	ø
Probe Positioner	1.5	R	$\sqrt{3}$	1	1	0.9	0.9	ω
Probe Positioning	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	ω
Max. SAR Eval.	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	ω
Test Sample Related								
Device Positioning	2.9	N	1	1	1	2.9	2.9	145
Device Holder	3.6	N	1	1	1	3.6	3.6	5
Diople								
Power Drift	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	ø
Dipole Positioning	2.0	N	1	1	1	2.0	2.0	ω
Dipole Input Power	5.0	N	1	1	1	5.0	5.0	ω
Phantom and Setup								
Phantom Uncertainty	4.0	R	$\sqrt{3}$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	R	$\sqrt{3}$	0.64	0.43	1.8	1.2	œ
Liquid Conductivity (meas.)	2.5	N	1	0.64	0.43	1.6	1.1	ø
Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.4	œ
Liquid Permittivity (meas.)	2.5	N	1	0.6	0.49	1.5	1.2	œ
, , , , , , , , , , , , , , , , , , , ,	1	I	I			1	1	1
Combined Std						±11.2%	±10.9%	387
Uncertainty								
Expanded Std					1	±22.4	±21.8	
Uncertainty						%	%	

17. Main Test Instrument	
--------------------------	--

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	N5242A	MY51221755	Jan 19, 2015	One year
02	Power meter	NRVD	102257	hul 07, 0014	0.000
03	Power sensor	NRV-Z5	100644,100241	Jul 07, 2014	One year
04	Signal Generator	E4438C	MY49072044	Jan 19, 2015	One Year
05	Amplifier	NTWPA-0086010F	12023024	No Calibration Requeste	ed
06	Coupler	778D	MY48220551	Jul 25, 2014	One year
07	BTS	E5515C	MY50266468	Jan 19, 2015	One year
08	E-field Probe	ES3DV3	3252	Nov 04, 2014	One year
09	DAE	SPEAG DAE4	1244	Oct 14, 2014	One year
10	Dipole Validation Kit	SPEAG D835V2	4d112	Nov 04, 2014	One year
11	Dipole Validation Kit	SPEAG D1900V2	5d134	Nov 05, 2014	One year
12	Dipole Validation Kit	SPEAG D2450V2	858	Nov 03, 2014	One year


Table 17.1: List of Main Instruments

ANNEX A. GRAPH RESULTS

CDMA 800MHz Phantom Mode Middle

Date/Time: 15/5/28 Electronics: DAE4 Sn1244 Medium: Body 850MHz Medium parameters used: f = 837 MHz; $\sigma = 0.999$ S/m; $\varepsilon_r = 55.151$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 $^{\circ}$ C Liquid Temperature:22.5 °C Communication System: CDMA 835 850MHz; Frequency: 836.52 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27); CDMA 800MHz Phantom Mode Middle/Area Scan (71x91x1): Measurement grid: dx=10 mm, dy=10 mmMaximum value of SAR (Measurement) = 1.39 W/kgCDMA 800MHz Phantom Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 28.82 V/m; Power Drift = 0.04 dBPeak SAR (extrapolated) = 1.80 W/kgSAR(1 g) = 1.26 W/kg; SAR(10 g) = 0.872 W/kgMaximum of SAR (measured) = 1.34 W/kgW/kg 1.340

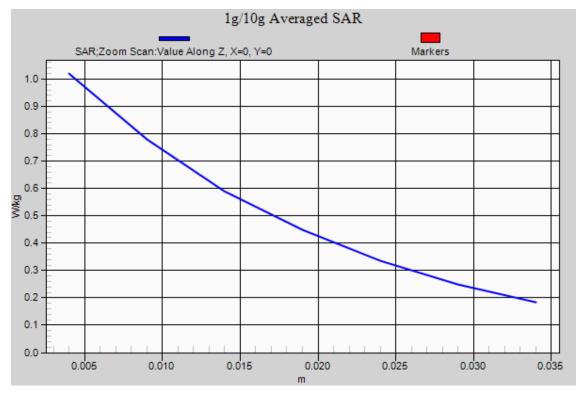
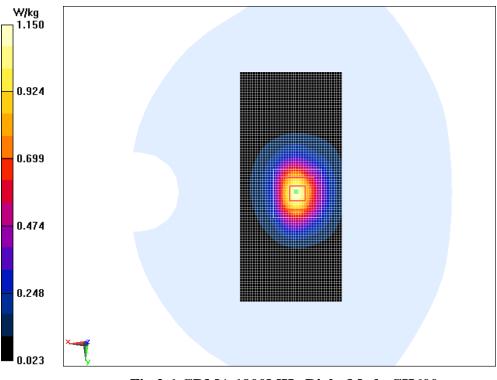



Fig.1-2 CDMA 800MHz Phantom Mode CH384

CDMA 1900MHz Right Mode Middle

Date/Time: 15/5/29 Electronics: DAE4 Sn1244 Medium: Body 1900MHz Medium parameters used: f = 1880 MHz; $\sigma = 1.419 \text{ S/m}$; $\varepsilon_r = 53.258$; $\rho = 1000 \text{ kg/m}^3$ Liquid Temperature:22.5 °C Ambient Temperature:22.5 ℃ Communication System: CDMA 1900MHz 1900MHz; Frequency: 1880 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71); CDMA 1900MHz Right Mode Middle/Area Scan (41x91x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 1.13 W/kgCDMA 1900MHz Right Mode Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 26.71 V/m; Power Drift = 0.15 dBPeak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 1.03 W/kg; SAR(10 g) = 0.558 W/kgMaximum value of SAR (measured) = 1.15 W/kg

SAR Test Report

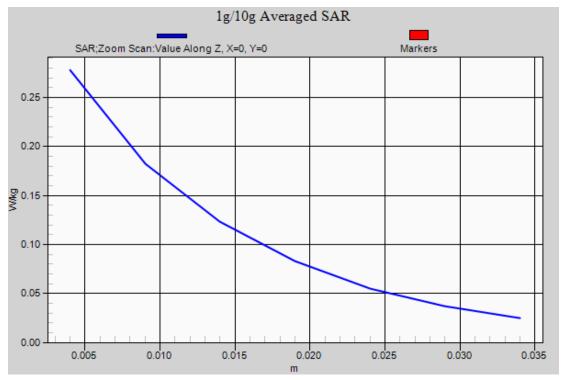


Fig.2-2 CDMA 1900MHz Right Mode CH600

WiFi 802.11b Top Mode High

Date/Time: 15/5/29 Electronics: DAE4 Sn1244 Medium: Body 2450MHz Medium parameters used: f = 2462 MHz; $\sigma = 1.935 \text{ S/m}$; $\varepsilon_r = 53.903$; $\rho = 1000 \text{ kg/m}^3$ Liquid Temperature:22.5 °C Ambient Temperature:22.5 ℃ Communication System:WiFi 2450MHz; Frequency: 2462 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38); WiFi 802.11b Top Mode High/Area Scan (31x71x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 0.136 W/kgWiFi 802.11b Top Mode High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.314 V/m; Power Drift = -0.18 dBPeak SAR (extrapolated) = 0.386 W/kgSAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.050 W/kg

Maximum of SAR (measured) = 0.164 W/kg

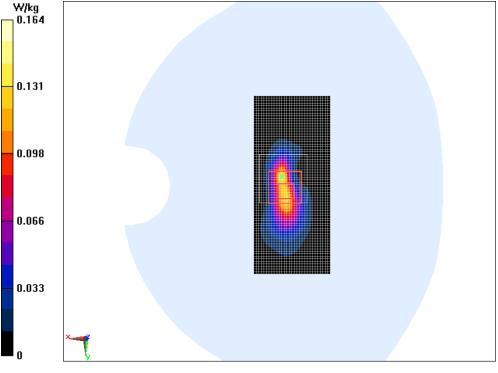
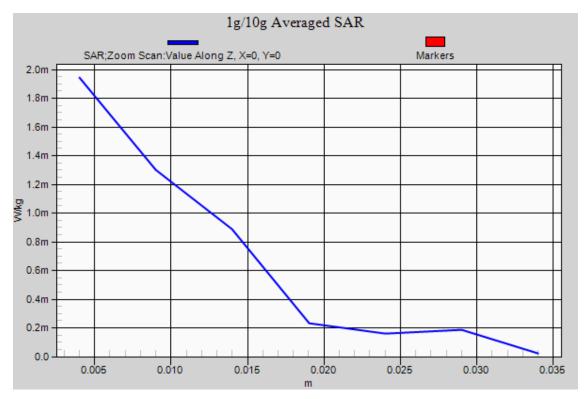
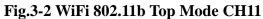
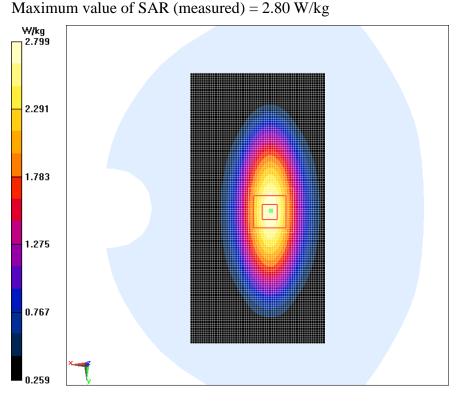
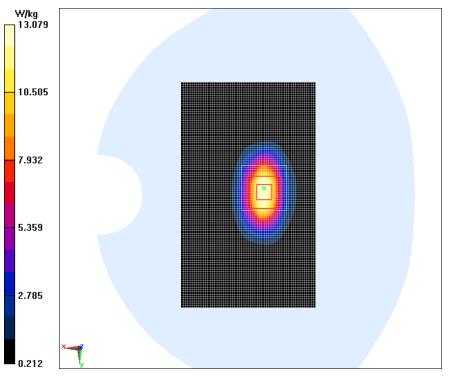




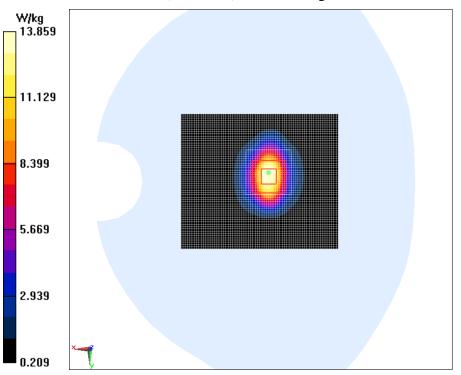
Fig.3-1 WiFi 802.11b Top Mode CH11

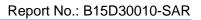


ANNEX B. SYSTEM VALIDATION RESULTS

835 MHz Body

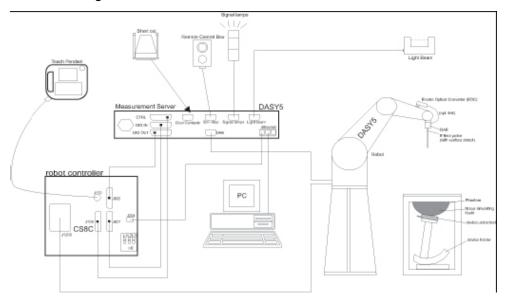

Date/Time: 2015/5/28 Electronics: DAE4 Sn1244 Medium: Body 850MHz Medium parameters used: f = 835 MHz; $\sigma = 0.998$ S/m; $\epsilon_r = 55.144$; $\rho = 1000$ kg/m³ Ambient Temperature: 22.5 °C Liquid Temperature: 22.5 °C Communication System: CW 850MHz; Frequency: 835 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(6.27, 6.27, 6.27); **System Validation/Area Scan (61x121x1):** Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 2.77 W/kg **System Validation/Zoom Scan(7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.93 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.54 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.57 W/kg Maximum value of SAP (measurement) = 2.80 W/dx


1900MHz Body


Date/Time: 2015/5/29 Electronics: DAE4 Sn1244 Medium: Body 1900MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.438 \text{ S/m}$; $\varepsilon_r = 53.162$; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature:22.5 °C Liquid Temperature:22.5 °C Communication System: CW 1900MHz; Frequency: 1900 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.71, 4.71, 4.71); System Validation/Area Scan (61x91x1): Measurement grid: dx=10 mm, dy=10 mm Maximum value of SAR (Measurement) = 13.5 W/kgSystem Validation/Zoom Scan(7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 87.65 V/m; Power Drift = 0.10 dBPeak SAR (extrapolated) = 18.7 W/kgSAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.37 W/kgMaximum value of SAR (measured) = 13.1 W/kg

2450MHz-Body

Date/Time: 2015/5/29 Electronics: DAE4 Sn1244 Medium: Body 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.923 \text{ mho/m}$; $\epsilon r = 53.934$; $\rho = 1000 \text{ kg/m}3$ Liquid Temperature:22.5° C Ambien Temperature:22.5° C Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Probe: ES3DV3 - SN3252ConvF(4.38, 4.38, 4.38); System Validation/ Area Scan (101x101x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 12.75 mW/gSystem Validation/Zoom Scan (7x7x7)/Cube 0:Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 84.45 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 24.348 mW/gSAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.16 mW/gMaximum value of SAR (measured) = 13.9 mW/g



ANNEX C. SAR Measurement Setup

C.1. Measurement Set-up

The DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:

Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.

SAR Test Report

- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

C.2. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY5 software reads the reflection durning a software approach and looks for the maximum using 2ndord curve fitting. The approach is stopped at reaching the maximum.

Probe Specifications:

-		
Model:	ES3DV3, EX3DV4	
Frequency		
Range:	700MHz — 2.6GHz(ES3DV3)	
Calibration:	In head and body simulating tissue at	
	Frequencies from 835 up to 2450MHz	
Linearity:		I
	± 0.2 dB(700MHz — 2.0GHz) for ES3DV3	
Dynamic Range:	10 mW/kg — 100W/kg	
Probe Length:	330 mm	
Probe Tip		
Length:	20 mm	
Body Diameter:	12 mm	
Tip Diameter:	2.5 mm (3.9 mm for ES3DV3)	
Tip-Center:	1 mm (2.0mm for ES3DV3)	
Application:SAR	Dosimetry Testing	
Compliance test	s of mobile phones	
Dosimetry in stro	ong gradient fields	

Picture C.2 Near-field Probe

C.3. E-field Probe Calibration

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm².

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = Exposure time (30 seconds),$

C = Heat capacity of tissue (brain or muscle),

 ΔT = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

- σ = Simulated tissue conductivity,
- ρ = Tissue density (kg/m³).

C.4. Other Test Equipment

C.4.1. Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished

through an optical downlink for data and status information, as well as an optical uplink for

commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

PictureC.4: DAE

C.4.2. Robot

The SPEAG DASY system uses the high precision robots (DASY5: RX90L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- > Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

Picture C.5 DASY 5

C.4.3. Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128MB), RAM (DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

SAR Test Report

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Picture C.6 Server for DASY 5

C.4.4. Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

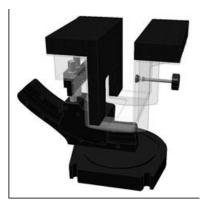
The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs

no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε =3 and loss tangent δ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper


part of the Mounting Device in place of the phone positioner. The extension is fully compatible withEast China Institute of TelecommunicationsPage Number: 60 of 108TEL: +86 21 63843300FAX:+86 21 63843301Report Issued Date: Jun 17, 2015

the Twin-SAM and ELI phantoms.

Picture C.7: Device Holder

Picture C.8: Laptop Extension Kit

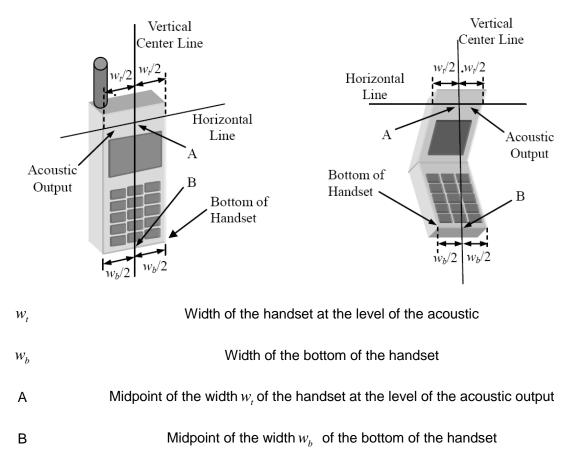
C.4.5. Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

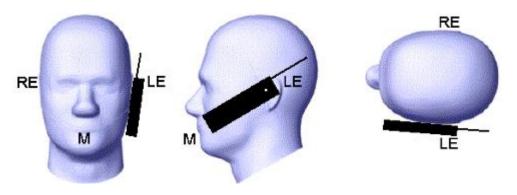
Represent the 90th percentile of the population. The phantom enables the dissymmetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:2 ± 0. 2 mmFilling Volume:Approx. 25 litersDimensions:810 x 1000 x 500 mm (H x L x W)Available:Special

Picture C.9: SAM Twin Phantom

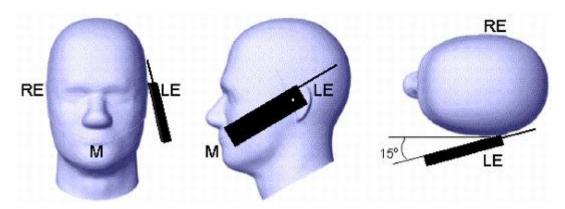


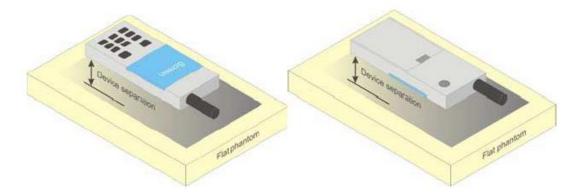
ANNEX D. Position of the wireless device in relation to the


phantom

D.1. General considerations

This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.

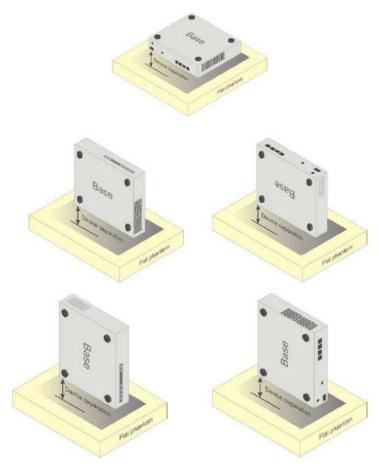




Picture D.3 Tilt position of the wireless device on the left side of SAM

D.2. Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.


Picture D.4Test positions for body-worn devices

D.3. Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.

The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.

Picture D.5 Test positions for desktop devices

D.4. DUT Setup Photos

Picture D.6 DSY5 system Set-up

Note:

The photos of test sample and test positions show in additional document.

ANNEX E. Equivalent Media Recipes

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

		-		-		
Frequency (MHz)	835	835	1900	1900	2450	2450
Frequency (MHZ)	Head	Body	Head	Body	Head	Body
Ingredients (% by v	weight)					
Water	41.45	52.5	55.242	69.91	58.79	72.60
Sugar	56.0	45.0	١	١	١	\
Salt	1.45	1.4	0.306	0.13	0.06	0.18
Preventol	0.1	0.1	١	١	١	\
Cellulose	1.0	1.0	١	١	١	\
Glycol Monobutyl	١	١	44.452	29.96	41.15	27.22
Dielectric						c=50.7
Parameters	ε=41.5	ε=55.2	ε=40.0	ε=53.3	ε=39.2	ε=52.7
Target Value	σ=0.90	σ=0.97	σ=1.40	σ=1.52	σ=1.80	σ=1.95

ANNEX F. System Validation

The SAR system must be validated against its performance specifications before it is deployed. WhenSAR probes, system components or software are changed, upgraded or recalibrated, these must bevalidated with the SAR system(s) that operates with such components.

System	Droho Chi		Validation	Frequency	Permittivity	Conductivity
No.	Probe SN.	Liquid name	date	point	3	σ (S/m)
1	3252	Head 835MHz	Nov 15,2014	835MHz	41.03	0.932
2	3252	Head 1900MHz	Nov 15,2014	1900MHz	39.72	1.408
3	3754	Head 2450MHz	Nov 15,2014	2450MHz	39.02	1.789
4	3252	Body 835MHz	Nov 15,2014	835MHz	55.11	0.981
5	3252	Body 1900MHz	Nov 15,2014	1900MHz	53.35	1.531
6	3754	Body 2450MHz	Nov 15,2014	2450MHz	53.97	1.950

Table F.1: System Validation Part 1

Table F.2: System Validation Part 2

	Sensitivity	PASS	PASS
CW Validation	Probe linearity	PASS	PASS
	Probe Isotropy	PASS	PASS
	MOD.type	GMSK	GMSK
Mod	MOD.type	OFDM	OFDM
Validation	Duty factor	PASS	PASS
	PAR	PASS	PASS

ANNEX G. Probe and DAE Calibration Certificate

7		Baboration with	lac-mr/	CNAS
Tel: +86-10-62	304633-2079	an District, Beijing, 100191, China Fax: +86-10-62304633-2504	The Caladedulat	CALIBRATION No. L0570
E-mail: cttl@c Client : EC		Http://www.chinattl.en Ce	ertificate No: Z14-971	19
CALIBRATION	CERTIFIC	DATE		
Object	D	AE4 - SN: 1244		
Calibration Procedure(s)	тъ	IC-08-E-01-198		
		alibration Procedure for the Da	ta Acquisition Electronic	3
	(D	AEx)		
Calibration date:	00	tober 14, 2014		
	measurements	the traceability to national stand and the uncertainties with confid		
All calibrations have be humidity<70%.	een conducted	in the closed laboratory facilit	ty: environment tempera	ture(22±3)℃ and
Calibration Equipment us	sed (M&TE criti	cal for calibration)		
Primary Standards	ID #	Cal Date(Calibrated by, Certifica	ate No.) Scheduled	Calibration
Process Calibrator 753	.1971018	01-July-14 (CTTL, No:J14X)	02147) Ju	y-15
	Name	Function	Signatu	
Calibrated by:	Yu Zongyir	and a stand and a stand and	A.A	6
Reviewed by:	Qì Dianyua	an SAR Project Leader	-50	ž
Approved by:	Lu Bingsor	ng Deputy Director of the I	laboratory 72, 42	542
			Issued: October	
This calibration certificate	shall not be re	enroduced even in full without w	willon announl of the lab-	oratoou

Certificate No: Z14-97119

Page 1 of 3

Add: No.51 Xuzyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Pax: +86-10-62304633-2504 E-mail: ctt@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z14-97119

Page 2 of 3

. . . .

.

Low Range: 1LS	SB= 6.1μV, fullr B≃ 61nV, fullr	ange = -100+300 r ange = -1+3mV	
Calibration Factors	meters: Auto Zero Time: 3	sec; Measuring time: 3 sec	z
High Range	403.878±0.15% (k=2)	403.68 ± 0.15% (k=2)	404.589± 0.15% (k=2)
Low Range	3.95941 ± 0.7% (k=2)	3.97194 ± 0.7% (k=2)	4.01532 ± 0.7% (k=2)
Connector Angle to be u	and in promagation		46°±1°

SAR Test Report

Add: No.51 Xuevu		ITON LABORATORY 315 strict, Beijing, 100191, China	
Tel: +\$6-10-62304 E-mail: ettl@china	633-2079 Fax: -	+86-10-62304633-2504 //www.chinatl.cn	No. L0570
Client ECI		Certificate No: Z14	97118
Concent Party and a series	a provident state	and the fact that the second	57715
CALIBRATION C	ERTIFICA		
Object	ES3DV	/3 - 8N:3252	
Calibration Procedure(s)	-		
		98-E-02-195	
	Canora	tion Procedures for Dosimetric E-field Probe	8
Calibration date:	Novem	iber 04, 2014	
This calibration Certificate	documents the	traceability to national standards, which re	alize the physical units of
		the uncertainties with confidence probability	
pages and are part of the ca			
	conducted in	the closed laboratory facility: environment	temperature(22±3)°C and
humidity<70%.			
Calibration Equipment used	(M&TE critical f	or calibration)	
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
_	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91			
Power sensor NRP-Z91 Power sensor NRP-Z91	101548	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
	101548 BT0520	01-Jul-14 (CTTL, No.J14X02146) 12-Dec-12(TMC.No.JZ12-867)	Jun-15 Dec-14
Power sensor NRP-Z91			
Power sensor NRP-Z91 Reference10dBAttenuator	BT0520 BT0267	12-Dec-12(TMC,No.JZ12-867)	Dec-14
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator	BT0520 BT0267	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866)	Dec-14 Dec-14
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4	BT0520 BT0267 SN 3617	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Dec-14 Dec-14 Aug-15
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards	BT0520 BT0267 SN 3617 SN 1331	12-Dec-12(TMC, No.JZ12-887) 12-Dec-12(TMC, No.JZ12-868) 28-Aug-14(SPEAG, No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Dec-14 Dec-14 Aug-15 Jan -15
Power sensor NRP-Z91 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards Signal/Generator/MG3700A	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052605	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Data(Calibrated by, Certificate No.)	Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards Signal/Generator/MG3700A Network Analyzer E5071C	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052605	12-Dec-12(TMC, No.JZ12-887) 12-Dec-12(TMC, No.JZ12-866) 28-Aug-14(SPEAG, No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Data(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Dac-14 Dac-14 Aug-15 Jan -15 Scheduled Calibration Jun-15
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards Signal/GeneratorM03700A Network Analyzer E5071C	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052605 MY46110673	12-Dec-12(TMC, No.JZ12-887) 12-Dec-12(TMC, No.JZ12-866) 28-Aug-14(SPEAG, No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Data(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781)	Dac-14 Dac-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards Signal/Generator/MG3700A Network Analyzer E5071C	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052805 MY46110673 Name	12-Dec-12(TMC,No.JZ12-887) 12-Dec-12(TMC,No.JZ12-886) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Data(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Dac-14 Dac-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Celibrated by: Reviewed by:	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052805 MY46110673 Name Yu Zongying	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Data(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer	Dac-14 Dac-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C Celibrated by: Reviewed by:	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying Qi Dianyuan	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Callbrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer SAR Project Lesder Deputy Director of the laboratory	Dac-14 Dac-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards Signal/GeneratorM03700A Network Analyzer E5071C Calibrated by: Reviewed by: Approved by:	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052805 MY46110673 Name Yu Zongying Qi Dianyuan Lu Bingsong	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory Issued: Nove	Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15 Signature
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards Signal/GeneratorM03700A Network Analyzer E5071C Calibrated by: Reviewed by: Approved by:	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052805 MY46110673 Name Yu Zongying Qi Dianyuan Lu Bingsong	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Callbrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer SAR Project Lesder Deputy Director of the laboratory	Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15 Signature
Power sensor NRP-291 Reference10dBAttenuator Reference20dBAttenuator Reference Probe EX3DV4 DAE4 Secondary Standards Signal/GeneratorMG3700A Network Analyzer E5071C Calibrated by: Reviewed by: Approved by:	BT0520 BT0267 SN 3617 SN 1331 ID # 6201052605 MY46110673 Name Yu Zongying Qi Dianyuan Lu Bingsong	12-Dec-12(TMC,No.JZ12-867) 12-Dec-12(TMC,No.JZ12-866) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer SAR Project Leader Deputy Director of the laboratory Issued: Nove	Dec-14 Dec-14 Aug-15 Jan -15 Scheduled Calibration Jun-15 Feb-15 Signature

Add: No.51 Xucyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinettl.cn

Glossary

Giossaiy.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	dicde compression point
CF	crest factor (1/duty_cycle) of the RF signal
A,B,C,D	modulation dependent linearization parameters
Polarization Φ	Φ rotation around probe axis
Polarization 0	6 rotation around an axis that is in the plane normal to probe axis (at measu

surement center), i 8=0 is normal to probe axis. Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged BEE SIG 1525-2015, TEEE Recommended Flatcase for Determining the Fear operative set of the set of

in close proximity to the ear (frequency range of 300MHz to 3GHz)*, February 2005 Methods Applied and Interpretation of Parameters: • NORMx,y,z: Assessed for E-field polarization 8=0 (f≤900MHz in TEM-cell; f>1800MHz; waveguide).

- NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x, y,z = NORMx, y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
- frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f<800MHz) and inside waveguide using analytical field distributions based on Transfer Standard for fs800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty ourresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. *Spherical lsotropy* (3D deviation from isotropy); in a field of low gradients realized using a flat phantom exposed by a patch antenna. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMs (no uncertainty required).

Certificate No: Z14-97118

Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +36-10-62304633-2079 Fax: +86-10-62304633-2204 E-mail: etd@chinatil.com <u>Http://www.chinatil.co</u>

Probe ES3DV3

SN: 3252

Calibrated: November 04, 2014

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: Z14-97118

Page 3 of 11

Add: No.51 Xuryuan Road, Huidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Pax: +86-10-62304633-2504 E-mnil: etti@chinattl.com <u>Http://www.chinattl.co</u>

DASY – Parameters of Probe: ES3DV3 - SN: 3252

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	1.29	1.36	1.33	±10.8%
DCP(mV) ⁸	102.1	101.8	102.3	

Modulation Calibration Parameters

UID	Communication		A	в	с	D	VR	Unc
	System Name		dB	dBõV		dB	mV	(k=2)
0	CW	x	0.0	0.0	1.0	0.00	291.9	±2.2%
		Y	0.0	0.0	1.0		294.9	-
		z	0.0	0.0	1.0		296.5	-

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

⁶ Rumerical linearization parameter uncertainty not required.
⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: Z14-97118

Page 4 of 11

Add: No.51 Naryuan Rost, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Pax: +86-10-62304633-2504 E-mail: ettl@chinattl.com <u>Hitp://www.chinattl.cn</u>

DASY – Parameters of Probe: ES3DV3 - SN: 3252

Calibration Parameter	r Determined in Head	Tissue Simulating Media
-----------------------	----------------------	-------------------------

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.58	6.58	6.58	0.66	1.14	±12%
835	41.5	0.90	6.46	6.46	6.46	0.44	1.38	±12%
900	41.5	0.97	6.20	6.20	6.20	0.25	1.82	±12%
1750	40.1	1.37	5.24	5.24	5.24	0.60	1.31	±12%
1900	40.0	1.40	4.89	4.89	4.89	0.47	1.56	±12%
2100	39.8	1.49	5.05	5.05	5.05	0.48	1.52	±12%
2300	39.5	1.67	4.78	4.78	4.78	0.88	1.13	±12%
2450	39.2	1.80	4.46	4.46	4.46	0.90	1.10	±12%
2600	39.0	1.96	4.28	4.28	4.28	0.98	1.09	±12%

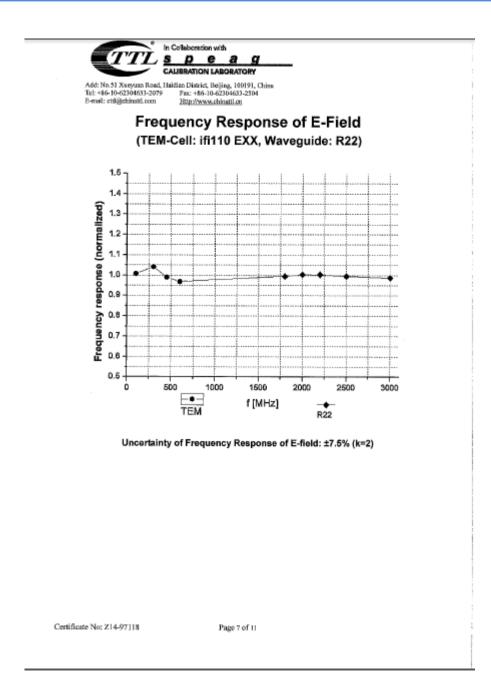
^G Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^P At frequency below 3 GHz, the validity of tissue parameters (*ε* and *σ*) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*ε* and *σ*) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*ε* and *σ*) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁹ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No; Z14-97118

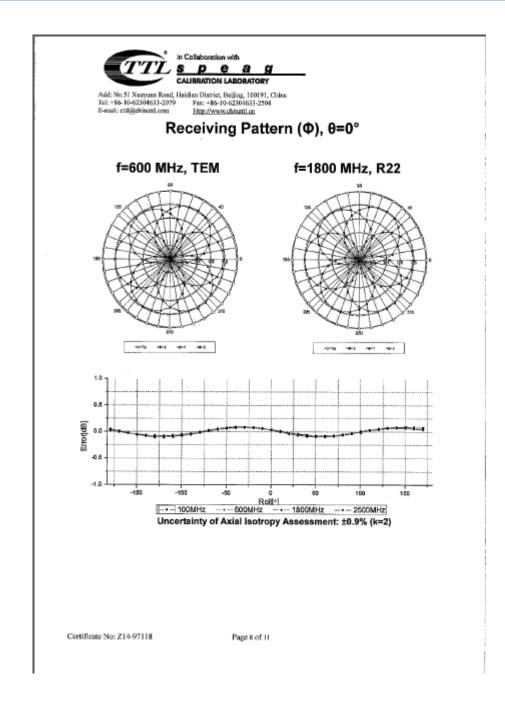
Page 5 of 11

DASY - Parameters of Probe: ES3DV3 - SN: 3252

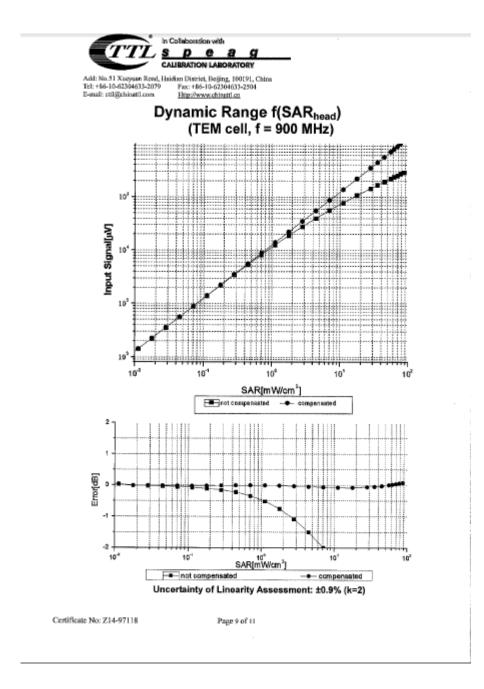
Calibration Parameter Determined in Body Tissue Simulating Media

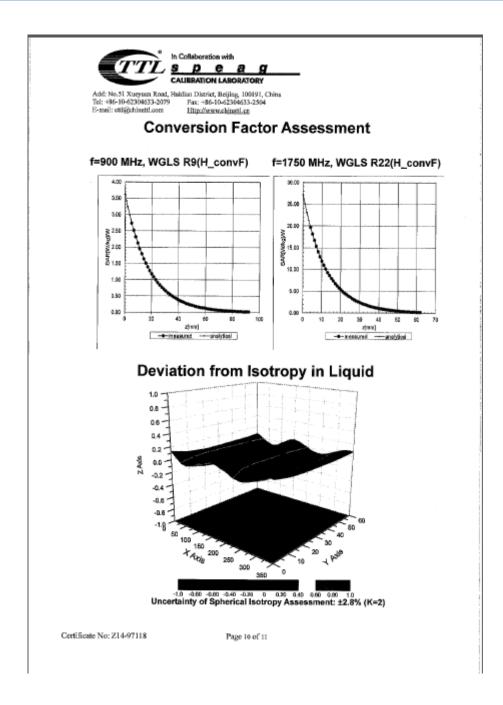

f [MHz] ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ⁸	Depth ⁶ (mm)	Unct. (k=2)
750	55.5	0.96	6.25	6.25	6.25	0.34	1.70	±12%
835	55.2	0.97	6.27	6.27	6.27	0.44	1.52	±12%
900	55.0	1.05	6.13	6.13	6.13	0.51	1.42	±12%
1750	53.4	1.49	4.91	4.91	4.91	0.59	1.35	±12%
1900	53.3	1.52	4.71	4.71	4.71	0.64	1.35	±12%
2100	53.2	1.62	4.82	4.82	4.82	0.50	1.64	±12%
2300	52.9	1.81	4.58	4.58	4.58	0.83	1.20	$\pm 12\%$
2450	52.7	1.95	4.38	4.38	4.38	0.81	1.23	±12%
2600	52.5	2.16	4.25	4.25	4.25	0.84	1.21	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^FAf frequency below 3 GHz, the validity of tissue parameters (*ε* and *σ*) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (*ε* and *σ*) is restricted to ±50k. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: Z14-97118

Page 6 of 11





Add: No.51 Xueyuan Road, Haidian District, Beijing, 160191, Chine Tel:+86-10-62304633-2079 Fax:+86-10-62304633-2304 E-msil: etti@cbinatil.com <u>Http://www.chinatil.cn</u>

DASY - Parameters of Probe: ES3DV3 - SN: 3252

Sensor Arrangement	Triangular
Connector Angle (*)	130.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Certificate No: Z14-97118

Page 11 of 11

ANNEX H. DipoleCalibration Certificate

E-mail: ettl@china Client ECI	633-2079 Fax: +0 ttl.com <u>Http://</u>	rict, Beijing, 100191, China 86-10-62304633-2504 www.chinattl.cn Certificate No: Z1	4-97120
CALIBRATION C	ERTIFICAT	E (Second S	
Object	D835V2	- SN: 4d112	
Calibration Procedure(s)		S-E-02-194 ion Procedures for dipole validation kits	
Calibration date:	Novemb	er 4, 2014	
pages and are part of the ce	ertificate.	he uncertainties with confidence probability a he closed laboratory facility: environment r calibration)	
-	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
FURDER STREAM	10.11	cal bale(calibrated by, certificate No.)	Scheduled Calibration
Primary Standards Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
	101919 101547	01-Jul-14 (CTTL, No.J14X02146) 01-Jul-14 (CTTL, No.J14X02146)	Jun-15 Jun-15
Power Meter NRP2	101547		
Power Meter NRP2 Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power Meter NRP2 Power sensor NRP-Z91 Reference Probe EX3DV4	101547 SN 3817	01-Jul-14 (CTTL, No.J14X02148) 28-Aug-14(SPEAG,No.EX3-3617_Aug14)	Jun-15 Aug-15
Power Meter NRP2 Power sensor NRP-291 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator MG3700A	101547 SN 3617 SN 1331 ID # 6201052605	01-Jul-14 (CTTL, No.J14X02146) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jun-15 Aug-15 Jan-15
Power Meter NRP2 Power sensor NRP-291 Reference Probe EX3DV4 DAE4 Secondary Standards	101547 SN 3617 SN 1331 ID # 6201052605	01-Jul-14 (CTTL, No.J14X02148) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.)	Jun-15 Aug-15 Jan-15 Scheduled Calibration
Power sensor NRP-Z91 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A	101547 SN 3617 SN 1331 ID # 6201052605	01-Jul-14 (CTTL, No.J14X02148) 28-Aug-14(SPEAG,No.EX3-3617_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145)	Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15
Power Meter NRP2 Power sensor NRP-291 Reference Probe EX3DV4 DAE4 Secondary Standards Signal Generator MG3700A	101547 SN 3617 SN 1331 ID # 6201052605 MY4614d1123	01-Jul-14 (CTTL, No.J14X02148) 28-Aug-14(SPEAG, No.EX3-3817_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781)	Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15
Power Meter NRP2 Power sensor NRP-291 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	101547 SN 3617 SN 1331 ID # 6201052605 MY4614d1123 Name	01-Jul-14 (CTTL, No.J14X02148) 28-Aug-14(SPEAG,No.EX3-3817_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function	Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15
Power Meter NRP2 Power sensor NRP-291 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGeneratorMG3700A Network Analyzer E5071C	101547 SN 3617 SN 1331 ID # 6201052605 MY4614d1123 Name Zhao Jing	01-Jul-14 (CTTL, No.J14X02148) 28-Aug-14(SPEAG, No.EX3-3817_Aug14) 23-Jan-14 (SPEAG, DAE4-1331_Jan14) Cal Date(Calibrated by, Certificate No.) 01-Jul-14 (CTTL, No.J14X02145) 15-Feb-14 (TMC, No.JZ14-781) Function SAR Test Engineer	Jun-15 Aug-15 Jan-15 Scheduled Calibration Jun-15 Feb-15 Signature JUL Signature JUL MARTA

an Road, Haidian District, Beijing, 100191, China 633-2079 Fix: +86-10-62304633-2504 dd: No.51 Xuey Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Http://www.chinattl.co

Glossary: TSL

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz.

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z14-97120

Page 2 of 8

Add: No.51 Xueyuan Read, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@ehinettl.com Http://www.chinattl.co

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.92 mha/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	9.48 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.57 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.20 mW /g ± 20.4 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.3±6%	0.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	9.45 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.60 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.32 mW /g ± 20.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.8Ω- 4.45jΩ	
Return Loss	- 27.0dB	

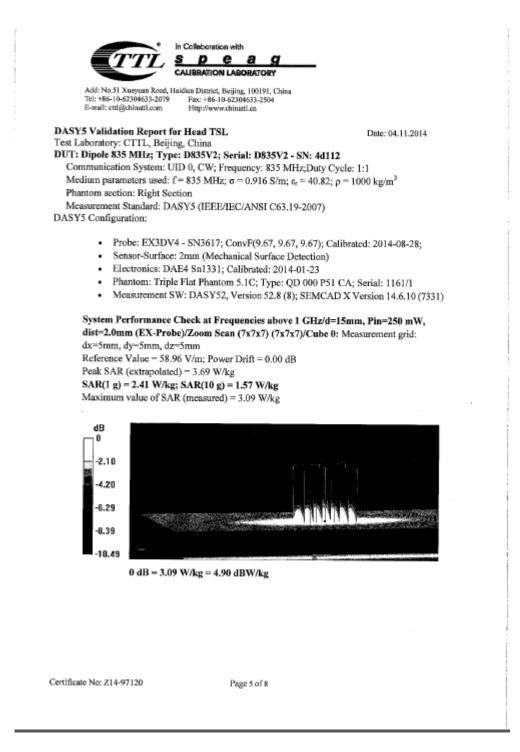
Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.3Ω- 5.50jΩ	
Return Loss	- 23.3dB	

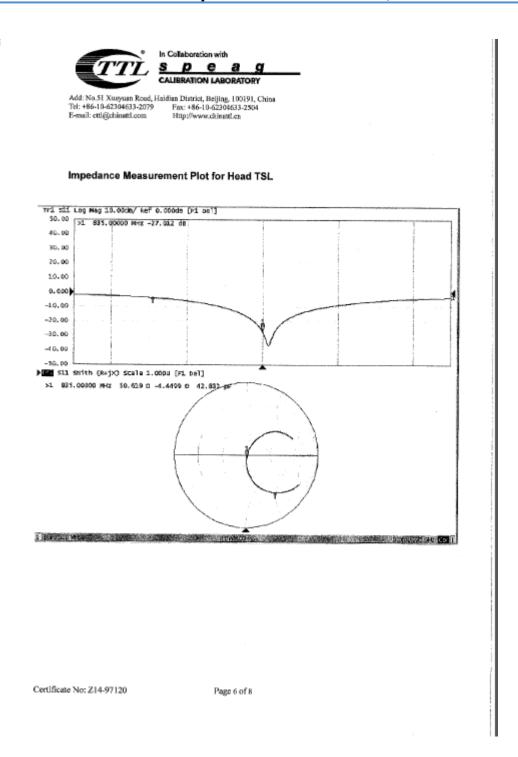
General Antenna Parameters and Design

Electrical Delay (one direction)	1.267 ns

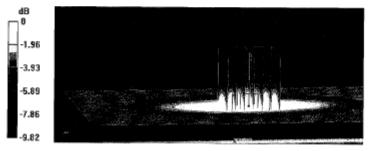
After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.


The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional	EUT	Data
------------	-----	------


Manufactured by		SPEAG	
ficate No: Z14-97120	Page 4 of 8		

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctti@ehinattl.com Http://www.chinattl.cn


DASY5 Validation Report for Body TSL

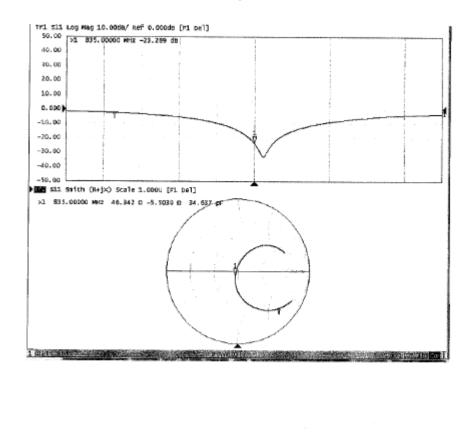
Date: 04.11.2014

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Sorial: D835V2 - SN: 4d112** Communication System: UID 0, CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.991$ S/m; $\varepsilon_c = 55.34$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(9.48, 9.48, 9.48); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

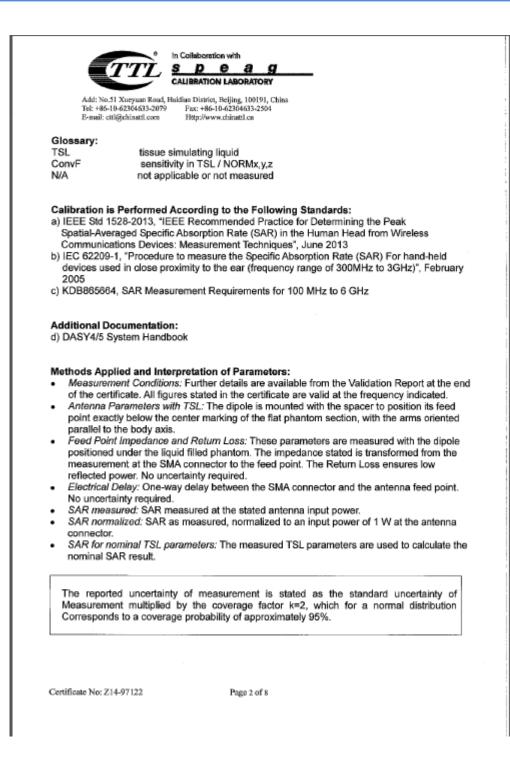
System Performance Check at Frequencies above 1 GHz/d=15mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.13 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.57 W/kg SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.02 W/kg

0 dB = 3.02 W/kg = 4.80 dBW/kg


Certificate No: Z14-97120

Page 7 of 8

Impedance Measurement Plot for Body TSL


Certificate No: Z14-97120

Page 8 of 8

TI	Lsp	resion with e a g ION LABORATORY	BC-MEA ENAS
Tel: +86-10-623046	33-2079 Fax: -	triot, Beijing, 100191, China +86-10-62304633-2504	CALIBRATION No. L0570
E-mail: cttl@chinat	0,0192.0	?www.chinattl.cn	
Client ECI	1	Certificate No:	Z14-97122
CALIBRATION CI	ERTIFICAT	Γ Ε	
Object	D1900	V2 - SN: 5d134	
Calibration Procedure(s)		8-E-02-194 tion Procedures for dipole validation kits	
Calibration date:	Novem	ber 5, 2014	
	asurements and	traceability to national standards, which the uncertainties with confidence probabil	
All calibrations have been humidity<70%.	conducted in	the closed laboratory facility: environme	ent temperature(22±3) υ and
Calibration Equipment used	(M&TE critical fe	or calibration)	
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)	Jun-15
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_Aug14) Aug-15
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan-15
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)	Jun-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)	Feb-15
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	sti
Reviewed by:	Qi Dianyuan	SAR Project Leader	2BI
Approved by:	Lu Bingsong	Deputy Director of the laboratory	narota
		Issued: No	vember 8, 2014
This calibration certificate sh	all not be reprod	luced except in full without written approva	I of the laboratory.
Certificate No: Z14-97122		Page 1 of \$	

°.	In Collaboration with
TTT	<u>speag</u>
	CALIBRATION LABORATORY

Add: No.51 Xucyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.co

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 6.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters The following parameters and calculations were applied.

Temperature	Permittivity	Conductivity
22.0 °C	40.0	1.40 mho/m
(22.0 ± 0.2) °C	39.9 ± 6 %	1.37 mho/m ±6 %
<1.0 °C		
	22.0 °C (22.0 ± 0.2) °C	22.0 °C 40.0 (22.0 ± 0.2) °C 39.9 ± 6 %

SAR result with Head TSL

SAR averaged over 1 cm ² (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.85 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.0 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.15 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	20.8 mW/g ± 20.4 % (k=2)

Body TSL parameters тh follow

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW/g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.30 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97122

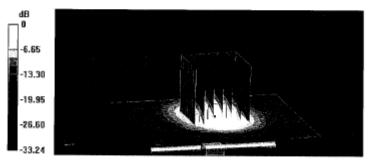
Page 3 of 8

Ар		
۸n	opendix Itenna Parameters with Hoad TSL	
]	Impedance, transformed to feed point	54.1Ω+ 6.01jΩ
ľ	Return Loss	- 23.1dB
An	tenna Parameters with Body TSL	
[Impedance, transformed to feed point	48.6Ω+ 6.44jΩ
[Return Loss	- 23.5dB
Ge	neral Antenna Parameters and Design	
T	Electrical Delay (one direction)	1.304 ns
be r The con of the	er long term use with 100W radiated power, only a measured. In dipole is made of standard semirigid coaxial cable nected to the second arm of the dipole. The anten he dipoles, small end caps are added to the dipole ording to the position as explained in the 'Measure	The center conductor of the feeding line is on a is therefore short-clicuited for DC-signals. arms in order to improve matching when load ment Conditions'' paragraph. The SAR date a
be r The con of the acco affe No (con	measured. a dipole is made of standard semirigid coaxial cable inected to the second arm of the dipole. The arten	The center conductor of the feeding line is dona is therefore short-circuited for DC-signals, arms in order to improve matching when load ment Conditions" paragraph. The SAR data a ll according to the Standard.
be r The con of the acco affe No (coni Add	measured. a dipole is made of standard semirigid coaxial cable inected to the second arm of the dipole. The anten he dipoles, small end caps are added to the dipole ording to the position as explained in the "Measure cted by this change. The overall dipole length is st excessive force must be applied to the dipole arms nections near the feedpoint may be damaged.	The center conductor of the feeding line is dona is therefore short-circuited for DC-signals, arms in order to improve matching when load ment Conditions" paragraph. The SAR data a ll according to the Standard.
be r The con of the acco affe No (coni Add	measured. a dipole is made of standard semirigid coaxial cable inected to the second arm of the dipole. The anten he dipoles, small end caps are added to the dipole ording to the position as explained in the "Measure scted by this change. The overall dipole length is st excessive force must be applied to the dipole arms nections near the feedpoint may be damaged. ditional EUT Data	The center conductor of the feeding line is d as is therefore short-circuited for DC-signals. arms in order to Improve matching when load ment Conditions" paragraph. The SAR data a Il according to the Standard. because they might bend or the soldered

Add: No.51 Xueyuan Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: ctt@@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Date: 05.11.2014

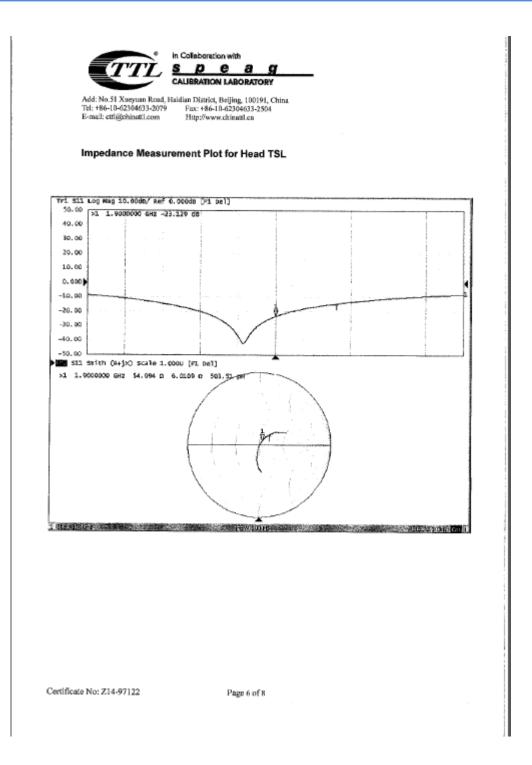

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d134** Communication System: UID 0, CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.365 S/m; e_r = 39.92; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY6 CueS methadratic DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.9, 7.9, 7.9); Calibrated: 2014-08-28;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

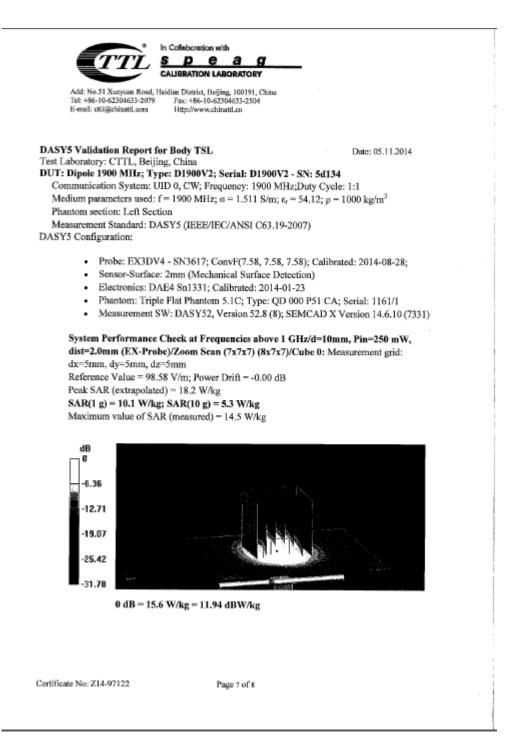
System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

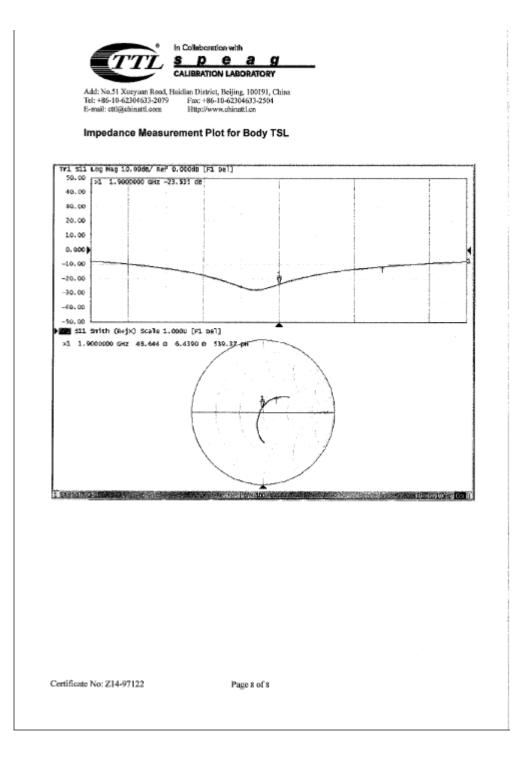
dx=5mm, dy=5mm, dz=5mm Reference Value = 104.1 V/m; Power Drift - -0.02 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 9.85 W/kg; SAR(10 g) = 5.15 W/kg Maximum value of SAR (measured) = 14.0 W/kg

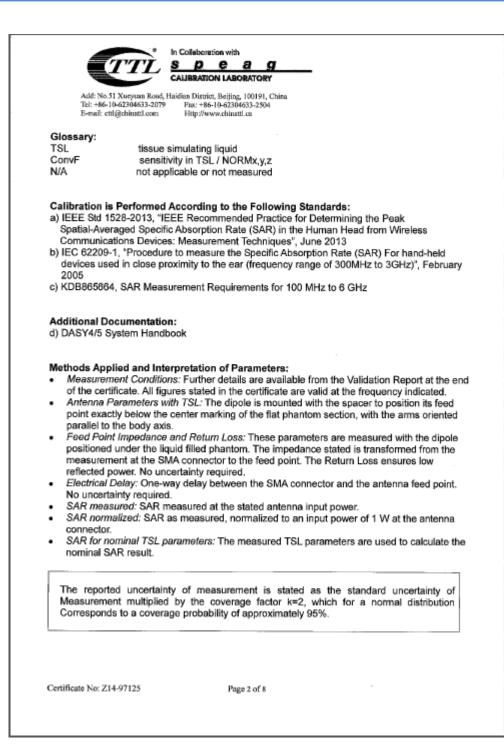


0 dB = 15.3 W/kg = 11.85 dBW/kg

Certificate No: Z14-97122


Page 5 of 8





TT	<u>Tsp</u>	retion with		CNAS
Add: No.51 Xueyu Tel: +86-10-62304 E-mail; ettl@china	an Road, Haldian Dir 633-2079 Fax:	striet, Beijing, 100191, China #86-10-62304633-2504 Www.schingett.en	The Caladada	CALIBRATION No. L0570
Client ECI	i i i i i i i i i i i i i i i i i i i	Certificate No:	Z14-97125	
CALIBRATION C	ERTIFICAT	ſE		E.F.
Object	D2450	V2 - SN: 858		
Calibration Procedure(s)		S-E-02-194 tion Procedures for dipole validation kits		
Calibration date:	Novem	ber 3, 2014		
measurements(SI). The me pages and are part of the co	asurements and ertificate.	traceability to national standards, which the uncertainties with confidence probabi the closed laboratory facility: environme	lity are given or	the following
Calibration Equipment used		or calibration)		
Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Schedule	d Calibration
Power Meter NRP2	101919	01-Jul-14 (CTTL, No.J14X02146)	Ju	n-15
Power sensor NRP-Z91	101547	01-Jul-14 (CTTL, No.J14X02146)		n-15
Reference Probe EX3DV4	SN 3617	28-Aug-14(SPEAG,No.EX3-3617_Aug14		g-15
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Ja	n-15
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled	Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-14 (CTTL, No.J14X02145)		n-15
Network Analyzer E5071C	MY46110673	15-Feb-14 (TMC, No.JZ14-781)		b-15
	Name	Function	Signa	ature
Calibrated by:	Zhao Jing	SAR Test Engineer	11	
Reviewed by:	Qi Dianyuan	SAR Project Leader	30	
Approved by:	Lu Bingsong	Deputy Director of the laboratory	1/2 -142	TR'
This calibration certificate sh	all not be reprod	Issued: No luced except in full without written approva	vember 5, 201	
		and a second and a second approve		

Certificate No: Z14-97125

Page 1 of 8

Add: No.51 Xueyunn Road, Haldian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Pax: +86-10-62304633-2504 E-mail: etti@ehinatil.com Http://www.chinatil.en

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

g

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permit	tivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.3	2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ±	6%	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C			
R result with Head TSL				
SAR averaged over 1 cm ³ (1g) of Head TSL	. Co	andition		
SAR measured	250 m/	N input power		13.6 mW / g
SAR for nominal Head TSL parameters	norma	alized to 1W	54.1	mW /g ± 20.8 % (k=2
SAR averaged over 10 $\ cm^3$ (10 g) of Head T	SL Co	ondition		
SAR measured	250 m/	V input power		6.33 mW / g
SAR for nominal Head TSL parameters	norma	aized to 1W	25.3	mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.4±6%	1.99 mho/m ± 6 %
Body TSL temperature change during test	<1.0 *C		

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.1 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input pawer	6.15 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW /g ± 20.4 % (k=2)

Certificate No: Z14-97125

Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5Ω+ 6.22jΩ
Return Loss	- 23.2dB

Antenna Parameters with Body TSL

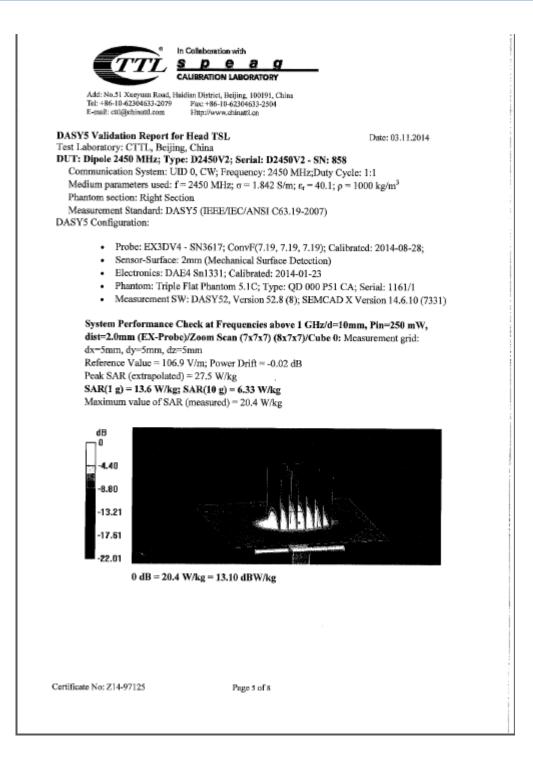
Impedance, transformed to feed point	51.2Ω+ 7.85jΩ	
Return Loss	- 22.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.032 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

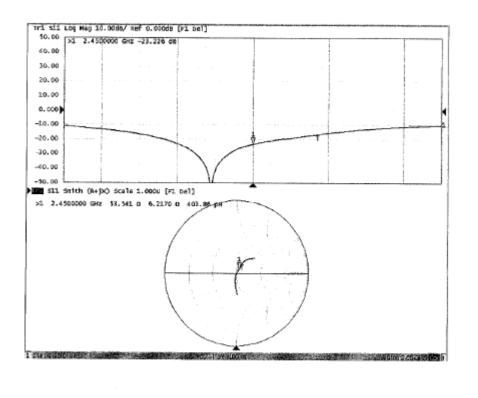
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG	

Certificate No: Z14-97125

Page 4 of 8



Impedance Measurement Plot for Head TSL

Certificate No: Z14-97125

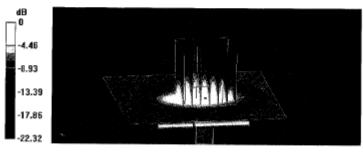
Page 6 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: etti@ethiastil.com Http://www.chinatil.en

DASY5 Validation Report for Body TSL

Date: 02.11.2014

Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 858


Communication System: UID 0, CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.991 S/m; ϵ_r = 51.37; ρ = 1000 kg/m³ Phantom section: Center Section

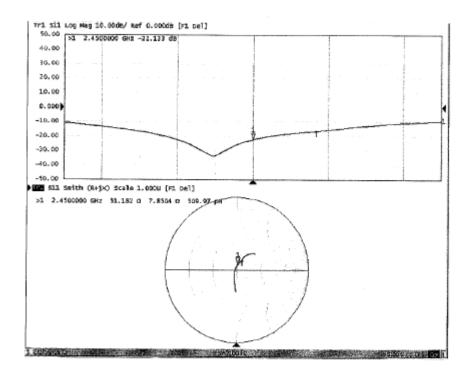
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.31, 7.31, 7.31); Calibrated: 2014-08-28;
- · Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

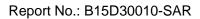
System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (8x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 100.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.15 W/kg

Maximum value of SAR (measured) - 19.8 W/kg

0 dB = 19.8 W/kg = 12.97 dBW/kg


Certificate No: Z14-97125

Page 7 of 8


Impedance Measurement Plot for Body TSL

Certificate No: Z14-97125

Page 8 of 8

	DET
	Aute 20, 201
	Acceptable Conditions for SAR Measurements Using Probes and Dipoles Calibrated under the SPEAG-TMC Dual-Logo Calibration Program to Support FCC Equipment Certification
calibra under protoc and T	cceptable conditions for SAR measurements using probes, dipoles and DAEs ated by TMC (Telecommunication Metrology Center of MITT in Beijing, China), the Dual-Logo Calibration Certificate program and quality assurance (QA) cols established between SPEAG (Schmid & Partner Engineering AG, Switzerland MC, to support FCC (U.S. Federal Communications Commission) equipment cation are defined and described in the following.
ca su an ye	te agreement established between SPEAG and TMC is only applicable to libration services performed by TMC where its clients (companies and divisions of ch companies) are headquartered in the Greater China Region, including Taiwan d Hong Kong. This agreement is subject to renewal at the end of each calendar ar between SPEAG and TMC. TMC shall inform the FCC of any changes or early mination to the agreement.
2) Or wi eq	ally a subset of the calibration services specified in the SPEAG-TMC agreement, tile it remains valid, are applicable to SAR measurements performed using such upment for supporting FCC equipment certification. These are identified in the llowing.
a)	 Calibration of dosimetric (SAR) probes EX3DVx, ET3DVx and ES3DVx. i) Free-space E-field and H-field probes, including those used for HAC (hearing aid compatibility) evaluation, temperature probes, other probes or equipment not identified in this document, when calibrated by TMC, are excluded and cannot be used for measurements to support FCC equipment certification. ii) Signal specific and bundled probe calibrations based on PMR (probe modulation response) characteristics are handled according to the requirements of KDB 865664; that is, "Until standardized procedures are available to make such determination, the applicability of a signal specific probe calibration of a case-by-case basis through KDB inquiries, including SAR system verification requirements."
b)	Calibration of SAR system validation dipoles, excluding HAC dipoles.
c)	Calibration of data acquisition electronics DAE3Vx, DAE4Vx and DAEasyVx. For FCC equipment certification purposes, the frequency range of SAR probe and dipole calibrations is limited to 700 MHz - 6 GHz and provided it is supported by the equipment identified in the TMC QA protocol (a separate attachment to this document).
e)	The identical system and equipment setup, measurement configurations, hardware, evaluation algorithms, calibration and QA protocols, including the format of calibration certificates and reports used by SPEAG shall be applied by TMC.
f)	The calibrated items are only applicable to SPEAG DASY 4 and DASY 5 or higher version systems.
	0

- The SPEAG-TMC agreement includes specific protocols identified in the following to ensure the quality of calibration services provided by TMC under this SPEAG-TMC Dual-Logo calibration agreement are equivalent to the calibration services provided by SPEAG. TMC shall, upon request, provide copies of documentation to the FCC to substantiate program implementation.
 a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA
 - a) The Inter-laboratory Calibration Evaluation (ILCE) stated in the TMC QA protocol shall be performed between SPEAG and TMC at least once every 12 months. The ILCE acceptance criteria defined in the TMC QA protocol shall be satisfied for the TMC, SPEAG and FCC agreements to remain valid.
 - b) Check of Calibration Certificate (CCC) shall be performed by SPEAG for all calibrations performed by TMC. Written confirmation from SPEAG is required for TMC to issue calibration certificates under the SPEAG-TMC Dual-Logo calibration program. Quarterly reports for all calibrations performed by TMC under the program are also issued by SPEAG.
 - c) The calibration equipment and measurement system used by TMC shall be verified before each calibration service according to the specific reference SAR probes, dipoles, and DAE calibrated by SPEAG. The results shall be reproducible and within the defined acceptance criteria specified in the TMC QA protocol before each actual calibration can commence. TMC shall maintain records of the measurement and calibration system verification results for all calibrations.
 - d) Quality Check of Calibration (QCC) certificates shall be performed by SPEAG at least once every 12 months. SPEAG shall visit TMC facilities to verify the laboratory, equipment, applied procedures and plausibility of randomly selected certificates.
- 4) A copy of this document, to be updated annually, shall be provided to TMC clients that accept calibration services according to the SPEAG-TMC Dual-Logo calibration program, which should be presented to a TCB (*Telecommunication Certification Body*), to facilitate FCC equipment approval.
- TMC shall address any questions raised by its clients or TCBs relating to the SPEAG-TMC Dual-Logo calibration program and inform the FCC and SPEAG of any critical issues.

Charge Note: Revised on June 26 to clarify the applicability of PMR and Bundled probe calibrations according to the requirements of KDB 865664.

2

***********End The Report*********